Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-16T00:10:27.475Z Has data issue: false hasContentIssue false

11 - Excitable media

Published online by Cambridge University Press:  05 August 2012

Michael Cross
Affiliation:
California Institute of Technology
Henry Greenside
Affiliation:
Duke University, North Carolina
Get access

Summary

The waves that are most familiar in daily life are sound waves, light waves, electrical waves, water waves, and mechanical waves (say a standing wave on a piano string). These familiar waves have the property that their magnitude decreases as they propagate away from their source or, for standing waves, once their source is turned off. The decrease in magnitude is a result of dissipative effects in the medium such as fluid viscosity, electrical resistance, or friction that drain energy from the wave and that restore the medium to thermal equilibrium.

These familiar waves have the additional property of often being accurately described by a linear evolution equation such as the wave equation. Because the evolution equation is linear, one can superimpose sinusoidal waves to get localized pulses of arbitrary shape, and these pulses can also propagate. (For example, clapping your hands once loudly creates a localized sound pulse that propagates away.) Because each Fourier component in the superposition is itself damped in typical media, the propagating pulses also damp out and disappear over time. Even in the absence of damping, dispersive effects can cause the different Fourier components to travel at different speeds so, again, waves and pulses change their shape and decrease in magnitude during propagation.

We have seen in earlier chapters that sustained nonequilibrium systems allow many dynamical states that can propagate or exist in a local spatial region but are such that these states do not damp out over time or they preserve their shape and speed as they propagate away from a source.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Excitable media
  • Michael Cross, California Institute of Technology, Henry Greenside, Duke University, North Carolina
  • Book: Pattern Formation and Dynamics in Nonequilibrium Systems
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511627200.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Excitable media
  • Michael Cross, California Institute of Technology, Henry Greenside, Duke University, North Carolina
  • Book: Pattern Formation and Dynamics in Nonequilibrium Systems
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511627200.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Excitable media
  • Michael Cross, California Institute of Technology, Henry Greenside, Duke University, North Carolina
  • Book: Pattern Formation and Dynamics in Nonequilibrium Systems
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511627200.012
Available formats
×