Skip to main content Accessibility help
×
  • Cited by 143
Publisher:
Cambridge University Press
Online publication date:
June 2012
Print publication year:
2011
Online ISBN:
9780511977817

Book description

This textbook for advanced undergraduate and graduate students presents a multidisciplinary approach to understanding ocean circulation and how it drives and controls marine biogeochemistry and biological productivity at a global scale. Background chapters on ocean physics, chemistry and biology provide students with the tools to examine the range of large-scale physical and dynamic phenomena that control the ocean carbon cycle and its interaction with the atmosphere. Throughout the text observational data is integrated with basic physical theory to address cutting-edge research questions in ocean biogeochemistry. Simple theoretical models, data plots and schematic illustrations summarise key results and connect the physical theory to real observations. Advanced mathematics is provided in boxes and appendices where it can be drawn on to assist with the worked examples and homework exercises available online. Further reading lists for each chapter and a comprehensive glossary provide students and instructors with a complete learning package.

Reviews

'This is an outstanding book, likely to become a standard text for those needing to know about both ocean physics and biogeochemistry. Its main achievement is to cover both aspects in sufficient depth to provide a genuinely useful treatment of key concept[s], but at a sufficiently gentle technical and mathematical level to remain accessible to both communities. The excellent sets of problems (and solutions) will help readers to increase their understanding of the topics covered. I can see the book being widely adopted for upper-level undergraduate and graduate courses, as well as being used by more experienced researchers needing to increase their knowledge and understanding of the other discipline.'

Professor David Marshall - University of Oxford

'For the last half century the study of ocean science has been fractured along disciplinary lines, but the contemporary challenge of understanding the ocean’s role in and response to climate variability has laid bare the weakness of studying aspects of the ocean in isolation. Here, by carefully interweaving the physical, biological and chemical fundamentals needed to understand the ocean’s circulation and carbon cycle, Williams and Follows have made the ocean whole again. As such, this text is ideal for students and instructors interested in a modern approach to the study of the oceans.'

Professor Susan Lozier - Duke University

'This textbook presents a very thorough yet concise illustration of the current state of our understanding of the ocean's role in the global carbon cycle. It is excellent reading and provides a fresh approach that will be of immense value to future generations of students and new researchers. I congratulate the authors on this very fine work!'

Professor Andreas Oschlies - IFM-GEOMAR, University of Kiel

'In this excellent book … the authors have taken great care to introduce new topics in an accessible, intuitive manner before going into detail. It is well-illustrated … [with] beautiful colour plates … for which animated versions are provided online. This book will appeal to advanced undergraduate and graduate students as well as to established scientists, and merits a place on any oceanographer’s or climate researcher’s bookshelf. [It] is also very useful for self-study.'

Source: Weather, magazine of the Royal Meteorological Society

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Abraham, E. R., C. S., Law, P. W., Boyd, et al. (2000). Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature, 407, 727–730.
Adkins, J. F. and D. P., Schrag (2003). Reconstructing Last Glacial Maximum bottom water salinities from deep-sea sediment pore fluid profiles. EPSL, 216, 109–123.
Aiken, J., N., Rees, S. B., Hooker, et al. (2000). The Atlantic Meridional Transect: overview and synthesis of data. Prog. Oceanogr., 45(3–4), 257–312.
Allegre, C. J. and S. H., Schneider (2005). The evolution of Earth. Sci. Am. (Spec. Edn.), 4–13.
Anderson, L. A. (1995). On the hydrogen and oxygen content of marine phytoplankton. Deep-Sea Res. I, 42, 1675–1680.
Anderson, L. A. and J. L., Sarmiento (1994). Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8, 65–80.
Andrews, D. G., J. R., Holton, and C. B., Leovy (1987). Middle Atmosphere Dynamics. Orlando, FL: Academic Press, 489pp.
Archer, D. (1996). An atlas of the distribution of calcium carbonate in sediments of the deep sea. Global Biogeochem. Cycles, 10, 159–174.
Archer, D. (2007). Global Warming: Understanding the Forecast. Malden, MA: Blackwell Publishing, 208pp.
Archer, D. A. (2005). The fate of fossil fuel CO2 in geologic time. J. Geophys. Res., 110, C09S05, doi:10.1029/2004JC002625.
Archer, D., M., Eby, V., Brovkin, et al. (2009). Atmospheric lifetime of fossil-fuel carbon dioxide. Ann. Rev. Earth Planet. Sci., 37, 117–134.
Armstrong, R. (2008). Nutrient uptake as a function of cell-size and surface transporter density: a Michaelis-like approximation to the model of Pasciak and Gavis. Deep-Sea Res. I, 55, 1311–1317.
Armstrong, R. A., C., Lee, J. I., Hedges, S., Honjo, and S. G., Wakeham (2002). A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II, 49, 219–236.
Badin, G. and R. G., Williams (2010). On the buoyancy forcing and residual circulation in the Southern Ocean: the feedback from Ekman and eddy transfer. J. Phys. Oceanogr., 40, 295–310.
Barnola, J.-M., P., Pimienta, D., Raynaud, and Y. S., Korotkevich (1991). CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus, 43(B), 83–90.
Bates, N. R. (2001). Interannual changes of oceanic CO2 and biogeochemical properties in the western North Atlantic subtropical gyre. Deep-Sea Res. II, 48(8–9), 1507–1528.
Bates, N. R., A. H., Knap, and A. F., Michaels (1998). The effect of hurricanes on the local to global air-sea exchange of CO2. Nature, 395, 58–61.
Bates, N. R., A. F., Michaels, and A. H., Knap (1996). Seasonal and interannual variability of the oceanic carbon dioxide system at the U.S. JGOFS Bermuda Atlantic Time-series Site. Deep-Sea Res. II, 43(2–3), 347–383.
Behrenfeld, M. J. and P. G., Falkowski (1997a). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1–20.
Behrenfeld, M. J. and P. G., Falkowski (1997b). A consumer's guide to phytoplankton primary productivity models. Limnol. Oceanogr., 42, 1479–1491.
Berge, T., P. J., Hansen, and O., Moestrup (2008). Prey size spectrum and bioenergetics of the mixotrophic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol., 50, 289–299, doi: 10.3354/ame01166.
Berger, W. H. (1982). The increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften, 69, 87–88.
Berner, R. A. (1999). A new look at the long-term carbon cycle. GSA Today, 9(11), 1–6.
Bertilsson, S., O., Berglund, D. M., Karl, and S. W., Chisholm (2003). Elemental composition of marine Prochlorococcus and Syncehococcus: implications for the ecological stoichiometry of the sea. Limnol. Oceanogr., 48(5), 1721–1731.
Bingham, R. J. and C. W., Hughes (2009). Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys. Res. Lett., 36, L02603.
