Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T06:18:37.030Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Richard G. Williams
Affiliation:
University of Liverpool
Michael J. Follows
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Ocean Dynamics and the Carbon Cycle
Principles and Mechanisms
, pp. 388 - 399
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, E. R., C. S., Law, P. W., Boyd, et al. (2000). Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature, 407, 727–730.CrossRefGoogle ScholarPubMed
Adkins, J. F. and D. P., Schrag (2003). Reconstructing Last Glacial Maximum bottom water salinities from deep-sea sediment pore fluid profiles. EPSL, 216, 109–123.CrossRefGoogle Scholar
Aiken, J., N., Rees, S. B., Hooker, et al. (2000). The Atlantic Meridional Transect: overview and synthesis of data. Prog. Oceanogr., 45(3–4), 257–312.CrossRefGoogle Scholar
Allegre, C. J. and S. H., Schneider (2005). The evolution of Earth. Sci. Am. (Spec. Edn.), 4–13.CrossRefGoogle Scholar
Anderson, L. A. (1995). On the hydrogen and oxygen content of marine phytoplankton. Deep-Sea Res. I, 42, 1675–1680.CrossRefGoogle Scholar
Anderson, L. A. and J. L., Sarmiento (1994). Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8, 65–80.CrossRefGoogle Scholar
Andrews, D. G., J. R., Holton, and C. B., Leovy (1987). Middle Atmosphere Dynamics. Orlando, FL: Academic Press, 489pp.Google Scholar
Archer, D. (1996). An atlas of the distribution of calcium carbonate in sediments of the deep sea. Global Biogeochem. Cycles, 10, 159–174.CrossRefGoogle Scholar
Archer, D. (2007). Global Warming: Understanding the Forecast. Malden, MA: Blackwell Publishing, 208pp.Google Scholar
Archer, D. A. (2005). The fate of fossil fuel CO2 in geologic time. J. Geophys. Res., 110, C09S05, doi:10.1029/2004JC002625.CrossRefGoogle Scholar
Archer, D., M., Eby, V., Brovkin, et al. (2009). Atmospheric lifetime of fossil-fuel carbon dioxide. Ann. Rev. Earth Planet. Sci., 37, 117–134.CrossRefGoogle Scholar
Armstrong, R. (2008). Nutrient uptake as a function of cell-size and surface transporter density: a Michaelis-like approximation to the model of Pasciak and Gavis. Deep-Sea Res. I, 55, 1311–1317.CrossRefGoogle Scholar
Armstrong, R. A., C., Lee, J. I., Hedges, S., Honjo, and S. G., Wakeham (2002). A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II, 49, 219–236.CrossRefGoogle Scholar
Badin, G. and R. G., Williams (2010). On the buoyancy forcing and residual circulation in the Southern Ocean: the feedback from Ekman and eddy transfer. J. Phys. Oceanogr., 40, 295–310.CrossRefGoogle Scholar
Barnola, J.-M., P., Pimienta, D., Raynaud, and Y. S., Korotkevich (1991). CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus, 43(B), 83–90.CrossRefGoogle Scholar
Bates, N. R. (2001). Interannual changes of oceanic CO2 and biogeochemical properties in the western North Atlantic subtropical gyre. Deep-Sea Res. II, 48(8–9), 1507–1528.CrossRefGoogle Scholar
Bates, N. R., A. H., Knap, and A. F., Michaels (1998). The effect of hurricanes on the local to global air-sea exchange of CO2. Nature, 395, 58–61.CrossRefGoogle Scholar
Bates, N. R., A. F., Michaels, and A. H., Knap (1996). Seasonal and interannual variability of the oceanic carbon dioxide system at the U.S. JGOFS Bermuda Atlantic Time-series Site. Deep-Sea Res. II, 43(2–3), 347–383.CrossRefGoogle Scholar
Behrenfeld, M. J. and P. G., Falkowski (1997a). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1–20.CrossRefGoogle Scholar
Behrenfeld, M. J. and P. G., Falkowski (1997b). A consumer's guide to phytoplankton primary productivity models. Limnol. Oceanogr., 42, 1479–1491.CrossRefGoogle Scholar
Berge, T., P. J., Hansen, and O., Moestrup (2008). Prey size spectrum and bioenergetics of the mixotrophic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol., 50, 289–299, doi: 10.3354/ame01166.CrossRefGoogle Scholar
Berger, W. H. (1982). The increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften, 69, 87–88.CrossRefGoogle Scholar
Berner, R. A. (1999). A new look at the long-term carbon cycle. GSA Today, 9(11), 1–6.Google Scholar
Bertilsson, S., O., Berglund, D. M., Karl, and S. W., Chisholm (2003). Elemental composition of marine Prochlorococcus and Syncehococcus: implications for the ecological stoichiometry of the sea. Limnol. Oceanogr., 48(5), 1721–1731.CrossRefGoogle Scholar
Bingham, R. J. and C. W., Hughes (2009). Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys. Res. Lett., 36, L02603.CrossRefGoogle Scholar
Bissinger, J. E., D. J. S., Montagnes, J., Sharples, and D., Atkinson (2008). Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol. Oceanogr., 53, 487–493.CrossRefGoogle Scholar
Bolin, B. and E., Eriksson (1958). Changes in the carbon content of the atmosphere and sea due to fossil fuel combustion. In The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial Volume, ed. B., Bolin. New York: Rockefeller Institute Press, pp. 130–142.Google Scholar
Bower, A. S. and M. S., Lozier (1994). A closer look at particle exchange in the Gulf Stream. J. Phys. Oceanogr., 24, 1399–1418.2.0.CO;2>CrossRefGoogle Scholar
Bower, A. S. and T., Rossby (1989). Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr., 19, 1177–1190.2.0.CO;2>CrossRefGoogle Scholar
Bower, A. S., M. S., Lozier, S. F., Gary, and C., Boning (2009). Interior pathways of the Atlantic meridional overturning circulation. Nature, 459, 243–247.CrossRefGoogle ScholarPubMed
Bower, A. S., H. T., Rossby, and J. L., Lillibridge (1985). The Gulf Stream: barrier or blender?J. Phys. Oceanogr., 15, 24–32.2.0.CO;2>CrossRefGoogle Scholar
Boyd, P. W., T., Jickells, C. S., Law, et al. (2007). A synthesis of mesoscale iron-enrichment experiments 1993–2005: key findings and implications for ocean biogeochemistry. Science, 315, 612–617, doi:10.1126/science.1131669.CrossRefGoogle Scholar
Boyle, E. A. and L., Keigwin (1987). North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature, 330, 35–40.CrossRefGoogle Scholar
Brewer, P. G. (1978). Direct observation of the oceanic CO2 increase. Geophys. Res. Lett., 5, 997–1000, doi:10.1029/GL005i012p00997.CrossRefGoogle Scholar
Broecker, W. S. (1991). The great ocean conveyor. Oceanogr., 4, 79–89.CrossRefGoogle Scholar
Broecker, W. S. and G. M., Henderson (1998). The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography, 13(4), 352–364.CrossRefGoogle Scholar
Broecker, W. S. and T.-H., Peng (1982). Tracers in the Sea. New York: Eldigio Press, 690pp.Google Scholar
Brovkin, V., A., Ganopolski, D., Archer, and S., Rahmstorf (2007). Lowering of glacial pCO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanogr., 22, PA4202, doi:10.1029/2006PA001380.CrossRefGoogle Scholar
Bruland, K. W., K. J., Orians, and J. P., Cowen (1994). Reactive trace metals in the stratified central North Pacific. Geochem. Cosmochim. Acta, 58, 3171–3182.CrossRefGoogle Scholar
Brzezinski, M. A., C. J., Pride, D. M., Sigman, et al. (2002). A switch from Si(OH)4 to depletion in the glacial Southern Ocean. Geophys. Res. Lett., 29, doi:10.1029/2001GL014349.CrossRefGoogle Scholar
Burd, A. B., G. A., Jackson, R. S., Lampitt, and M., Follows (2002). Shining a light on the ocean's twilight zone. EOS, 83, 49.CrossRefGoogle Scholar
Burmaster, D. E. (1979). The unsteady continuous culture of phosphate-limited Monochrysis lutheri Droop: experiments and theoretical analysis. J. Exp. Mar. Biol. Ecol., 39, 167–186.CrossRefGoogle Scholar
Caillon, N., J. P., Severinghaus, J., Jouzel, et al. (2003). Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science, 299, 1728–1731.CrossRefGoogle ScholarPubMed
Caperon, J. (1968). Population growth response of Isochrysis galbana to nitrate variation at limiting concentrations. Ecology, 49, 866–872.CrossRefGoogle Scholar
