Published online by Cambridge University Press: 05 November 2015
The scope of this chapter is the presentation of inpainting methods which use fourth-order (and higher!) partial differential equations (PDEs) to fill in missing image contents in gaps in the image domain. In the following section, we first motivate the use of higher-order flows for image inpainting.
Second- Versus Higher-Order Approaches
In this section we want to emphasise the difference between second-order diffusions as discussed in Chapter 4 and higher-order – in particular, fourth-order – diffusions in inpainting. As we have seen already, second-order inpainting methods (in which the order of the method is determined by the derivatives of highest order in the PDE), such as total variation (TV) inpainting, have drawbacks when it comes to the connection of edges over large distances and the smooth propagation of level lines into the damaged domain – qualities that we agreed an image interpolator which follows the good continuation principle from Chapter 3 should have. The disability, in general, of second-order methods to connect structures across the inpainting domain was demonstrated for harmonic inpainting in Figure 4.1 and for TV inpainting in Figure 4.8. An example of the lack of smoothness of interpolated level lines is given in Figure 4.7 for TV inpainting. In the case of TV inpainting, this behaviour of the interpolator is explained using the co-area formula, Theorem 4.3.6. To remind ourselves, TV inpainting seeks an interpolator whose level lines have minimal length, thus connecting level lines from the boundary of the inpainting domain via the shortest distance (linear interpolation). In [MM98, Mas98 and Mas02], Masnou and Morel propose an extension of the length penalisation in TV inpainting by an additional curvature term that should be small for interpolating level lines.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.