Bissinger, J. E., D. J. S., Montagnes, J., Sharples, and D., Atkinson (2008). Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol. Oceanogr., 53, 487–493.
Bolin, B. and E., Eriksson (1958). Changes in the carbon content of the atmosphere and sea due to fossil fuel combustion. In The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial Volume, ed. B., Bolin. New York: Rockefeller Institute Press, pp. 130–142.
Bower, A. S. and M. S., Lozier (1994). A closer look at particle exchange in the Gulf Stream. J. Phys. Oceanogr., 24, 1399–1418.
Bower, A. S. and T., Rossby (1989). Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr., 19, 1177–1190.
Bower, A. S., M. S., Lozier, S. F., Gary, and C., Boning (2009). Interior pathways of the Atlantic meridional overturning circulation. Nature, 459, 243–247.
Bower, A. S., H. T., Rossby, and J. L., Lillibridge (1985). The Gulf Stream: barrier or blender?J. Phys. Oceanogr., 15, 24–32.
Boyd, P. W., T., Jickells, C. S., Law, et al. (2007). A synthesis of mesoscale iron-enrichment experiments 1993–2005: key findings and implications for ocean biogeochemistry. Science, 315, 612–617, doi:10.1126/science.1131669.
Boyle, E. A. and L., Keigwin (1987). North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature, 330, 35–40.
Brewer, P. G. (1978). Direct observation of the oceanic CO2 increase. Geophys. Res. Lett., 5, 997–1000, doi:10.1029/GL005i012p00997.
Broecker, W. S. (1991). The great ocean conveyor. Oceanogr., 4, 79–89.
Broecker, W. S. and G. M., Henderson (1998). The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography, 13(4), 352–364.
Broecker, W. S. and T.-H., Peng (1982). Tracers in the Sea. New York: Eldigio Press, 690pp.
Brovkin, V., A., Ganopolski, D., Archer, and S., Rahmstorf (2007). Lowering of glacial pCO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanogr., 22, PA4202, doi:10.1029/2006PA001380.
Bruland, K. W., K. J., Orians, and J. P., Cowen (1994). Reactive trace metals in the stratified central North Pacific. Geochem. Cosmochim. Acta, 58, 3171–3182.
Brzezinski, M. A., C. J., Pride, D. M., Sigman, et al. (2002). A switch from Si(OH)4 to depletion in the glacial Southern Ocean. Geophys. Res. Lett., 29, doi:10.1029/2001GL014349.
Burd, A. B., G. A., Jackson, R. S., Lampitt, and M., Follows (2002). Shining a light on the ocean's twilight zone. EOS, 83, 49.
Burmaster, D. E. (1979). The unsteady continuous culture of phosphate-limited Monochrysis lutheri Droop: experiments and theoretical analysis. J. Exp. Mar. Biol. Ecol., 39, 167–186.
Caillon, N., J. P., Severinghaus, J., Jouzel, et al. (2003). Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science, 299, 1728–1731.
Caperon, J. (1968). Population growth response of Isochrysis galbana to nitrate variation at limiting concentrations. Ecology, 49, 866–872.
Carr, M-E., M. A., Friedrichs, M., Schmeltz, et al. (2006). A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res., 53, 741–770.
Charney, J. G. (1947). The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.
Chelton, D. B., R. A., deSzoeke, M. G., Schlax, K. El, Naggar, and N., Siwertz (1998). Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433–460.
Chen, G.-T. and F. J., Millero (1979). Gradual increase of oceanic carbon dioxide. Nature, 277, 205–206.
Civitarese, G., M., Gacic, V., Cardin, and V., Ibello (2005). Winter convection continues in the warming southern Adriatic. EOS, 86, 45.
Conkright, M. E., H. E., Garcia, T. D., O'Brien, et al. (2002). World Ocean Atlas 2001. Volume 4: Nutrients, ed. S., Levitus, NOAA Atlas NESDIS 52. Washington, D.C.: U.S. Government Printing Office, 392pp., CD-ROMs.
Conkright, M. E., S., Levitus and T. P., Boyer (1994). World Ocean Atlas 1994. Volume 1: Nutrients, NOAA Atlas NESDIS 1. Washington D.C.: U.S. Dept. of Commerce, 150pp.
Cunningham, S. A., S. G., Alderson, M. A., Brandon, and B. A., King (2003). Transport and variability of the Antarctic Circumpolar Current. J. Geophys. Res., 108, doi:10.1029/2001JC001147.
Cunningham, S. A., T. O., Kanzow, D., Rayner, et al. (2007). Temporal variability of the Atlantic Meridional Overturning Circulation at 26.5°N. Science, 317, 935–938.
Cushman-Roisin, B. (1987). ‘Subduction’. Dynamics of the oceanic surface mixed layer. In Proceedings of Hawaiian Winter Workshop, University of Hawaii at Manoa, HI, pp. 181–196.
Cushman-Roisin, B. (1994). Introduction to Geophysical Fluid Dynamics. Englewood Cliffs, NJ: Prentice Hall, 320pp.
Czaja, A. (2009). Atmospheric control on the thermohaline circulation. J. Phys. Oceanogr., 39, 234–247.
Dale, T., F., Rey, and B. R., Heimdal (1999). Seasonal development of phytoplankton at a high latitude oceanic site. SARISA, 84, 419–435.
Davidson, K., G., Wood, E. H., John, and K. J., Flynn (1999). An investigation of non steady state algal growth: I. An experimental model ecosystem. J. Plankton Res., 21, 811–837.
Dickson, A. G. (1981). An exact definition of total alkalinity, and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res., 28, 609–623.
Dickson, A. G. (1992). The development of the alkalinity concept in Marine chemistry. Mar. Chem. 40, 49–63.
Dickson, R., J., Lazier, J., Meinke, P., Rhines, and J., Swift (1996). Long-term coordinated changes in convective activity of the North Atlantic. Prog. Oceanogr., 38, 241–295.
Dietze, H., A., Oschlies, and P., Kähler (2004). Internal-wave-induced and double-diffusive nutrient fluxes to the nutrient-consuming surface layer in the oligotrophic subtropical North Atlantic. Ocean Dyn., 54, 1–7.
,DOE (Department of Energy) (1994). Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water, Version 2, ed. A. G., Dickson and C., Goyet. ORNL/CDIAC-74.
Dore, J. E. (2009). Hawaii Ocean Time-series surface CO2 system data product, 1988–2008. SOEST, University of Hawaii, Honolulu, HI. http://hahana.soest.hawaii.edu/hot/products/products.html.
Droop, M. R. (1968). Vitamin B12 and marine ecology: IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. UK, 48, 689–733.
Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1, 33–57.
Eckart, C. (1948). An analysis of the stirring and mixing process in incompressible fluids. J. Mar. Res., 7, 265–275.
