Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-k8jzq Total loading time: 0 Render date: 2024-09-02T11:21:52.817Z Has data issue: false hasContentIssue false

Overview

from Part III - Optical metropolitan area networks

Published online by Cambridge University Press:  10 May 2010

Martin Maier
Affiliation:
Université du Québec, Montréal
Get access

Summary

In this part, we explore a wide range of different optical metropolitan area network (MAN) architectures and protocols. MANs are found at the metro level of the network hierarchy between wide area networks (WANs) and access networks. Typically, MANs have a ring topology and are deployed in interconnected ring architectures that are composed of metro core and metro edge rings, as depicted in Fig. III.1. Each metro core ring interconnects several metro edge rings with the long-haul backbone networks. Apart from inter-metro-edge-ring traffic, metro core rings also carry traffic from and to the long-haul backbone networks. Metro edge rings in turn carry traffic between metro core rings and access networks, for example, hybrid fiber coax (HFC), fiber-to-the-home (FTTH), fiber-to-the-building (FTTB) networks, and passive optical networks (PONs). Ring networks offer simplicity in terms of operation, administration, and maintenance (OAM). Moreover, ring networks provide fast protection switching in the event of a single link or node failure.

Optical metro ring networks can be either single-channel or multichannel wavelength division multiplexing (WDM) systems. Optical ring networks were initially singlechannel systems, where each fiber link carries a single wavelength channel (e.g., IEEE 802.5 Token Ring and ANSI Fiber Distributed Data Interface (FDDI)). Optical singlechannel ring networks belong to the first generation of opaque optical networks where OEO conversion takes place at each node. Opaque ring networks have come a long way. Among others, the so-called Cambridge ring is a unidirectional ring network whose channel access is based on the empty-slot principle (Hopper andWilliamson, 1983). The Cambridge ring deploys source stripping, where the source node takes the transmitted packet from the ring.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Overview
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Overview
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Overview
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.013
Available formats
×