Carr, M-E., M. A., Friedrichs, M., Schmeltz, et al. (2006). A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res., 53, 741–770.Google Scholar
Charney, J. G. (1947). The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.2.0.CO;2>CrossRefGoogle Scholar
Chelton, D. B., R. A., deSzoeke, M. G., Schlax, K. El, Naggar, and N., Siwertz (1998). Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433–460.2.0.CO;2>CrossRefGoogle Scholar
Chen, G.-T. and F. J., Millero (1979). Gradual increase of oceanic carbon dioxide. Nature, 277, 205–206.CrossRefGoogle Scholar
Civitarese, G., M., Gacic, V., Cardin, and V., Ibello (2005). Winter convection continues in the warming southern Adriatic. EOS, 86, 45.CrossRefGoogle Scholar
Conkright, M. E., H. E., Garcia, T. D., O'Brien, et al. (2002). World Ocean Atlas 2001. Volume 4: Nutrients, ed. S., Levitus, NOAA Atlas NESDIS 52. Washington, D.C.: U.S. Government Printing Office, 392pp., CD-ROMs.Google Scholar
Conkright, M. E., S., Levitus and T. P., Boyer (1994). World Ocean Atlas 1994. Volume 1: Nutrients, NOAA Atlas NESDIS 1. Washington D.C.: U.S. Dept. of Commerce, 150pp.Google Scholar
Cunningham, S. A., S. G., Alderson, M. A., Brandon, and B. A., King (2003). Transport and variability of the Antarctic Circumpolar Current. J. Geophys. Res., 108, doi:10.1029/2001JC001147.CrossRefGoogle Scholar
Cunningham, S. A., T. O., Kanzow, D., Rayner, et al. (2007). Temporal variability of the Atlantic Meridional Overturning Circulation at 26.5°N. Science, 317, 935–938.CrossRefGoogle ScholarPubMed
Cushman-Roisin, B. (1987). ‘Subduction’. Dynamics of the oceanic surface mixed layer. In Proceedings of Hawaiian Winter Workshop, University of Hawaii at Manoa, HI, pp. 181–196.Google Scholar
Cushman-Roisin, B. (1994). Introduction to Geophysical Fluid Dynamics. Englewood Cliffs, NJ: Prentice Hall, 320pp.Google Scholar
Czaja, A. (2009). Atmospheric control on the thermohaline circulation. J. Phys. Oceanogr., 39, 234–247.CrossRefGoogle Scholar
Dale, T., F., Rey, and B. R., Heimdal (1999). Seasonal development of phytoplankton at a high latitude oceanic site. SARISA, 84, 419–435.CrossRefGoogle Scholar
Davidson, K., G., Wood, E. H., John, and K. J., Flynn (1999). An investigation of non steady state algal growth: I. An experimental model ecosystem. J. Plankton Res., 21, 811–837.CrossRefGoogle Scholar
Dickson, A. G. (1981). An exact definition of total alkalinity, and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res., 28, 609–623.CrossRefGoogle Scholar
Dickson, A. G. (1992). The development of the alkalinity concept in Marine chemistry. Mar. Chem. 40, 49–63.CrossRefGoogle Scholar
Dickson, R., J., Lazier, J., Meinke, P., Rhines, and J., Swift (1996). Long-term coordinated changes in convective activity of the North Atlantic. Prog. Oceanogr., 38, 241–295.CrossRefGoogle Scholar
Dietze, H., A., Oschlies, and P., Kähler (2004). Internal-wave-induced and double-diffusive nutrient fluxes to the nutrient-consuming surface layer in the oligotrophic subtropical North Atlantic. Ocean Dyn., 54, 1–7.CrossRefGoogle Scholar
,DOE (Department of Energy) (1994). Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water, Version 2, ed. A. G., Dickson and C., Goyet. ORNL/CDIAC-74.Google Scholar
Dore, J. E. (2009). Hawaii Ocean Time-series surface CO2 system data product, 1988–2008. SOEST, University of Hawaii, Honolulu, HI. http://hahana.soest.hawaii.edu/hot/products/products.html.
Droop, M. R. (1968). Vitamin B12 and marine ecology: IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. UK, 48, 689–733.CrossRefGoogle Scholar
Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1, 33–57.CrossRefGoogle Scholar
Eckart, C. (1948). An analysis of the stirring and mixing process in incompressible fluids. J. Mar. Res., 7, 265–275.Google Scholar
Emerson, S. and J., Hedges (2008). Chemical Oceanography and the Marine Carbon Cycle. Cambridge: Cambridge University Press, 468pp.CrossRefGoogle Scholar
Emerson, S., P., Quay, D., Karl, et al. (1997). Experimental determination of the organic carbon flux from open-ocean surface waters. Nature, 389, 951–954.CrossRefGoogle Scholar
Emile-Geay, J., M. A., Cane, N., Naik, et al. (2003). Warren revisited: atmospheric freshwater fluxes and ‘why is no deep water formed in the North Pacific?’. J. Geophys. Res., 108, 3178.CrossRefGoogle Scholar
Eppley, R. W. (1972). Temperature and phytoplankton growth in the sea. Fish. Bull., 70, 1063–1085.Google Scholar
Etheridge, D. M., L. P., Steele, R. L., Langenfelds, et al. (1998). Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores. In Trends: A Compendium of Data on Global Change. Oak Ridge, TN: U.S. Department of Energy.Google Scholar
Falkowski, P. G. (1997). Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 327, 242–244.Google Scholar
Falkowski, P. and J., Raven (1997). Aquatic Photosynthesis. Princeton, NJ: Princeton University Press.Google Scholar
Falkowski, P. G. and Y., Isozaki (2008). Geology. The story of O2. Science, 322(5901), 540–554.CrossRefGoogle ScholarPubMed
Falkowski, P. G., Z., Dubinsky, and K., Wyman (1985). Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr., 30(2), 311–321.CrossRefGoogle Scholar
Ferreira, D., J., Marshall, and J.-M., Campin (2010). Localization of deep water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Clim., 23, 1456–1476.CrossRefGoogle Scholar
Follows, M. J. and S. W., Dutkiewicz (2002). Meteorological modulation of the North Atlantic spring bloom. Deep-Sea Res. II, 49, 321–344.CrossRefGoogle Scholar
Follows, M. J., S., Dutkiewicz, S., Grant, and S. W., Chisholm (2007). Emergent biogeography of microbial communities in a model ocean. Science, 315, 1843–1846, doi:10.1126/science.1138544.CrossRefGoogle Scholar
Follows, M. J., S., Dutkiewicz, and T., Ito (2006). On the solution of the carbonate system in ocean biogeochemistry models. Ocean Model., 12, 290–301.CrossRefGoogle Scholar
Francois, R., M. A., Altabet, and L. H., Burckle (1992). Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sediment δ15N. Paleoceanogr., 7, 589–606.CrossRefGoogle Scholar
Ganachaud, A. and C., Wunsch (2003). Large scale ocean heat and freshwater transports during the World Ocean Circulation Experiment, J. Clim., 16, 696–705.2.0.CO;2>CrossRefGoogle Scholar
Garcia, H. E. and L. I., Gordon (1992). Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr., 37, 1307–1312.CrossRefGoogle Scholar
Geider, R. J., H. L., MacIntyre, and T. M., Kana (1997). Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll-a:carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser., 148, 187–200.CrossRefGoogle Scholar
Gent, P. R. and J. C., McWilliams (1990). Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.2.0.CO;2>CrossRefGoogle Scholar
Gent, P. R., J., Willebrand, T. J., McDougall, and J. C., McWilliams (1995). Parameterising eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463–474.2.0.CO;2>CrossRefGoogle Scholar
Gill, A. E. (1982). Atmosphere-Ocean Dynamics. New York: Academic Press, 692pp.Google Scholar
Gill, A. E., J. S. A., Green, and A. J., Simmons (1974). Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea. Res., 21, 499–528.Google Scholar
Gille, S. T. (1997). The Southern Ocean momentum balance: evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27, 2219–2232.2.0.CO;2>CrossRefGoogle Scholar
Gledhill, M. and C. van den, Berg (1994). Determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar. Chem., 47, 41–54.CrossRefGoogle Scholar
,GLOBALVIEW-CO2 (2009). Cooperative Atmospheric Data Integration Project – Carbon Dioxide. CD-ROM, NOAA ESRL, Boulder, CO. Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW.