Emerson, S. and J., Hedges (2008). Chemical Oceanography and the Marine Carbon Cycle. Cambridge: Cambridge University Press, 468pp.
Emerson, S., P., Quay, D., Karl, et al. (1997). Experimental determination of the organic carbon flux from open-ocean surface waters. Nature, 389, 951–954.
Emile-Geay, J., M. A., Cane, N., Naik, et al. (2003). Warren revisited: atmospheric freshwater fluxes and ‘why is no deep water formed in the North Pacific?’. J. Geophys. Res., 108, 3178.
Eppley, R. W. (1972). Temperature and phytoplankton growth in the sea. Fish. Bull., 70, 1063–1085.
Etheridge, D. M., L. P., Steele, R. L., Langenfelds, et al. (1998). Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores. In Trends: A Compendium of Data on Global Change. Oak Ridge, TN: U.S. Department of Energy.
Falkowski, P. G. (1997). Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 327, 242–244.
Falkowski, P. and J., Raven (1997). Aquatic Photosynthesis. Princeton, NJ: Princeton University Press.
Falkowski, P. G. and Y., Isozaki (2008). Geology. The story of O2. Science, 322(5901), 540–554.
Falkowski, P. G., Z., Dubinsky, and K., Wyman (1985). Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr., 30(2), 311–321.
Ferreira, D., J., Marshall, and J.-M., Campin (2010). Localization of deep water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Clim., 23, 1456–1476.
Follows, M. J. and S. W., Dutkiewicz (2002). Meteorological modulation of the North Atlantic spring bloom. Deep-Sea Res. II, 49, 321–344.
Follows, M. J., S., Dutkiewicz, S., Grant, and S. W., Chisholm (2007). Emergent biogeography of microbial communities in a model ocean. Science, 315, 1843–1846, doi:10.1126/science.1138544.
Follows, M. J., S., Dutkiewicz, and T., Ito (2006). On the solution of the carbonate system in ocean biogeochemistry models. Ocean Model., 12, 290–301.
Francois, R., M. A., Altabet, and L. H., Burckle (1992). Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sediment δ15N. Paleoceanogr., 7, 589–606.
Ganachaud, A. and C., Wunsch (2003). Large scale ocean heat and freshwater transports during the World Ocean Circulation Experiment, J. Clim., 16, 696–705.
Garcia, H. E. and L. I., Gordon (1992). Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr., 37, 1307–1312.
Geider, R. J., H. L., MacIntyre, and T. M., Kana (1997). Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll-a:carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser., 148, 187–200.
Gent, P. R. and J. C., McWilliams (1990). Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.
Gent, P. R., J., Willebrand, T. J., McDougall, and J. C., McWilliams (1995). Parameterising eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463–474.
Gill, A. E. (1982). Atmosphere-Ocean Dynamics. New York: Academic Press, 692pp.
Gill, A. E., J. S. A., Green, and A. J., Simmons (1974). Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea. Res., 21, 499–528.
Gille, S. T. (1997). The Southern Ocean momentum balance: evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27, 2219–2232.
Gledhill, M. and C. van den, Berg (1994). Determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar. Chem., 47, 41–54.
,GLOBALVIEW-CO2 (2009). Cooperative Atmospheric Data Integration Project – Carbon Dioxide. CD-ROM, NOAA ESRL, Boulder, CO. Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW.
Godfrey, J. S., G. C., Johnson, M. J., McPhaden, G., Reverdin, and S. E., Wijffels (2001). The tropical ocean circulation. In Ocean Circulation and Climate, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 215–246.
Goodwin, P. and A., Ridgwell (2010). Ocean-atmosphere partitioning of anthropogenic carbon dioxide on multimillennial timescales. Global Biogeochem. Cycles, 24, GB20014, doi:10.1029/2008GB003449.
Goodwin, P., R. G., Williams, M. J., Follows, and S., Dutkiewicz (2007). The ocean–atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales. Global Biogeochem. Cycles, 21, GB1014, doi:10.1029/2006GB002810.
Goodwin, P., R. G., Williams, A., Ridgewell, and M. J., Follows (2009). Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry. Nat. Geosc., doi:10.1038/ngeo416.
Goody, R. M. and Y. L., Yung (1989). Atmospheric Radiation: Theoretical Basis. 2nd edition. New York: Oxford University Press.
Green, J. S. A. (1981). Trough-ridge systems as slant-wise convection. In Dynamical Meteorology: An Introductory Selection, ed. B. W., Atkinson. London: Methuen & Co., pp. 176–194.
Gruber, N. (2004). The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations. In The Ocean Carbon Cycle and Climate, NATO Science Series IV, Vol. 40, ed. M., Follows and T., Oguz. Dordrecht: Kluwer Academic, pp. 97–148.
Gruber, N. and J. L., Sarmiento (1997). Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles, 11, 235–266.
Gruber, N., J. L., Sarmiento, and T. F., Stocker (1996). An improved method for detecting anthropogenic CO2 in the ocean. Global Biogeochem. Cycles, 10, 809–837.
Halkin, D. and T., Rossby (1985). The structure and transport of the Gulf Stream at 73°W. J. Phys. Oceanogr., 15, 1439–1452.
Hanawa, K. and L. D., Talley (2001). Mode waters. In Ocean Circulation and Climate: Observing and Modelling the Global Oceans, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 373–386.
Hansell, D. A., N. R., Bates, and D. B., Olson (2004). Excess nitrate and nitrogen fixation in the North Atlantic. Mar. Chem., 284, 243–265.
Hiscock, M. R., J., Marra, W. O., Smith Jr., et al. (2003). Primary productivity and its regulation in the Pacific sector of the Southern Ocean. Deep-Sea Res. II, 50, 533–558.
Ho, T.-Y., A., Quigg, Z. V., Finkel, et al. (2003). The elemental composition of some marine phytoplankton. J. Phycol., 39(6), 1145–1159, doi:10.1111/j.0022–3646.2003.03–090.x.
Hogg, N. G. (1992). On the transport of the Gulf Stream between Cape Hatteras and the Grand Banks. Deep-Sea Res., 39, 1231–1246.
Hogg, N. G. (2001). Quantification of the deep circulation. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 259–270.
Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B, 361, 903–915.
Holland, W. R. and P. B., Rhines (1980). An example of eddy induced ocean circulation. J. Phys. Oceanogr., 10, 1010–1031.
Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism. Canadian Entomol., 91, 385–398.
Hoskins, B. J. (1983). Modelling of transient eddies and their feedback on the mean flow. In Large-Scale Dynamical Processes in the Atmosphere. ed. B. J., Hoskins and R. P., Pearce. Burlington, MA: Academic Press/Elsevier, pp. 169–199.
Hoskins, B. J. and P. J., Valdes (1990). On the existence of storm tracks. J. Atmos. Sci., 47, 1854–1864.
Hoskins, B. J., I. N., James, and G. H., White (1983). The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595–1612.
