Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T03:53:02.982Z Has data issue: false hasContentIssue false

10 - Photonic forcemicroscope

from Part II - Practice

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 296 - 318
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashkin, A. 1992. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J., 61, 569–82.CrossRefGoogle ScholarPubMed
Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. 1982. Surface studies by scanning tunneling microscope. Phys. Rev. Lett., 49, 57–60.CrossRefGoogle Scholar
Binnig, G., Quate, C. F., and Gerber, C. 1986. Atomic force microscope. Phys. Rev. Lett., 56, 930–33.CrossRefGoogle ScholarPubMed
Bishop, A. I., Nieminen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H. 2004. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett., 92, 198104.CrossRefGoogle ScholarPubMed
Brettschneider, T., Volpe, G., Helden, L.,Wehr, J., and Bechinger, C. 2011. Force measurement in the presence of Brownian noise: Equilibrium-distribution method versus drift method. Phys. Rev. E, 83, 041113.CrossRefGoogle ScholarPubMed
Farré, A., and Montes-Usategui, M. 2010. A force detection technique for single-beam optical traps based on direct measurement of light momentum changes. Opt. Express, 18, 11 955–68.CrossRefGoogle ScholarPubMed
Florin, E.-L., Pralle, A., Hörber, J. K. H., and Stelzer, E. H. K. 1997. Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J. Struct. Biol., 119, 202–11.CrossRefGoogle ScholarPubMed
Ghislain, L. P., and Webb, W.W. 1993. Scanning-force microscope based on an optical trap. Opt. Lett., 18, 1678–80.CrossRefGoogle ScholarPubMed
Ghislain, L. P., Switz, N. A., and Webb, W.W. 1994. Measurement of small forces using an optical trap. Rev. Sci. Instrumen., 69, 2762–8.Google Scholar
Lang, M. J., Asbury, C. L., Shaevitz, J. W., and Block, S. M. 2002. An automated twodimensional optical force clamp for single molecule studies. Biophys. J., 83, 491–501.CrossRefGoogle Scholar
Merenda, F., Boer, G., Rohner, J., Delacrétaz, G., and Salathé, R.-P. 2006. Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow. Opt. Express, 14, 1685–99.CrossRefGoogle Scholar
Pesce, G., Volpe, G., Luca, A. C. De, Rusciano, G., and Volpe, G. 2009. Quantitative assessment of non-conservative radiation forces in an optical trap. Europhys. Lett., 86, 38002.CrossRefGoogle Scholar
Prieve, D. C. 1999. Measurement of colloidal forces with TIRM. Adv. Colloid Interface Sci., 82, 93–125.CrossRefGoogle Scholar
Roichman, Y., Sun, B., Stolarski, A., and Grier, D. G. 2008. Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability. Phys. Rev. Lett., 101, 128301.CrossRefGoogle Scholar
Smith, S. B., Cui, Y., and Bustamante, C. 2003. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol., 361, 134–62.Google ScholarPubMed
Volpe, G., and Petrov, D. 2006. Torque detection using Brownian fluctuations. Phys. Rev. Lett., 97, 210603.CrossRefGoogle ScholarPubMed
Volpe, G., Volpe, G., and Petrov, D. 2007. Brownian motion in a nonhomogeneous force field and photonic force microscope. Phys. Rev. E, 76, 061118.CrossRefGoogle Scholar
Volpe, G., Brettschneider, T., Helden, L., and Bechinger, C. 2009. Novel perspectives for the application of total internal reflection microscopy. Opt. Express, 17, 23 975–85.CrossRefGoogle ScholarPubMed
Volpe, G., Helden, L., Brettschneider, T., Wehr, J., and Bechinger, C. 2010. Influence of noise on force measurements. Phys. Rev. Lett., 104, 170602.CrossRefGoogle ScholarPubMed
Walz, J. Y. 1997. Measuring particle interactions with total internal reflection microscopy. Curr. Opin. Colloid Interface Sci., 2, 600–606.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×