Godfrey, J. S., G. C., Johnson, M. J., McPhaden, G., Reverdin, and S. E., Wijffels (2001). The tropical ocean circulation. In Ocean Circulation and Climate, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 215–246.Google Scholar
Goodwin, P. and A., Ridgwell (2010). Ocean-atmosphere partitioning of anthropogenic carbon dioxide on multimillennial timescales. Global Biogeochem. Cycles, 24, GB20014, doi:10.1029/2008GB003449.CrossRefGoogle Scholar
Goodwin, P., R. G., Williams, M. J., Follows, and S., Dutkiewicz (2007). The ocean–atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales. Global Biogeochem. Cycles, 21, GB1014, doi:10.1029/2006GB002810.CrossRefGoogle Scholar
Goodwin, P., R. G., Williams, A., Ridgewell, and M. J., Follows (2009). Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry. Nat. Geosc., doi:10.1038/ngeo416.CrossRefGoogle Scholar
Goody, R. M. and Y. L., Yung (1989). Atmospheric Radiation: Theoretical Basis. 2nd edition. New York: Oxford University Press.Google Scholar
Green, J. S. A. (1981). Trough-ridge systems as slant-wise convection. In Dynamical Meteorology: An Introductory Selection, ed. B. W., Atkinson. London: Methuen & Co., pp. 176–194.Google Scholar
Gruber, N. (2004). The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations. In The Ocean Carbon Cycle and Climate, NATO Science Series IV, Vol. 40, ed. M., Follows and T., Oguz. Dordrecht: Kluwer Academic, pp. 97–148.CrossRefGoogle Scholar
Gruber, N. and J. L., Sarmiento (1997). Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles, 11, 235–266.CrossRefGoogle Scholar
Gruber, N., J. L., Sarmiento, and T. F., Stocker (1996). An improved method for detecting anthropogenic CO2 in the ocean. Global Biogeochem. Cycles, 10, 809–837.CrossRefGoogle Scholar
Halkin, D. and T., Rossby (1985). The structure and transport of the Gulf Stream at 73°W. J. Phys. Oceanogr., 15, 1439–1452.2.0.CO;2>CrossRefGoogle Scholar
Hanawa, K. and L. D., Talley (2001). Mode waters. In Ocean Circulation and Climate: Observing and Modelling the Global Oceans, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 373–386.CrossRefGoogle Scholar
Hansell, D. A., N. R., Bates, and D. B., Olson (2004). Excess nitrate and nitrogen fixation in the North Atlantic. Mar. Chem., 284, 243–265.CrossRefGoogle Scholar
Hiscock, M. R., J., Marra, W. O., Smith Jr., et al. (2003). Primary productivity and its regulation in the Pacific sector of the Southern Ocean. Deep-Sea Res. II, 50, 533–558.CrossRefGoogle Scholar
Ho, T.-Y., A., Quigg, Z. V., Finkel, et al. (2003). The elemental composition of some marine phytoplankton. J. Phycol., 39(6), 1145–1159, doi:10.1111/j.0022–3646.2003.03–090.x.CrossRefGoogle Scholar
Hogg, N. G. (1992). On the transport of the Gulf Stream between Cape Hatteras and the Grand Banks. Deep-Sea Res., 39, 1231–1246.CrossRefGoogle Scholar
Hogg, N. G. (2001). Quantification of the deep circulation. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 259–270.CrossRefGoogle Scholar
Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B, 361, 903–915.CrossRefGoogle ScholarPubMed
Holland, W. R. and P. B., Rhines (1980). An example of eddy induced ocean circulation. J. Phys. Oceanogr., 10, 1010–1031.2.0.CO;2>CrossRefGoogle Scholar
Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism. Canadian Entomol., 91, 385–398.CrossRefGoogle Scholar
Hoskins, B. J. (1983). Modelling of transient eddies and their feedback on the mean flow. In Large-Scale Dynamical Processes in the Atmosphere. ed. B. J., Hoskins and R. P., Pearce. Burlington, MA: Academic Press/Elsevier, pp. 169–199.Google Scholar
Hoskins, B. J. and P. J., Valdes (1990). On the existence of storm tracks. J. Atmos. Sci., 47, 1854–1864.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., I. N., James, and G. H., White (1983). The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595–1612.2.0.CO;2>CrossRefGoogle Scholar
Huang, R. X. (2004). Energy flows in the Ocean. In Encyclopedia of Energy, ed. C. J., Cleveland. Amsterdam: Elsevier, pp. 497–509.CrossRefGoogle Scholar
Huang, R. X. and W., Wang (2003). Gravitational potential energy sinks in the oceans. Near-Boundary processes and their parameterization. In Proceedings of 'Aha Huliko'a Hawaiian Winter Workshop, University of Hawaii, Honolulu, HI, pp. 239–247.Google Scholar
Hughes, C. W. and B. A. de, Cuevas (2001). Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 2871–2885.2.0.CO;2>CrossRefGoogle Scholar
Hurrell, J. W., Y., Kushnir, G., Ottersen, and M., Visbeck (2003). The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophysical Monograph Series, Vol. 134. Washington, D.C.: American Geophysical Union, 279pp.CrossRefGoogle Scholar
Huthnance, J. M., H., Coelho, C. R., Griffiths, et al. (2001). Physical structures, advection and mixing in the region of Goban Spur. Deep-Sea Res. II, 48(14–15), 2979–3021.CrossRefGoogle Scholar
,IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S., Solomon, D., Qin, M., Manning, Z., Chen, M., Marquis, K. B., Averyt, M., Tignor and H. L., Miller. Cambridge: Cambridge University Press, 996pp.Google Scholar
Ito, T. and M. J., Follows (2005). Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res., 63, 813–839. doi:10.1357/0022240054663231.CrossRefGoogle Scholar
Ito, T., M. J., Follows and E. A., Boyle (2004a). Is AOU a good measure of respiration in the oceans?Geophys. Res. Lett., 31, L17305, doi:10.1029/2004GL020900.CrossRefGoogle Scholar
Ito, T., J., Marshall and M., Follows (2004a). What controls the uptake of transient tracers in the Southern Ocean. Global Biogeochem. Cycles, 18, GB2021, doi:10.1029/2003GB002103.CrossRefGoogle Scholar
Ivanov, V. V., G. I., Shapiro, J. M., Huthnance, D. L., Aleynik, and P. N., Golovin (2004). Cascades of dense water around the world ocean. Prog. Oceanogr., 60(1), 47–98.CrossRefGoogle Scholar
Jackett, D. R. and T. J., McDougall (1997). A neutral density variable for the world's oceans. J. Phys. Oceanogr., 27(2), 237–263.2.0.CO;2>CrossRefGoogle Scholar
Jackson, L., C. W., Hughes, and R. G., Williams (2006). Topographic control of basin and channel flows: the role of bottom pressure torques and friction. J. Phys. Oceanogr., 36, 1786–1805.CrossRefGoogle Scholar
Jähne, B. and H., Haussecker (1998). Air-water gas exchange. Annu. Rev. Fluid Mech., 30, 443–468.CrossRefGoogle Scholar
Jenkins, W. J. (1988a). The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Phil. Trans. Roy. Soc. Lon., A325, 43–61.CrossRefGoogle Scholar
Jenkins, W. J. (1988b). Nitrate flux into the photic zone near Bermuda. Nature, 331, 521–523.CrossRefGoogle Scholar
Jenkins, W. J. and J. C., Goldman (1985). Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res., 43, 465–491.CrossRefGoogle Scholar