Huang, R. X. (2004). Energy flows in the Ocean. In Encyclopedia of Energy, ed. C. J., Cleveland. Amsterdam: Elsevier, pp. 497–509.
Huang, R. X. and W., Wang (2003). Gravitational potential energy sinks in the oceans. Near-Boundary processes and their parameterization. In Proceedings of 'Aha Huliko'a Hawaiian Winter Workshop, University of Hawaii, Honolulu, HI, pp. 239–247.
Hughes, C. W. and B. A. de, Cuevas (2001). Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 2871–2885.
Hurrell, J. W., Y., Kushnir, G., Ottersen, and M., Visbeck (2003). The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophysical Monograph Series, Vol. 134. Washington, D.C.: American Geophysical Union, 279pp.
Huthnance, J. M., H., Coelho, C. R., Griffiths, et al. (2001). Physical structures, advection and mixing in the region of Goban Spur. Deep-Sea Res. II, 48(14–15), 2979–3021.
,IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S., Solomon, D., Qin, M., Manning, Z., Chen, M., Marquis, K. B., Averyt, M., Tignor and H. L., Miller. Cambridge: Cambridge University Press, 996pp.
Ito, T. and M. J., Follows (2005). Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res., 63, 813–839. doi:10.1357/0022240054663231.
Ito, T., M. J., Follows and E. A., Boyle (2004a). Is AOU a good measure of respiration in the oceans?Geophys. Res. Lett., 31, L17305, doi:10.1029/2004GL020900.
Ito, T., J., Marshall and M., Follows (2004a). What controls the uptake of transient tracers in the Southern Ocean. Global Biogeochem. Cycles, 18, GB2021, doi:10.1029/2003GB002103.
Ivanov, V. V., G. I., Shapiro, J. M., Huthnance, D. L., Aleynik, and P. N., Golovin (2004). Cascades of dense water around the world ocean. Prog. Oceanogr., 60(1), 47–98.
Jackett, D. R. and T. J., McDougall (1997). A neutral density variable for the world's oceans. J. Phys. Oceanogr., 27(2), 237–263.
Jackson, L., C. W., Hughes, and R. G., Williams (2006). Topographic control of basin and channel flows: the role of bottom pressure torques and friction. J. Phys. Oceanogr., 36, 1786–1805.
Jähne, B. and H., Haussecker (1998). Air-water gas exchange. Annu. Rev. Fluid Mech., 30, 443–468.
Jenkins, W. J. (1988a). The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Phil. Trans. Roy. Soc. Lon., A325, 43–61.
Jenkins, W. J. (1988b). Nitrate flux into the photic zone near Bermuda. Nature, 331, 521–523.
Jenkins, W. J. and J. C., Goldman (1985). Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res., 43, 465–491.
Jenkins, W. J. and D. W. R., Wallace (1992). Tracer based inferences of new primary production in the sea. In Primary Productivity and Biogeochemical Cycles in the Sea, ed. P. G., Falkowski and A. D., Woodhead. New York: Plenum Press, pp. 299–316.
Johnson, K. S., F. P., Chavez, and G. E., Friederich (1999). Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature, 398, 697–700, doi:10.1038/19511.
Johnson, K., R., Gordon, and K., Coale (1997). What controls dissolved iron concentrations in the world ocean?Mar. Chem., 57, 137–161.
Josey, S. A., E. C., Kent, and P. K., Taylor (1999). New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. J. Clim., 12, 2856–2880.
Josey, S. A., E. C., Kent, and P. K., Taylor (2002). On the wind stress forcing of the ocean in the SOC climatology: comparisons with the NCEP/NCAR, ECMWF, UWM/COADS and Hellerman and Rosenstein datasets. J. Phys. Oceanogr., 32(7), 1993–2019.
Kanzow, T., S. A., Cunningham, W. E., Johns, et al. (2010). Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J. Clim., 23, doi:10.1175/2010JCLI3389.1.
Kasting, J. (2010). How to Find a Habitable Planet. Princeton, NJ: Princeton University Press, 360pp.
Kasting, J. F. (2001). The rise of atmospheric oxygen. Science, 293, 819–820.
Kato, H. and O. M., Phillips (1969). On the penetration of a turbulent layer into a stratified layer. J. Fluid Mech., 37, 643–655.
Keeling, C. D., R. B., Bacastow, A. E., Bainbridge, et al. (1976). Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus, 28, 538–551.
Key, R. M., A., Kozyr, C. L., Sabine, et al. (2004). A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.
Kiørboe, T. (2009). A Mechanistic Approach to Plankton Ecology. Princeton, NJ: Princeton University Press.
Knap, A., T., Jickells, A., Pszenny, and J., Galloway (1986). Significance of atmospheric-derived fixed nitrogen on productivity of the Sargasso Sea. Nature, 320, 158–160.
Körtzinger, A., J., Schimanski, U., Send, and D., Wallace (2004). The ocean takes a deep breath. Science, 306, 1337.
Kraus, E. B. and J. S., Turner (1967). A one-dimensional model of the seasonal thermocline: II. The general theory and its consequences. Tellus, 19, 19–106.
,Labrador Sea Monitoring Group (2007). Status of the Labrador Sea. Atlantic Zone Monitoring Program Bull., 6, 11–15.
Langmuir, D. (1997). Aqueous Environmental Geochemistry. Upper Saddle River, NJ: Prentice-Hall.
Large, W. G. and A. J. G., Nurser (2001). Ocean surface water mass transformation, In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 317–336.
Lavender, K. L., R. E., Davis, and W. B., Owens (2002). Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J. Phys. Oceanogr., 32, 511–526.
Laws, E. A., P. G., Falkowski, W. O. J., Smith, H., Ducklow, and J. J., McCarthy (2000). Temperature effects on export production in the open ocean. Global Biogeochem. Cycles, 14(4), 1231–1246.
Lazier, J., R., Hendry, A., Clarke, I., Yashayaev, and P., Rhines (2002). Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res. I, 49, 1819–1835.
Lee, M.-M. and R. G., Williams (2000). The role of eddies in the isopycnic transfer of nutrients and their impact on biological production. J. Mar. Res., 58, 895–917.
Lee, M.-M., D. P., Marshall, and R. G., Williams (1997). On the eddy transfer of tracers: advective or diffusive?J. Mar. Res., 55(3), 483–505.
Lévy, M. (2008). The modulation of biological production by ocean mesoscale turbulence. Lect. Notes Phys., 744, 219–261, In Transport in Geophysical Flow: Ten Years After, ed. J. B., Weiss and A., Provenzale, Heidelberg: Springer.
Lévy, M., P., Klein and A. M., Treguier (2001). Impacts of sub-mesoscale physics on phytoplankton production and subduction. J. Mar. Res., 59, 535–565.
