Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-08T15:21:56.607Z Has data issue: false hasContentIssue false

14 - Probing and imaging of optical antennas with PEEM

from Part II - MODELING, DESIGN AND CHARACTERIZATION

Published online by Cambridge University Press:  05 March 2013

Pascal Melchior
Affiliation:
Technische Universität Kaiserslautern
Daniela Bayer
Affiliation:
Technische Universität Kaiserslautern
Martin Aeschlimann
Affiliation:
Technische Universität Kaiserslautern
Mario Agio
Affiliation:
European Laboratory for Nonlinear Spectroscopy (LENS) and National Institute of Optics (INO-CNR)
Andrea Alù
Affiliation:
University of Texas, Austin
Get access

Summary

Introduction

Nano-optical devices have a great potential for technological applications [201, 597, 598]. Consequently, the investigation of plasmonic excitations in nanostructures and on surfaces has evolved into a tremendous research field, made possible only by the progress in nanotechnology. Nowadays, nanoantennas with highly complex shapes are fabricated with an extremely high accuracy by standardized procedures [564]. The spectral features and near-field properties of such optical antennas are determined on a length scale that is intrinsically smaller than the diffraction limit of electromagnetic waves. However, experimental access to the spatial properties of these antennas on the nanoscale is essential for an understanding of the underlying mechanisms that lead to strong near-field enhancements, interferences and mode hybridization. Thus, there is a particular need for a real-space microscopy technique that delivers information about near-field distribution within and in the vicinity of nanostructures, with a resolution below the diffraction limit. In addition to pure imaging of static field distributions, knowledge of the dynamical properties of electronic excitations is relevant for encoding and manipulation of information on the nanoscale. The microscopic understanding of the associated dynamics is crucial for many other research fields, such as molecular biology or catalytic chemistry. Considering technological applications, well-tuned spectral properties and high reproducibility of the nanostructures is most important. Smallest differences on the nanoscale of individual structures (e.g. induced by the fabrication process) lead to strong variations of their optical response.

Type
Chapter
Information
Optical Antennas , pp. 234 - 255
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×