Jenkins, W. J. and D. W. R., Wallace (1992). Tracer based inferences of new primary production in the sea. In Primary Productivity and Biogeochemical Cycles in the Sea, ed. P. G., Falkowski and A. D., Woodhead. New York: Plenum Press, pp. 299–316.CrossRefGoogle Scholar
Johnson, K. S., F. P., Chavez, and G. E., Friederich (1999). Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature, 398, 697–700, doi:10.1038/19511.CrossRefGoogle Scholar
Johnson, K., R., Gordon, and K., Coale (1997). What controls dissolved iron concentrations in the world ocean?Mar. Chem., 57, 137–161.CrossRefGoogle Scholar
Josey, S. A., E. C., Kent, and P. K., Taylor (1999). New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. J. Clim., 12, 2856–2880.2.0.CO;2>CrossRefGoogle Scholar
Josey, S. A., E. C., Kent, and P. K., Taylor (2002). On the wind stress forcing of the ocean in the SOC climatology: comparisons with the NCEP/NCAR, ECMWF, UWM/COADS and Hellerman and Rosenstein datasets. J. Phys. Oceanogr., 32(7), 1993–2019.2.0.CO;2>CrossRefGoogle Scholar
Kanzow, T., S. A., Cunningham, W. E., Johns, et al. (2010). Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J. Clim., 23, doi:10.1175/2010JCLI3389.1.CrossRefGoogle Scholar
Kasting, J. (2010). How to Find a Habitable Planet. Princeton, NJ: Princeton University Press, 360pp.Google Scholar
Kasting, J. F. (2001). The rise of atmospheric oxygen. Science, 293, 819–820.CrossRefGoogle ScholarPubMed
Kato, H. and O. M., Phillips (1969). On the penetration of a turbulent layer into a stratified layer. J. Fluid Mech., 37, 643–655.CrossRefGoogle Scholar
Keeling, C. D., R. B., Bacastow, A. E., Bainbridge, et al. (1976). Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus, 28, 538–551.Google Scholar
Key, R. M., A., Kozyr, C. L., Sabine, et al. (2004). A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.CrossRefGoogle Scholar
Kiørboe, T. (2009). A Mechanistic Approach to Plankton Ecology. Princeton, NJ: Princeton University Press.Google Scholar
Knap, A., T., Jickells, A., Pszenny, and J., Galloway (1986). Significance of atmospheric-derived fixed nitrogen on productivity of the Sargasso Sea. Nature, 320, 158–160.CrossRefGoogle Scholar
Körtzinger, A., J., Schimanski, U., Send, and D., Wallace (2004). The ocean takes a deep breath. Science, 306, 1337.CrossRefGoogle ScholarPubMed
Kraus, E. B. and J. S., Turner (1967). A one-dimensional model of the seasonal thermocline: II. The general theory and its consequences. Tellus, 19, 19–106.CrossRefGoogle Scholar
,Labrador Sea Monitoring Group (2007). Status of the Labrador Sea. Atlantic Zone Monitoring Program Bull., 6, 11–15.Google Scholar
Langmuir, D. (1997). Aqueous Environmental Geochemistry. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Large, W. G. and A. J. G., Nurser (2001). Ocean surface water mass transformation, In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 317–336.CrossRefGoogle Scholar
Lavender, K. L., R. E., Davis, and W. B., Owens (2002). Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J. Phys. Oceanogr., 32, 511–526.2.0.CO;2>CrossRefGoogle Scholar
Laws, E. A., P. G., Falkowski, W. O. J., Smith, H., Ducklow, and J. J., McCarthy (2000). Temperature effects on export production in the open ocean. Global Biogeochem. Cycles, 14(4), 1231–1246.CrossRefGoogle Scholar
Lazier, J., R., Hendry, A., Clarke, I., Yashayaev, and P., Rhines (2002). Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res. I, 49, 1819–1835.CrossRefGoogle Scholar
Lee, M.-M. and R. G., Williams (2000). The role of eddies in the isopycnic transfer of nutrients and their impact on biological production. J. Mar. Res., 58, 895–917.CrossRefGoogle Scholar
Lee, M.-M., D. P., Marshall, and R. G., Williams (1997). On the eddy transfer of tracers: advective or diffusive?J. Mar. Res., 55(3), 483–505.CrossRefGoogle Scholar
Lévy, M. (2008). The modulation of biological production by ocean mesoscale turbulence. Lect. Notes Phys., 744, 219–261, In Transport in Geophysical Flow: Ten Years After, ed. J. B., Weiss and A., Provenzale, Heidelberg: Springer.Google Scholar
Lévy, M., P., Klein and A. M., Treguier (2001). Impacts of sub-mesoscale physics on phytoplankton production and subduction. J. Mar. Res., 59, 535–565.CrossRefGoogle Scholar
Lévy, M., D., Shankar, J.-M., André, et al. (2007). Basin-wide seasonal evolution of the Indian Ocean's phytoplankton blooms. J. Geophys. Res., 112, doi:10.1029/2007JC004090.CrossRefGoogle Scholar
Lewis, M. R., W. G., Harrison, N. S., Oakley, D., Hebert, and T., Platt (1986). Vertical nitrate fluxes in the oligotrophic ocean. Science, 234, 870–873.CrossRefGoogle ScholarPubMed
Lilly, J. M., P. B., Rhines, F., Schott, et al. (2003). Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75–176.CrossRefGoogle Scholar
Lindzen, R. S. and B., Farrell (1980). A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648–1654.2.0.CO;2>CrossRefGoogle Scholar
Liss, P. S. and L., Merlivat (1986). Air-sea gas exchange rates: introduction and synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling, ed. P., Buat-Ménard. Boston, MA: D. Reidel Publishing Company, pp. 113–127.CrossRefGoogle Scholar
Litchman, E., C. A., Klausmeier, O. M., Schofield, and P. G., Falkowski (2007). The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett., 10, 1170–1181.CrossRefGoogle ScholarPubMed
Lozier, M. S. (1997). Evidence for large-scale eddy-driven gyres in the North Atlantic. Science, 277, 361–364.CrossRefGoogle Scholar
Lozier, M. S. (2010). Deconstructing the conveyor belt. Science, 328, 1507, doi:10.1126/science.1189250.CrossRefGoogle ScholarPubMed
Lozier, M. S., V., Roussenov, M. S. C., Reed, and R. G., Williams (2010). Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat. Geosc., doi:10.1038/ngeo947.Google Scholar
Lumpkin, R. and M., Pazos (2006). Measuring surface currents with Surface Velocity Program drifters: the instrument, its data and some recent results. In Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, ed. A., Mariano, T., Rossby and D., Dirwan. Cambridge: Cambridge University Press, pp. 39–67.Google Scholar
Lumpkin, R. and K., Speer (2007). Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562.CrossRefGoogle Scholar
Luyten, J. R., J., Pedlosky, and H., Stommel (1983). The ventilated thermocline. J. Phys. Oceanogr., 13, 292–309.2.0.CO;2>CrossRefGoogle Scholar
MacArthur, R. H. and E. O., Wilson (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press, 203pp.Google Scholar
Mahaffey, C., A. F., Michaels, and D. G., Capone (2005). The conundrum of marine N2 fixation. Am. J. Sci., 305, 546–595.CrossRefGoogle Scholar
Mahowald, N., S., Engelstaedter, C., Luo, et al. (2009). Atmospheric iron deposition: global distribution, variability and human perturbations. Annu. Rev. Mar. Sci., 1, 245–278, doi:10.1146/annurev/ marine.010908.163727.CrossRefGoogle ScholarPubMed