Lévy, M., D., Shankar, J.-M., André, et al. (2007). Basin-wide seasonal evolution of the Indian Ocean's phytoplankton blooms. J. Geophys. Res., 112, doi:10.1029/2007JC004090.
Lewis, M. R., W. G., Harrison, N. S., Oakley, D., Hebert, and T., Platt (1986). Vertical nitrate fluxes in the oligotrophic ocean. Science, 234, 870–873.
Lilly, J. M., P. B., Rhines, F., Schott, et al. (2003). Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75–176.
Lindzen, R. S. and B., Farrell (1980). A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648–1654.
Liss, P. S. and L., Merlivat (1986). Air-sea gas exchange rates: introduction and synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling, ed. P., Buat-Ménard. Boston, MA: D. Reidel Publishing Company, pp. 113–127.
Litchman, E., C. A., Klausmeier, O. M., Schofield, and P. G., Falkowski (2007). The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett., 10, 1170–1181.
Lozier, M. S. (1997). Evidence for large-scale eddy-driven gyres in the North Atlantic. Science, 277, 361–364.
Lozier, M. S. (2010). Deconstructing the conveyor belt. Science, 328, 1507, doi:10.1126/science.1189250.
Lozier, M. S., V., Roussenov, M. S. C., Reed, and R. G., Williams (2010). Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat. Geosc., doi:10.1038/ngeo947.
Lumpkin, R. and M., Pazos (2006). Measuring surface currents with Surface Velocity Program drifters: the instrument, its data and some recent results. In Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, ed. A., Mariano, T., Rossby and D., Dirwan. Cambridge: Cambridge University Press, pp. 39–67.
Lumpkin, R. and K., Speer (2007). Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562.
Luyten, J. R., J., Pedlosky, and H., Stommel (1983). The ventilated thermocline. J. Phys. Oceanogr., 13, 292–309.
MacArthur, R. H. and E. O., Wilson (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press, 203pp.
Mahaffey, C., A. F., Michaels, and D. G., Capone (2005). The conundrum of marine N2 fixation. Am. J. Sci., 305, 546–595.
Mahowald, N., S., Engelstaedter, C., Luo, et al. (2009). Atmospheric iron deposition: global distribution, variability and human perturbations. Annu. Rev. Mar. Sci., 1, 245–278, doi:10.1146/annurev/ marine.010908.163727.
Marañón, E., P. M., Holligan, M., Varela, B., Mouriño, and A. J., Bale (2000). Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean. Deep-Sea Res. I, 47(5), 825–857.
Marotzke, J. (2000). Abrupt climate change and thermohaline circulation: mechanisms and predictability. Proc. Natl. Acad. Sci. USA., 97(4), 1347–1350.
Marotzke, J. and J. R., Scott (1999). Convective mixing and the thermohaline circulation. J. Phys. Oceanogr., 29, 2962–2970.
Marshall, D. P. (1997). Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201–222.
Marshall, J. and A. R., Plumb (2007). Atmosphere, Ocean and Climate Dynamics: An Introductory Text. Burlington, MA: Academic Press/Elsevier, 319pp.
Marshall, J. and T., Radko (2003). Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 2341–2354.
Marshall, J. and F., Schott (1999). Open-ocean convection: observations, theory and models. Rev. Geophys., 37(1), 1–64.
Marshall, J., D., Jamous, and J., Nilsson (1999). Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545–572.
Marshall, J. C., A. J. G., Nurser, and R. G., Williams (1993). Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23, 1315–1329.
Martin, A. P. (2003). Phytoplankton patchiness: the role of lateral stirring and mixing. Prog. Oceanogr., 57, 125–174.
Martin, J. H. and S. E., Fitzwater (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific Subarctic. Nature, 331, 341–343.
Martin, J. H., G. A., Knauer, D. M., Karl, and W. W., Broenkow (1987). VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. A, 34(2), 267–285.
Mauritzen, C., J., Price, T., Sanford, and D., Torres (2005). Circulation and mixing in the Faroese Channels. Deep-Sea Res. I, 52, 883–913.
Maximenko, N. A. and P. P., Niiler (2005). Hybrid decade-mean global sea level with mesoscale resolution. In Recent Advances in Marine Science and Technology 2004, ed. N., Saxena. Honolulu, HI: PACON International, pp. 55–59.
McArthur, R. H. and E. O., Wilson (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press, 203pp.
McCartney, M. S. and L. D., Talley (1982). The subpolar mode water of the North Atlantic Ocean. J. Phys. Oceanogr., 12, 1169–1189.
McDonagh, E. L., P., McLeod, B. A., King, H. L., Bryden, and S., Torres-Valdes (2010). Circulation, heat and fresh water transport at 36°N in the Atlantic. J. Phys. Oceanogr., 40, 2661–2678.
McDougall, T. J., D. R., Jackett, and F. J., Millero (2009). An algorithm for estimating absolute salinity in the global ocean. Ocean Sci. Discuss., 6, 215–242.
McDowell, S., P. B., Rhines, and T., Keffer (1982). North Atlantic potential vorticity and its relation to the general circulation. J. Phys. Oceanogr., 12, 1417–1436.
McGillicuddy, D. J. and A. R., Robinson (1997). Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I, 44, 1427–1449.
McGillicuddy, D. J., A. R., Robinson, D. A., Siegel, et al. (1998). New evidence for the impact of mesoscale eddies on biogeochemical cycling in the Sargasso Sea. Nature, 394, 263–266.
Measures, C. I., W. M., Landing, M. T., Brown and C. S., Buck (2008). High resolution Al and Fe data from the Atlantic Ocean CLIVAR–CO2 Repeat Hydrology transect. Global Biogeochem. Cycles, 22, GB1005, doi:10.1029/2007/GB003042.
Menemenlis, D., C., Hill, A., Adcroft, J., Campin, B., Cheng, B., Ciotti, et al. (2005). NASA super computer improves prospects for ocean climate research. EOS Trans. AGU, 86(9), 89, doi:10.1029/2005EO090002.
Menzel, D. W. and J. H., Ryther (1961). Annual variations in primary production of the Sargasso Sea off Bermuda. Deep-Sea Res., 7, 282–288.
Michaelis, L. and M., Menten (1913). Die Kinetic der Inverinwirkung. Biochem. Z., 49, 333–369.
Michaels, A. F., A. H., Knap, R. L., Dow, et al. (1994). Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic Time-series Study site. Deep-Sea Res. I, 41, 1013–1038.
Miller, C. B. (2004). Biological Oceanography. Malden, MA: Blackwell, 416pp.
Miller, P. I. (2009). Composite front maps for improved visibility of dynamic sea-surface features on cloudy SeaWiFS and AVHRR data. J. Mar. Sys., 78(3), 327–336, doi:10.1016/j.jmarsys.2008.11.019.
Millero, F. J. (1995). Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta, 59(4), 661–677.
