Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T14:48:35.368Z Has data issue: false hasContentIssue false

4 - Where high-frequency engineering advances optics. Active nanoparticles as nanoantennas

from Part I - FUNDAMENTALS

Published online by Cambridge University Press:  05 March 2013

Richard W. Ziolkowski
Affiliation:
University of Arizona
Samel Arslanagić
Affiliation:
Technical University of Denmark
Junping Geng
Affiliation:
Shanghai Jiao Tong University
Mario Agio
Affiliation:
European Laboratory for Nonlinear Spectroscopy (LENS) and National Institute of Optics (INO-CNR)
Andrea Alù
Affiliation:
University of Texas, Austin
Get access

Summary

Introduction

As outlined in the previous two chapters, the traditional understanding of antennas originates from their RF developments [73]. Transmitting antennas are viewed as transducers that convert voltages and currents into electromagnetic waves. On the other hand, receiving antennas are viewed as transducers that convert electromagnetic waves into voltages and currents. There has been considerable attention given recently to optical antennas (see Ref. [36] and references therein). For instance, standard resonant antennas, i.e. ones whose characteristic length is near a multiple of a half-wavelength, such as dipoles and bowties, have been studied by many groups [33, 74]. They are ones that are the most accessible to nanofabrication processes; and, hence, their simulated properties have been experimentally verified. Dimers are another well-studied example of optical antennas specifically designed for large enhancements of local fields [37, 75, 76]. More recent examples include transitioning directive RF antennas to the optical regime, such as Yagi-Uda antennas [77, 78], arrays [79–81] and simple radiators combined with electromagnetic bandgap structures [82]. Even more traditional schemes, such as using an antenna to excite an RF waveguide, have been extended to optical frequencies [83]. Furthermore, nonlinear loads have been incorporated into optical antennas to control their emission properties, as well as to create harmonic generation [55, 84].

Given the intrinsic nature of the excitation of the majority of optical antennas studied to date, most RF engineers would view them simply as nano-scatterers, which have been designed to create large local fields.

Type
Chapter
Information
Optical Antennas , pp. 46 - 63
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×