Marañón, E., P. M., Holligan, M., Varela, B., Mouriño, and A. J., Bale (2000). Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean. Deep-Sea Res. I, 47(5), 825–857.CrossRefGoogle Scholar
Marotzke, J. (2000). Abrupt climate change and thermohaline circulation: mechanisms and predictability. Proc. Natl. Acad. Sci. USA., 97(4), 1347–1350.CrossRefGoogle ScholarPubMed
Marotzke, J. and J. R., Scott (1999). Convective mixing and the thermohaline circulation. J. Phys. Oceanogr., 29, 2962–2970.2.0.CO;2>CrossRefGoogle Scholar
Marshall, D. P. (1997). Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201–222.CrossRefGoogle Scholar
Marshall, J. and A. R., Plumb (2007). Atmosphere, Ocean and Climate Dynamics: An Introductory Text. Burlington, MA: Academic Press/Elsevier, 319pp.Google Scholar
Marshall, J. and T., Radko (2003). Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 2341–2354.2.0.CO;2>CrossRefGoogle Scholar
Marshall, J. and F., Schott (1999). Open-ocean convection: observations, theory and models. Rev. Geophys., 37(1), 1–64.CrossRefGoogle Scholar
Marshall, J., D., Jamous, and J., Nilsson (1999). Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545–572.CrossRefGoogle Scholar
Marshall, J. C., A. J. G., Nurser, and R. G., Williams (1993). Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23, 1315–1329.2.0.CO;2>CrossRefGoogle Scholar
Martin, A. P. (2003). Phytoplankton patchiness: the role of lateral stirring and mixing. Prog. Oceanogr., 57, 125–174.CrossRefGoogle Scholar
Martin, J. H. and S. E., Fitzwater (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific Subarctic. Nature, 331, 341–343.CrossRefGoogle Scholar
Martin, J. H., G. A., Knauer, D. M., Karl, and W. W., Broenkow (1987). VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. A, 34(2), 267–285.CrossRefGoogle Scholar
Mauritzen, C., J., Price, T., Sanford, and D., Torres (2005). Circulation and mixing in the Faroese Channels. Deep-Sea Res. I, 52, 883–913.CrossRefGoogle Scholar
Maximenko, N. A. and P. P., Niiler (2005). Hybrid decade-mean global sea level with mesoscale resolution. In Recent Advances in Marine Science and Technology 2004, ed. N., Saxena. Honolulu, HI: PACON International, pp. 55–59.Google Scholar
McArthur, R. H. and E. O., Wilson (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press, 203pp.Google Scholar
McCartney, M. S. and L. D., Talley (1982). The subpolar mode water of the North Atlantic Ocean. J. Phys. Oceanogr., 12, 1169–1189.2.0.CO;2>CrossRefGoogle Scholar
McDonagh, E. L., P., McLeod, B. A., King, H. L., Bryden, and S., Torres-Valdes (2010). Circulation, heat and fresh water transport at 36°N in the Atlantic. J. Phys. Oceanogr., 40, 2661–2678.CrossRefGoogle Scholar
McDougall, T. J., D. R., Jackett, and F. J., Millero (2009). An algorithm for estimating absolute salinity in the global ocean. Ocean Sci. Discuss., 6, 215–242.CrossRefGoogle Scholar
McDowell, S., P. B., Rhines, and T., Keffer (1982). North Atlantic potential vorticity and its relation to the general circulation. J. Phys. Oceanogr., 12, 1417–1436.2.0.CO;2>CrossRefGoogle Scholar
McGillicuddy, D. J. and A. R., Robinson (1997). Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I, 44, 1427–1449.CrossRefGoogle Scholar
McGillicuddy, D. J., A. R., Robinson, D. A., Siegel, et al. (1998). New evidence for the impact of mesoscale eddies on biogeochemical cycling in the Sargasso Sea. Nature, 394, 263–266.CrossRefGoogle Scholar
Measures, C. I., W. M., Landing, M. T., Brown and C. S., Buck (2008). High resolution Al and Fe data from the Atlantic Ocean CLIVAR–CO2 Repeat Hydrology transect. Global Biogeochem. Cycles, 22, GB1005, doi:10.1029/2007/GB003042.CrossRefGoogle Scholar
Menemenlis, D., C., Hill, A., Adcroft, J., Campin, B., Cheng, B., Ciotti, et al. (2005). NASA super computer improves prospects for ocean climate research. EOS Trans. AGU, 86(9), 89, doi:10.1029/2005EO090002.CrossRefGoogle Scholar
Menzel, D. W. and J. H., Ryther (1961). Annual variations in primary production of the Sargasso Sea off Bermuda. Deep-Sea Res., 7, 282–288.Google Scholar
Michaelis, L. and M., Menten (1913). Die Kinetic der Inverinwirkung. Biochem. Z., 49, 333–369.Google Scholar
Michaels, A. F., A. H., Knap, R. L., Dow, et al. (1994). Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic Time-series Study site. Deep-Sea Res. I, 41, 1013–1038.CrossRefGoogle Scholar
Miller, C. B. (2004). Biological Oceanography. Malden, MA: Blackwell, 416pp.Google Scholar
Miller, P. I. (2009). Composite front maps for improved visibility of dynamic sea-surface features on cloudy SeaWiFS and AVHRR data. J. Mar. Sys., 78(3), 327–336, doi:10.1016/j.jmarsys.2008.11.019.CrossRefGoogle Scholar
Millero, F. J. (1995). Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta, 59(4), 661–677.CrossRefGoogle Scholar
Moore, C. M., M. M., Mills, E. P., Achterberg, et al. (2009). Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat. Geosc., 2, 867–871.CrossRefGoogle Scholar
Morel, F. M. M. and J. G., Hering (1993). Principles and Applications of Aquatic Chemistry. Hoboken, NJ: Wiley-Interscience, 608pp.Google Scholar
Müller, P. and C., Frankignoul (1981). Direct atmospheric forcing of geostrophic eddies. J. Phys. Oceanogr., 11, 287–308.2.0.CO;2>CrossRefGoogle Scholar
Munk, W. H. (1950). On the wind driven ocean circulation. J. Meteor., 7, 79–93.2.0.CO;2>CrossRefGoogle Scholar
Munk, W. and C., Wunsch (1998). Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 1977–2010.CrossRefGoogle Scholar
Munk, W., L., Armi, K., Fischer, and F., Zachariasen (2000). Spirals on the sea. Proc. R. Soc. Lon. A, 456, 1217–1280.CrossRefGoogle Scholar
Murgatroyd, R. J. and F., Singleton (1961). Possible meridional circulations in the stratosphere and mesosphere. Q. J. Roy. Meteorol. Soc., 84, 225–234.CrossRefGoogle Scholar
Murnane, R. J., J. L., Sarmiento, and C., Le Quéré (1999). Spatial distribution of air–sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. Global Biogeochem. Cycles, 13, 287–305.CrossRefGoogle Scholar
Murray, J. (2004). Ocean carbonate chemistry: the aquatic chemistry fundamentals. In The Ocean Carbon Cycle and Climate, ed. M., Follows and T., Oguz, NATO Science Series, IV, Vol. 40. Dordrecht: Kluwer Academic Publishers.Google Scholar
Murray, A. B., M., LeBars, and C., Guillon (2003). Tests of a new hypothesis for non-bathymetrically driven rip currents. J. Coastal Res., 19(2), 269–277.Google Scholar
Naveira Garabato, A. C., K. L., Polzin, B. A., King, K. J., Heywood, and M., Visbeck (2004). Widespread intense turbulent mixing in the Southern Ocean. Science, 303(5655), 210–213.CrossRefGoogle Scholar