Moore, C. M., M. M., Mills, E. P., Achterberg, et al. (2009). Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat. Geosc., 2, 867–871.
Morel, F. M. M. and J. G., Hering (1993). Principles and Applications of Aquatic Chemistry. Hoboken, NJ: Wiley-Interscience, 608pp.
Müller, P. and C., Frankignoul (1981). Direct atmospheric forcing of geostrophic eddies. J. Phys. Oceanogr., 11, 287–308.
Munk, W. H. (1950). On the wind driven ocean circulation. J. Meteor., 7, 79–93.
Munk, W. and C., Wunsch (1998). Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 1977–2010.
Munk, W., L., Armi, K., Fischer, and F., Zachariasen (2000). Spirals on the sea. Proc. R. Soc. Lon. A, 456, 1217–1280.
Murgatroyd, R. J. and F., Singleton (1961). Possible meridional circulations in the stratosphere and mesosphere. Q. J. Roy. Meteorol. Soc., 84, 225–234.
Murnane, R. J., J. L., Sarmiento, and C., Le Quéré (1999). Spatial distribution of air–sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. Global Biogeochem. Cycles, 13, 287–305.
Murray, J. (2004). Ocean carbonate chemistry: the aquatic chemistry fundamentals. In The Ocean Carbon Cycle and Climate, ed. M., Follows and T., Oguz, NATO Science Series, IV, Vol. 40. Dordrecht: Kluwer Academic Publishers.
Murray, A. B., M., LeBars, and C., Guillon (2003). Tests of a new hypothesis for non-bathymetrically driven rip currents. J. Coastal Res., 19(2), 269–277.
Naveira Garabato, A. C., K. L., Polzin, B. A., King, K. J., Heywood, and M., Visbeck (2004). Widespread intense turbulent mixing in the Southern Ocean. Science, 303(5655), 210–213.
Nightingale, P. D., P. S., Liss, and P., Schlosser (2000). Measurements of air-sea gas transfer during an open ocean algal bloom. Geophys. Res. Lett., 27, 2117–2120.
Niiler, P. P. and E. B., Kraus (1977). One-dimensional models of the upper ocean. In Modelling and Prediction of the Upper Layers of the Ocean, ed. by E. B., Kraus. New York: Pergamon, pp. 143–172.
Niiler, P. P., N. A., Maximenko, and J. C., McWilliams (2003). Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys. Res. Lett., 30, 2164, doi:10.1029/2003GL018628.
Nurser, A. J. G., R., Marsh, and R. G., Williams (1999). Diagnosing water mass formation from air-sea fluxes and surface mixing. J. Phys. Oceanogr., 29, 1468–1487.
Omta, A. W., S., Dutkiewicz, and M. J., Follows (2011). Dependence of the ocean–atmosphere partitioning of carbon on temperature and alkalinity, Global Biogeochem. Cycles, 25, GB1003, doi:10.1029/2010GB003839.
Oschlies, A. (2002). Can eddies make ocean deserts bloom?Global Biogeochem. Cycles, 16, 1106, doi:10.1029/2001GB001830.
Oschlies, A., H., Dietze, and P., Kähler (2003). Salt-finger induced enhancement of upper-ocean nutrient supply. Geophys. Res. Letts., 30(23), doi:10.1029/2003GL018552.
Parekh, P., S., Dutkiewicz, M. J., Follows, and T., Ito (2006). Atmospheric carbon dioxide in a less dusty world. Geophys Res. Lett., 33, L03610, doi:10.1029/2005GL025098.
Parsons, A. T. (1969). A two-layer model of Gulf Stream separation. J. Fluid Mech., 39, 511–528.
Pasciak, W. J. and J., Gavis (1974). Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr., 19, 881–888.
Peacock, S., E., Lane, and J. M., Restrepo (2006). A possible sequence of events for the generalized glacial–interglacial cycle. Global Biogeochem. Cycles, 20, GB2010, doi:10.1029/2005GB002448.
Pedlosky, J. (1987). Geophysical Fluid Dynamics.New York: Springer-Verlag, 710pp.
Pedlosky, J. (1996). Ocean Circulation Theory.Berlin: Springer-Verlag, 453pp.
Pelegri, J. L. and G. T., Csanady (1991). Nutrient transport and mixing in the Gulf Stream. J. Geophys. Res., 96, 2577–2583.
Pelegri, J. L. and G. T., Csanady (1994). Diapycnal mixing in western boundary currents. J. Geophys. Res., 99, 18 275–18 304.
Pelegri, J. L., G. T., Csanady, and A., Martins (1996). The North Atlantic nutrient stream. J. Oceanogr., 52, 275–299.
Petit, J. R., J., Jouzel, D., Raynaud, et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.
Petit, J. R.et al. (2001). Vostok Ice Core Data for 420,000 Years. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2001–076. NOAA/NGDC Paleoclimatology Program, Boulder, CO, USA, 293pp.
Philander, S. G. H. (1990). El Nino, La Nina and the Southern Oscillation. San Diego, CA: Academic Press, 293pp.
Pickart, R. S. and M. A., Spall (2007). Impact of Labrador Sea Convection on the North Atlantic Meridional Overturning Circulation. J. Phys. Oceanogr., 37, 2207–2227.
Pilson, M. E. Q. (1998). An Introduction to the Chemistry of the Sea. Prentice-Hall, 431pp.
Pollack, H. N., S. J., Hunter, and J. R., Johnson (1993). Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys., 31(3), 267–280.
Polzin, K. L., K. G., Speer, J. M., Toole, and R. W., Schmitt (1996). Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380, 54–57.
Pratt, L. J., M. S., Lozier, and N., Beliakova (1995). Parcel trajectories in quasigeostrophic jets: neutral modes. J. Phys. Oceanogr., 25, 1451–1466.
Price, J. F. (1992). Overflows: the source of new abyssal ocean waters. Oceanus, 35, 28–34.
Price, J. F. (2001). Subduction. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 357–372.
Price, J. F., M., O'Neil Baringer, R. G., Lueck, et al. (1993). Mediterranean outflow mixing and dynamics. Science, 259, 1277–1282.
Redfield, A. C. (1934). On the proportions of organic derivatives in seawater and their relation to the composition of the plankton. In The James Johnstone Memorial Volume, ed. R. J., Daniel. Liverpool: University Press of Liverpool, pp. 176–192.
Redfield, A. C., B. H., Ketchum, and F. A., Richards (1963). The influence of organisms on the composition of seawater. In The Sea, Vol. 2., ed. M. N., Hill, Hoboken, NJ: Wiley-Interscience, pp. 26–77.
Reid, J. L. (1979). On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea. Deep-Sea Res., 26A, 1199–1223.
Rhines, P. B. and W. R., Young (1982a). Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347–368.