Nightingale, P. D., P. S., Liss, and P., Schlosser (2000). Measurements of air-sea gas transfer during an open ocean algal bloom. Geophys. Res. Lett., 27, 2117–2120.CrossRefGoogle Scholar
Niiler, P. P. and E. B., Kraus (1977). One-dimensional models of the upper ocean. In Modelling and Prediction of the Upper Layers of the Ocean, ed. by E. B., Kraus. New York: Pergamon, pp. 143–172.Google Scholar
Niiler, P. P., N. A., Maximenko, and J. C., McWilliams (2003). Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys. Res. Lett., 30, 2164, doi:10.1029/2003GL018628.CrossRefGoogle Scholar
Nurser, A. J. G., R., Marsh, and R. G., Williams (1999). Diagnosing water mass formation from air-sea fluxes and surface mixing. J. Phys. Oceanogr., 29, 1468–1487.2.0.CO;2>CrossRefGoogle Scholar
Omta, A. W., S., Dutkiewicz, and M. J., Follows (2011). Dependence of the ocean–atmosphere partitioning of carbon on temperature and alkalinity, Global Biogeochem. Cycles, 25, GB1003, doi:10.1029/2010GB003839.CrossRefGoogle Scholar
Oschlies, A. (2002). Can eddies make ocean deserts bloom?Global Biogeochem. Cycles, 16, 1106, doi:10.1029/2001GB001830.CrossRefGoogle Scholar
Oschlies, A., H., Dietze, and P., Kähler (2003). Salt-finger induced enhancement of upper-ocean nutrient supply. Geophys. Res. Letts., 30(23), doi:10.1029/2003GL018552.CrossRefGoogle Scholar
Parekh, P., S., Dutkiewicz, M. J., Follows, and T., Ito (2006). Atmospheric carbon dioxide in a less dusty world. Geophys Res. Lett., 33, L03610, doi:10.1029/2005GL025098.CrossRefGoogle Scholar
Parsons, A. T. (1969). A two-layer model of Gulf Stream separation. J. Fluid Mech., 39, 511–528.CrossRefGoogle Scholar
Pasciak, W. J. and J., Gavis (1974). Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr., 19, 881–888.CrossRefGoogle Scholar
Peacock, S., E., Lane, and J. M., Restrepo (2006). A possible sequence of events for the generalized glacial–interglacial cycle. Global Biogeochem. Cycles, 20, GB2010, doi:10.1029/2005GB002448.CrossRefGoogle Scholar
Pedlosky, J. (1987). Geophysical Fluid Dynamics.New York: Springer-Verlag, 710pp.CrossRefGoogle Scholar
Pedlosky, J. (1996). Ocean Circulation Theory.Berlin: Springer-Verlag, 453pp.CrossRefGoogle Scholar
Pelegri, J. L. and G. T., Csanady (1991). Nutrient transport and mixing in the Gulf Stream. J. Geophys. Res., 96, 2577–2583.CrossRefGoogle Scholar
Pelegri, J. L. and G. T., Csanady (1994). Diapycnal mixing in western boundary currents. J. Geophys. Res., 99, 18 275–18 304.CrossRefGoogle Scholar
Pelegri, J. L., G. T., Csanady, and A., Martins (1996). The North Atlantic nutrient stream. J. Oceanogr., 52, 275–299.CrossRefGoogle Scholar
Petit, J. R., J., Jouzel, D., Raynaud, et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.CrossRefGoogle Scholar
Petit, J. R.et al. (2001). Vostok Ice Core Data for 420,000 Years. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2001–076. NOAA/NGDC Paleoclimatology Program, Boulder, CO, USA, 293pp.
Philander, S. G. H. (1990). El Nino, La Nina and the Southern Oscillation. San Diego, CA: Academic Press, 293pp.Google Scholar
Pickart, R. S. and M. A., Spall (2007). Impact of Labrador Sea Convection on the North Atlantic Meridional Overturning Circulation. J. Phys. Oceanogr., 37, 2207–2227.CrossRefGoogle Scholar
Pilson, M. E. Q. (1998). An Introduction to the Chemistry of the Sea. Prentice-Hall, 431pp.Google Scholar
Pollack, H. N., S. J., Hunter, and J. R., Johnson (1993). Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys., 31(3), 267–280.CrossRefGoogle Scholar
Polzin, K. L., K. G., Speer, J. M., Toole, and R. W., Schmitt (1996). Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380, 54–57.CrossRefGoogle Scholar
Pratt, L. J., M. S., Lozier, and N., Beliakova (1995). Parcel trajectories in quasigeostrophic jets: neutral modes. J. Phys. Oceanogr., 25, 1451–1466.2.0.CO;2>CrossRefGoogle Scholar
Price, J. F. (1992). Overflows: the source of new abyssal ocean waters. Oceanus, 35, 28–34.Google Scholar
Price, J. F. (2001). Subduction. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 357–372.CrossRefGoogle Scholar
Price, J. F., M., O'Neil Baringer, R. G., Lueck, et al. (1993). Mediterranean outflow mixing and dynamics. Science, 259, 1277–1282.CrossRefGoogle ScholarPubMed
Redfield, A. C. (1934). On the proportions of organic derivatives in seawater and their relation to the composition of the plankton. In The James Johnstone Memorial Volume, ed. R. J., Daniel. Liverpool: University Press of Liverpool, pp. 176–192.Google Scholar
Redfield, A. C., B. H., Ketchum, and F. A., Richards (1963). The influence of organisms on the composition of seawater. In The Sea, Vol. 2., ed. M. N., Hill, Hoboken, NJ: Wiley-Interscience, pp. 26–77.Google Scholar
Reid, J. L. (1979). On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea. Deep-Sea Res., 26A, 1199–1223.CrossRefGoogle Scholar
Rhines, P. B. and W. R., Young (1982a). Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347–368.CrossRefGoogle Scholar
Rhines, P. B. and W. R., Young (1982b). A theory of the wind-driven circulation: I. Mid-ocean gyres. J. Mar. Res., 40 (Suppl.), 559–596.Google Scholar
Rhines, P. B., S., Häkkinen, and S. A., Josey (2008). Is oceanic heat transport significant in the climate system? In Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, ed. R. R., Dickson, J., Meincke, and P. B., Rhines. New York: Springer, pp. 265–279.Google Scholar
Richardson, P. L., R. E., Cheney, and L. V., Worthington (1976). A census of Gulf Stream rings, Spring 1975. J. Geophys. Res., 83(C12), 6136–6144.CrossRefGoogle Scholar
Ridgwell, A. and J., Hargreaves (2007). Regulation of atmospheric CO2 by deep-sea sediments in an Earth System Model. Global Biogeochem. Cycles, 21, doi:10.1029/2006GB002764.CrossRefGoogle Scholar
Rintoul, S., C. W., Hughes and D., Olbers (2001). The Antarctic Circumpolar Current System. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, ed. G., Siedler, J., Church and J., Gould. San Diego, CA: Academic Press, pp. 271–302.CrossRefGoogle Scholar
Robertson, J. E., C., RobinsonD. R., Turner, et al. (1994). The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep-Sea Res. I, 41(2), 297–314.CrossRefGoogle Scholar
Rogner, H. H. (1997). An assessment of world hydrocarbon resources. Annu. Rev. Energy Environ., 22, 217–262.CrossRefGoogle Scholar
Rooth, C. (1982). Hydrology and ocean circulation. Prog. Oceanogr., 11, 131–149.CrossRefGoogle Scholar
Rossby, H. T. and P. I., Miller (2003). Ocean eddies in the 1539 Carta Marina by Olaus Magnus. Oceanogr., 16(4), 77–88.CrossRefGoogle Scholar
Roussenov, V., R. G., Williams, M. J., Follows, and R. M., Key (2004). Role of bottom water transport and diapycnic mixing in determining the radiocarbon distribution in the Pacific. J. Geophys. Res., 109, C06015, doi:10.1029/2003JC002188.CrossRefGoogle Scholar