Rhines, P. B. and W. R., Young (1982b). A theory of the wind-driven circulation: I. Mid-ocean gyres. J. Mar. Res., 40 (Suppl.), 559–596.
Rhines, P. B., S., Häkkinen, and S. A., Josey (2008). Is oceanic heat transport significant in the climate system? In Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, ed. R. R., Dickson, J., Meincke, and P. B., Rhines. New York: Springer, pp. 265–279.
Richardson, P. L., R. E., Cheney, and L. V., Worthington (1976). A census of Gulf Stream rings, Spring 1975. J. Geophys. Res., 83(C12), 6136–6144.
Ridgwell, A. and J., Hargreaves (2007). Regulation of atmospheric CO2 by deep-sea sediments in an Earth System Model. Global Biogeochem. Cycles, 21, doi:10.1029/2006GB002764.
Rintoul, S., C. W., Hughes and D., Olbers (2001). The Antarctic Circumpolar Current System. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 271–302.
Robertson, J. E., C., RobinsonD. R., Turner, et al. (1994). The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep-Sea Res. I, 41(2), 297–314.
Rogner, H. H. (1997). An assessment of world hydrocarbon resources. Annu. Rev. Energy Environ., 22, 217–262.
Rooth, C. (1982). Hydrology and ocean circulation. Prog. Oceanogr., 11, 131–149.
Rossby, H. T. and P. I., Miller (2003). Ocean eddies in the 1539 Carta Marina by Olaus Magnus. Oceanogr., 16(4), 77–88.
Roussenov, V., R. G., Williams, M. J., Follows, and R. M., Key (2004). Role of bottom water transport and diapycnic mixing in determining the radiocarbon distribution in the Pacific. J. Geophys. Res., 109, C06015, doi:10.1029/2003JC002188.
Roussenov, V., R. G., Williams, C., Mahaffey, and G. A., Wolff (2006). Does the transport of dissolved organic nutrients affect export production in the Atlantic Ocean?Global Biogeochem. Cycles, 20, doi:10.1029/2005GB00210.
Runge, S. W., B. J. F., Hill, and W. M., Moran (2006). A simple classroom teaching technique to help students understand Michaelis-Menten Kinetics. CBE-Life Sciences Education, 5, 348–352.
Sabine, C. L., R. A., Feely, N., Gruber, et al. (2004). The oceanic sink for anthropogenic CO2. Science, 305, 367–371.
Salmon, R. (1998). Lectures on Geophysical Fluid Dynamics. New York: Oxford University Press, 378pp.
Sarmiento, J. L. and N., Gruber (2002). Sinks for anthropogenic carbon. Phys. Today, August, 30–36.
Sarmiento, J. L. and N., Gruber (2006). Ocean Biogeochemical Dynamics. Princeton, NJ: Princeton University Press, 526pp.
Sarmiento, J. L., N., Gruber, M. A., Brzezinski and J. P., Dunne (2004). High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 56–60.
Schlitzer, R. (2000). Applying the adjoint method for global biogeochemical modeling. In ed. P., Kasibhatla, M., Heimann, D., Hartley, N., Mahowald, R., Prinn, and P., Rayner. Inverse Methods in Global Biogeochemical Cycles, Geophysical Monograph Series, Vol. 114. Washington, D. C.: American Geophysical Union, pp. 107–124.
Schmitz, W. J. Jr., (1996). On the World Ocean Circulation: Vol. I. Some Global Features/North Atlantic Circulation. Technical Report WHOL-96–03. Woods Hole, MA: Woods Hole Oceanographic Institution, 140pp.
Scott, R. B., B. K., Arbic, E. P., Chassignet, et al. (2010). Total kinetic energy in three global eddying ocean circulation models and over 5000 current meter records. Ocean Model., 32, doi:10.1016/j.ocemod.2010.01.005.
Seager, R., D. S., Battisti, J., Yin, et al. (2002). Is the Gulf Stream responsible for Europe's mild winters?Quart. J. Roy. Meteorol. Soc., 128, 2563–2586.
Sharples, J., C. M., Moore, T. P., Rippeth, et al. (2001). Phytoplankton distribution and survival in the thermocline. Limnol. Oceanogr., 46(3), 486–496.
Sharples, J., O. N., Ross, B. E., Scott, S. P. R., Greenstreet, and H., Fraser (2006). Inter-annual variability in the timing of the stratification and the spring bloom in the north-western North Sea. Continental Shelf Res., 26, 733–751.
Siedler, G., J., Church, and J., Gould (2001). Ocean Circulation and Climate: Observing and Modelling the Global Ocean. San Diego, CA: Academic Press, 693pp.
Sigman, D. M. and E. A., Boyle (2000). Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859–869.
Simpson, J. H. and J., Sharples. An Introduction to the Physical and Biological Oceanography of Shelf Seas. Cambridge: Cambridge University Press, not yet published.
Smethie, W. M. Jr., and R. A., Fine (2001). Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res. I, 48, 189–215.
Smith, K. S. (2007). The geography of linear baroclinic instability in Earth's oceans. J. Mar. Res., 65, 655–683.
Smyth, T. J., G. F., Moore, S. B., Groom, P. E., Land, and T., Tyrrell (2002). Optical modelling and measurements of a coccolithophore bloom. Appl. Opt., 41, 7679–7688.
Speer, K. (1997). A note on average cross-isopycnal mixing in the North Atlantic Ocean. Deep-Sea Res. I, 44(12), 1981–1990.
Speer, K. G. and M. S., McCartney (1992). Bottom water circulation in the western North Atlantic. J. Phys. Oceanogr., 22, 83–92.
Speer, K. and E., Tziperman (1992). Rates of water mass formation in the North Atlantic ocean. J. Phys. Oceanogr., 22, 93–104.
Speer, K. G., S. R., Rintoul, and B. M., Sloyan (2000). The diabatic Deacon cell, J. Phys. Oceanogr., 30, 3212–3221.
Spitzer, W. S. and W. J., Jenkins (1989). Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda. J. Mar. Res., 47, 169–196.
Stephens, J. C. and D. P., Marshall (2000). Dynamical pathways of Antarctic Bottom Water in the Atlantic. J. Phys. Oceanogr., 30, 622–640.
Stewart, F. M. and B. R., Levin (1973). Partitioning of resources and the outcome of interspecific competition: a model and some general considerations. Am. Nat., 107, 171–198.
Stommel, H. (1948). The westward intensification of wind-driven ocean currents. Trans. Am. Geophys. Union, 29, 202–206.
Stommel, H. (1958). The abyssal circulation. Deep-Sea Res., 5, 80–82.
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.
Stommel, H. (1979). Determination of watermass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Nat. Acad. Sci. USA, 76, 3051–3055.
Stommel, H. and A. B., Arons (1960). On the abyssal circulation of the world ocean: I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140–154.