Roussenov, V., R. G., Williams, C., Mahaffey, and G. A., Wolff (2006). Does the transport of dissolved organic nutrients affect export production in the Atlantic Ocean?Global Biogeochem. Cycles, 20, doi:10.1029/2005GB00210.CrossRefGoogle Scholar
Runge, S. W., B. J. F., Hill, and W. M., Moran (2006). A simple classroom teaching technique to help students understand Michaelis-Menten Kinetics. CBE-Life Sciences Education, 5, 348–352.CrossRefGoogle ScholarPubMed
Sabine, C. L., R. A., Feely, N., Gruber, et al. (2004). The oceanic sink for anthropogenic CO2. Science, 305, 367–371.CrossRefGoogle ScholarPubMed
Salmon, R. (1998). Lectures on Geophysical Fluid Dynamics. New York: Oxford University Press, 378pp.Google Scholar
Sarmiento, J. L. and N., Gruber (2002). Sinks for anthropogenic carbon. Phys. Today, August, 30–36.CrossRefGoogle Scholar
Sarmiento, J. L. and N., Gruber (2006). Ocean Biogeochemical Dynamics. Princeton, NJ: Princeton University Press, 526pp.Google Scholar
Sarmiento, J. L., N., Gruber, M. A., Brzezinski and J. P., Dunne (2004). High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 56–60.CrossRefGoogle ScholarPubMed
Schlitzer, R. (2000). Applying the adjoint method for global biogeochemical modeling. In ed. P., Kasibhatla, M., Heimann, D., Hartley, N., Mahowald, R., Prinn, and P., Rayner. Inverse Methods in Global Biogeochemical Cycles, Geophysical Monograph Series, Vol. 114. Washington, D. C.: American Geophysical Union, pp. 107–124.CrossRefGoogle Scholar
Schmitz, W. J. Jr., (1996). On the World Ocean Circulation: Vol. I. Some Global Features/North Atlantic Circulation. Technical Report WHOL-96–03. Woods Hole, MA: Woods Hole Oceanographic Institution, 140pp.CrossRefGoogle Scholar
Scott, R. B., B. K., Arbic, E. P., Chassignet, et al. (2010). Total kinetic energy in three global eddying ocean circulation models and over 5000 current meter records. Ocean Model., 32, doi:10.1016/j.ocemod.2010.01.005.CrossRefGoogle Scholar
Seager, R., D. S., Battisti, J., Yin, et al. (2002). Is the Gulf Stream responsible for Europe's mild winters?Quart. J. Roy. Meteorol. Soc., 128, 2563–2586.CrossRefGoogle Scholar
Sharples, J., C. M., Moore, T. P., Rippeth, et al. (2001). Phytoplankton distribution and survival in the thermocline. Limnol. Oceanogr., 46(3), 486–496.CrossRefGoogle Scholar
Sharples, J., O. N., Ross, B. E., Scott, S. P. R., Greenstreet, and H., Fraser (2006). Inter-annual variability in the timing of the stratification and the spring bloom in the north-western North Sea. Continental Shelf Res., 26, 733–751.CrossRefGoogle Scholar
Siedler, G., J., Church, and J., Gould (2001). Ocean Circulation and Climate: Observing and Modelling the Global Ocean. San Diego, CA: Academic Press, 693pp.Google Scholar
Sigman, D. M. and E. A., Boyle (2000). Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859–869.CrossRefGoogle ScholarPubMed
Simpson, J. H. and J., Sharples. An Introduction to the Physical and Biological Oceanography of Shelf Seas. Cambridge: Cambridge University Press, not yet published.CrossRef
Smethie, W. M. Jr., and R. A., Fine (2001). Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res. I, 48, 189–215.CrossRefGoogle Scholar
Smith, K. S. (2007). The geography of linear baroclinic instability in Earth's oceans. J. Mar. Res., 65, 655–683.CrossRefGoogle Scholar
Smyth, T. J., G. F., Moore, S. B., Groom, P. E., Land, and T., Tyrrell (2002). Optical modelling and measurements of a coccolithophore bloom. Appl. Opt., 41, 7679–7688.CrossRefGoogle Scholar
Speer, K. (1997). A note on average cross-isopycnal mixing in the North Atlantic Ocean. Deep-Sea Res. I, 44(12), 1981–1990.CrossRefGoogle Scholar
Speer, K. G. and M. S., McCartney (1992). Bottom water circulation in the western North Atlantic. J. Phys. Oceanogr., 22, 83–92.2.0.CO;2>CrossRefGoogle Scholar
Speer, K. and E., Tziperman (1992). Rates of water mass formation in the North Atlantic ocean. J. Phys. Oceanogr., 22, 93–104.2.0.CO;2>CrossRefGoogle Scholar
Speer, K. G., S. R., Rintoul, and B. M., Sloyan (2000). The diabatic Deacon cell, J. Phys. Oceanogr., 30, 3212–3221.2.0.CO;2>CrossRefGoogle Scholar
Spitzer, W. S. and W. J., Jenkins (1989). Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda. J. Mar. Res., 47, 169–196.CrossRefGoogle Scholar
Stephens, J. C. and D. P., Marshall (2000). Dynamical pathways of Antarctic Bottom Water in the Atlantic. J. Phys. Oceanogr., 30, 622–640.2.0.CO;2>CrossRefGoogle Scholar
Stewart, F. M. and B. R., Levin (1973). Partitioning of resources and the outcome of interspecific competition: a model and some general considerations. Am. Nat., 107, 171–198.CrossRefGoogle Scholar
Stommel, H. (1948). The westward intensification of wind-driven ocean currents. Trans. Am. Geophys. Union, 29, 202–206.CrossRefGoogle Scholar
Stommel, H. (1958). The abyssal circulation. Deep-Sea Res., 5, 80–82.Google Scholar
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.CrossRefGoogle Scholar
Stommel, H. (1979). Determination of watermass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Nat. Acad. Sci. USA, 76, 3051–3055.CrossRefGoogle Scholar
Stommel, H. and A. B., Arons (1960). On the abyssal circulation of the world ocean: I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140–154.Google Scholar
Stommel, H., A. B., Arons, and A. J., Faller (1960). Some examples of stationary planetary flow patterns in bounded basins. Tellus, 10, 179–187.Google Scholar
Sverdrup, H. U. (1947). Wind-driven currents in a baroclinic ocean: with applications to the equatorial currents of the eastern Pacific. Proc. Nat. Acad. Sci. USA, 33, 318–326.CrossRefGoogle Scholar
Sverdrup, H. U. (1953). On conditions of the vernal blooming of phytoplankton. J. du conseil int. pour l'explor. de la mer, 18, 287–295.CrossRefGoogle Scholar
Takahashi, T., W. S., Broecker, and S., Langer (1985). Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res., 90(C4), 6907–6924, doi:10.1029/JC090iC04p06907.CrossRefGoogle Scholar
Takahashi, T., S. C. Sutherland, Sweeney, et al. (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res. II, 49, 1601–1622.CrossRefGoogle Scholar
Talley, L. D. (1999). Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. In Mechanisms of Global Climate Change at Millennial Time Scales, ed. P. U., Clark, R. S., Webb and L. D., Keigwin, Geophysical Monograph Series, Vol. 112. Washington, D.C.: American Geophysical Union, pp. 1–22.CrossRefGoogle Scholar
Talley, L. D., G. L., Pickard, W. J., Emery, and J. H., Swift (2011). Descriptive Physical Oceanography: An Introduction. 6th edition. Elsevier.Google Scholar
Thingstad, T. F., H., Havskum, K., Garde, and B., Riemann (1996). On the strategy of ‘eating your competitor’: a mathematical analysis of algal mixotrophy. Ecology, 77(7), 2108–2118.CrossRefGoogle Scholar
Thomas, H., Y., Bozec, K., Elkalay, and H. J., W. Baar (2004). Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304, 1005–1008.CrossRefGoogle ScholarPubMed
Tilman, D. (1977). Resource competition between planktonic algae: an experimental and theoretical approach. Ecology, 58, 338–348.CrossRefGoogle Scholar
Toggweiler, J. R., R., Murnane, S., Carson, A., Gnanadesikan, and J. L., Sarmiento (2003). Representation of the carbon cycle in box models and GCMs: 2. Organic pump. Global Biogeochem. Cycles, 17(1), 1027, doi:10.1029/2001GB001841.Google Scholar
Torres-Valdes, S., V., Roussenov, R., Sanders, et al. (2009). Distribution of dissolved organic nutrients and their effect on export production over the Atlantic Ocean. Global Biogeochem. Cycles, 23, GB4019, doi:10.1029/2008GB003389.CrossRefGoogle Scholar
Tyrrell, T. and J., Wright (2001). Calcium carbonate and climate. Ocean Chall., 11(1), 13–21.Google Scholar
Vallis, G. K. (2006). Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge: Cambridge University Press, 745pp.CrossRefGoogle Scholar
Veronis, G. (1970). Model of world ocean circulation: I. Wind-driven, two-layer. J. Mar. Res., 31, 228–288.Google Scholar
Vrede, K., M., Heldal, S., Norland, and G., Bratbak (2002). Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl. Env. Microbio., 68(6), 2965–2971, doi:10.1128/AEM.68.6.2965–2971.2002.CrossRefGoogle ScholarPubMed
Walin, G. (1982). On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187–195.CrossRefGoogle Scholar
Wanninkhof, R. and W. R., McGillis (1999). A cubic relationship between air-sea CO2 exchange and windspeed. Geophys. Res. Lett., 26(13), 1889–1892.CrossRefGoogle Scholar
Warren, B. A. (1981). Deep circulation of the World Ocean. In Evolution of Physical Oceanography, ed. B. A., Warren and C., Wunsch. Cambridge, MA: The MIT Press, pp. 6–41.Google Scholar
Warren, B. A. (1983). Why is no deep water formed in the North Pacific?J. Mar. Res., 41, 327–347.CrossRefGoogle Scholar
Watson, J., S., Alexander, G., Craig, et al. (2001). Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles. Meas. Sci. Tech., 12, L9–L15.CrossRefGoogle Scholar
Waugh, D. W. (1993). Subtropical stratospheric mixing linked to disturbances on the polar vortices. Nature, 365, 535–537.CrossRefGoogle Scholar
Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem., 2, 203–215.CrossRefGoogle Scholar
Welander, P. (1955). Studies on the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141–156.CrossRefGoogle Scholar
Williams, R. G. (1991). The role of the mixed layer in setting the potential vorticity of the main thermocline. J. Phys. Oceanogr., 21, 1803–1814.2.0.CO;2>CrossRefGoogle Scholar
Williams, R. G. and M. J., Follows (1998). The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep-Sea Res. I, 45, 461–489.CrossRefGoogle Scholar
Williams, R. G. and M. J., Follows (2003). Physical transport of nutrients and the maintenance of biological production. In Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change, ed. M., Fasham. Berlin: Springer, pp. 19–51.CrossRefGoogle Scholar
Williams, R. G., E., McDonagh, V. M., Roussenov, et al. (2011). Nutrient streams in the North Atlantic: advective pathways of inorganic and organic nutrients. Global Biogeochem. Cycles, submitted.CrossRefGoogle Scholar
Williams, R. G., V., Roussenov, and M. J., Follows (2006). Nutrient Streams and their induction into the mixed layer. Global Biogeochem. Cycles, 20, GB1016, doi:10.1029/2005GB002586.CrossRefGoogle Scholar
Williams, R. G., M. A., Spall, and J. C., Marshall (1995). Does Stommel's mixed-layer ‘demon’ work?J. Phys. Oceanogr., 25, 3089–3102.2.0.CO;2>CrossRefGoogle Scholar
Williams, R. G., C., Wilson, and C. W., Hughes (2007). Ocean and atmosphere storm tracks: the role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 2267–2289.CrossRefGoogle Scholar
Wilson, C. and R. G., Williams (2004). Why are eddy fluxes of potential vorticity difficult to parameterise?J. Phys. Oceanogr, 34, 142–155.2.0.CO;2>CrossRefGoogle Scholar
Woods, J. D. (1985). The physics of thermocline ventilation. In Coupled Ocean–Atmosphere Models, ed. J. C. J., Nihoul. Kiel: Elsevier, pp. 543–590.CrossRefGoogle Scholar
Woolings, T. (2010). Dynamical influences on European climate: an uncertain future. Phil. Trans. R. Soc. A, 368, 3733–3756.CrossRefGoogle Scholar
Worthington, L. V. and W. R., Wright (1970). North Atlantic Ocean Atlas of Potential Temperature and Salinity in the Deep Water, Including Temperature, Salinity and Oxygen Profiles from the Erika Dan Cruise of 1962. Atlas Series, Vol. 2. Woods Hole, MA: Woods Hole Oceanographic Institution, 24pp.Google Scholar
Wunsch, C. (1998). The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 2332–2340.2.0.CO;2>CrossRefGoogle Scholar
Wunsch, C. (2005). The total meridional heat flux and its oceanic and atmospheric partition. J. Clim., 18, 4374–4380.CrossRefGoogle Scholar
Wunsch, C. and R., Ferrari (2004). Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid. Mech., 36, 281–314.CrossRefGoogle Scholar
Wüst, G. (1935). The stratosphere of the Atlantic Ocean: Scientific Results of the German Atlantic Expedition of the Research Vessel Meteor 1925–27. English translation edited by W. J., Emerg. et al. New Delhi: Amerind Publishing Co., pp. 109–288.Google Scholar
Yamaguchi, A., Y., Watanabea, H., Ishidaa, et al. (2002). Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep-Sea Res. II, 49, 5513–5529.CrossRefGoogle Scholar
Yamamoto, T. and K., Tarutani (1999). Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seto Inland Sea, Japan. Phycol. Res., 47(1), 27–32.CrossRefGoogle Scholar
Young, W. R. (1999). Lectures on stirring and mixing, delivered at the 1999 WHO I Summer Program in Geophysical Fluid Dymamics.
Zeebe, R. E. and D., Wolf-Gladrow (2001). CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series, 65. Amsterdam: Elsevier, p. 346.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Richard G. Williams, University of Liverpool, Michael J. Follows, Massachusetts Institute of Technology
  • Book: Ocean Dynamics and the Carbon Cycle
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977817.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Richard G. Williams, University of Liverpool, Michael J. Follows, Massachusetts Institute of Technology
  • Book: Ocean Dynamics and the Carbon Cycle
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977817.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Richard G. Williams, University of Liverpool, Michael J. Follows, Massachusetts Institute of Technology
  • Book: Ocean Dynamics and the Carbon Cycle
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977817.019
Available formats
×