Stommel, H., A. B., Arons, and A. J., Faller (1960). Some examples of stationary planetary flow patterns in bounded basins. Tellus, 10, 179–187.
Sverdrup, H. U. (1947). Wind-driven currents in a baroclinic ocean: with applications to the equatorial currents of the eastern Pacific. Proc. Nat. Acad. Sci. USA, 33, 318–326.
Sverdrup, H. U. (1953). On conditions of the vernal blooming of phytoplankton. J. du conseil int. pour l'explor. de la mer, 18, 287–295.
Takahashi, T., W. S., Broecker, and S., Langer (1985). Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res., 90(C4), 6907–6924, doi:10.1029/JC090iC04p06907.
Takahashi, T., S. C. Sutherland, Sweeney, et al. (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res. II, 49, 1601–1622.
Talley, L. D. (1999). Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. In Mechanisms of Global Climate Change at Millennial Time Scales, ed. P. U., Clark, R. S., Webb and L. D., Keigwin, Geophysical Monograph Series, Vol. 112. Washington, D.C.: American Geophysical Union, pp. 1–22.
Talley, L. D., G. L., Pickard, W. J., Emery, and J. H., Swift (2011). Descriptive Physical Oceanography: An Introduction. 6th edition. Elsevier.
Thingstad, T. F., H., Havskum, K., Garde, and B., Riemann (1996). On the strategy of ‘eating your competitor’: a mathematical analysis of algal mixotrophy. Ecology, 77(7), 2108–2118.
Thomas, H., Y., Bozec, K., Elkalay, and H. J., W. Baar (2004). Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304, 1005–1008.
Tilman, D. (1977). Resource competition between planktonic algae: an experimental and theoretical approach. Ecology, 58, 338–348.
Toggweiler, J. R., R., Murnane, S., Carson, A., Gnanadesikan, and J. L., Sarmiento (2003). Representation of the carbon cycle in box models and GCMs: 2. Organic pump. Global Biogeochem. Cycles, 17(1), 1027, doi:10.1029/2001GB001841.
Torres-Valdes, S., V., Roussenov, R., Sanders, et al. (2009). Distribution of dissolved organic nutrients and their effect on export production over the Atlantic Ocean. Global Biogeochem. Cycles, 23, GB4019, doi:10.1029/2008GB003389.
Tyrrell, T. and J., Wright (2001). Calcium carbonate and climate. Ocean Chall., 11(1), 13–21.
Vallis, G. K. (2006). Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge: Cambridge University Press, 745pp.
Veronis, G. (1970). Model of world ocean circulation: I. Wind-driven, two-layer. J. Mar. Res., 31, 228–288.
Vrede, K., M., Heldal, S., Norland, and G., Bratbak (2002). Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl. Env. Microbio., 68(6), 2965–2971, doi:10.1128/AEM.68.6.2965–2971.2002.
Walin, G. (1982). On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187–195.
Wanninkhof, R. and W. R., McGillis (1999). A cubic relationship between air-sea CO2 exchange and windspeed. Geophys. Res. Lett., 26(13), 1889–1892.
Warren, B. A. (1981). Deep circulation of the World Ocean. In Evolution of Physical Oceanography, ed. B. A., Warren and C., Wunsch. Cambridge, MA: The MIT Press, pp. 6–41.
Warren, B. A. (1983). Why is no deep water formed in the North Pacific?J. Mar. Res., 41, 327–347.
Watson, J., S., Alexander, G., Craig, et al. (2001). Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles. Meas. Sci. Tech., 12, L9–L15.
Waugh, D. W. (1993). Subtropical stratospheric mixing linked to disturbances on the polar vortices. Nature, 365, 535–537.
Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem., 2, 203–215.
Welander, P. (1955). Studies on the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141–156.
Williams, R. G. (1991). The role of the mixed layer in setting the potential vorticity of the main thermocline. J. Phys. Oceanogr., 21, 1803–1814.
Williams, R. G. and M. J., Follows (1998). The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep-Sea Res. I, 45, 461–489.
Williams, R. G. and M. J., Follows (2003). Physical transport of nutrients and the maintenance of biological production. In Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change, ed. M., Fasham. Berlin: Springer, pp. 19–51.
Williams, R. G., E., McDonagh, V. M., Roussenov, et al. (2011). Nutrient streams in the North Atlantic: advective pathways of inorganic and organic nutrients. Global Biogeochem. Cycles, submitted.
Williams, R. G., V., Roussenov, and M. J., Follows (2006). Nutrient Streams and their induction into the mixed layer. Global Biogeochem. Cycles, 20, GB1016, doi:10.1029/2005GB002586.
Williams, R. G., M. A., Spall, and J. C., Marshall (1995). Does Stommel's mixed-layer ‘demon’ work?J. Phys. Oceanogr., 25, 3089–3102.
Williams, R. G., C., Wilson, and C. W., Hughes (2007). Ocean and atmosphere storm tracks: the role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 2267–2289.
Wilson, C. and R. G., Williams (2004). Why are eddy fluxes of potential vorticity difficult to parameterise?J. Phys. Oceanogr, 34, 142–155.
Woods, J. D. (1985). The physics of thermocline ventilation. In Coupled Ocean–Atmosphere Models, ed. J. C. J., Nihoul. Kiel: Elsevier, pp. 543–590.
Woolings, T. (2010). Dynamical influences on European climate: an uncertain future. Phil. Trans. R. Soc. A, 368, 3733–3756.
Worthington, L. V. and W. R., Wright (1970). North Atlantic Ocean Atlas of Potential Temperature and Salinity in the Deep Water, Including Temperature, Salinity and Oxygen Profiles from the Erika Dan Cruise of 1962. Atlas Series, Vol. 2. Woods Hole, MA: Woods Hole Oceanographic Institution, 24pp.
Wunsch, C. (1998). The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 2332–2340.
Wunsch, C. (2005). The total meridional heat flux and its oceanic and atmospheric partition. J. Clim., 18, 4374–4380.
Wunsch, C. and R., Ferrari (2004). Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid. Mech., 36, 281–314.
Wüst, G. (1935). The stratosphere of the Atlantic Ocean: Scientific Results of the German Atlantic Expedition of the Research Vessel Meteor 1925–27. English translation edited by W. J., Emerg. et al. New Delhi: Amerind Publishing Co., pp. 109–288.
Yamaguchi, A., Y., Watanabea, H., Ishidaa, et al. (2002). Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep-Sea Res. II, 49, 5513–5529.
Yamamoto, T. and K., Tarutani (1999). Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seto Inland Sea, Japan. Phycol. Res., 47(1), 27–32.
Young, W. R. (1999). Lectures on stirring and mixing, delivered at the 1999 WHO I Summer Program in Geophysical Fluid Dymamics.
Zeebe, R. E. and D., Wolf-Gladrow (2001). CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series, 65. Amsterdam: Elsevier, p. 346.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.