Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T20:20:37.960Z Has data issue: false hasContentIssue false

Tissue Selection

from Section I - Techniques and Practical Considerations

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Kovacs, GG, Budka, H. Current concepts of neuropathological diagnostics in practice: neurodegenerative diseases. Clin Neuropathol 2010;29(5):271–88.CrossRefGoogle ScholarPubMed
Stefanitis, H, Budka, H, Kovacs, GG. Asymmetry of neurodegenerative disease-related pathologies: a cautionary note. Acta Neuropathol 2012;123(3):449–52.Google Scholar
Samarasekera, N, Al-Shahi Salman, R, Huitinga, I, Klioueva, N, McLean, CA, Kretzschmar, H, et al. Brain banking for neurological disorders. Lancet Neurol 2013;12(11):1096–105.Google Scholar
Vonsattel, JP, Del Amaya, MP, Keller, CE. Twenty-first-century brain banking. Processing brains for research: the Colombia University methods. Acta Neuropathol 2008;115(5):509–32.Google Scholar
Ernst, LM, Sondheimer, N, Deardorff, MA, Bennett, MJ, Pawel, BR. The value of the metabolic autopsy in the pediatric hospital setting. J Pediatr 2006;148(6):779–83.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. Sudden unexpected infant death and sudden infant death syndrome. Available at www.cdc.gov/sids/about/index.htm (page last reviewed: Dec. 31, 2018).Google Scholar
Folkerth, RD, Nunez, J, Georgievskaya, Z, McGuone, D. Neuropathologic examination in sudden unexpected deaths in infancy and childhood: Recommendations for highest diagnostic yield and cost-effectiveness in forensic settings. Acad Forensic Pathol 2017;7(2):182–99.Google Scholar

References

Prahlow, JA, Ross, KF, Salzberger, L, Lott, EG, Guileyardo, JM, Barnard, JJ. Immersion technique for brain removal in perinatal autopsies. J Forensic Sci 1998;43(5):1056–60.CrossRefGoogle ScholarPubMed
Ernst, LM, Sondheimer, N, Deardorff, MA, Bennett, MJ, Pawel, BR. The value of the metabolic autopsy in the pediatric hospital setting. J Pediatr 2006;148(6):779–83.Google Scholar
Yamamoto, T, Nishio, H. Metabolic autopsy and molecular autopsy in sudden unexpected death in infancy. In: Ishikawa, T. (eds.) Forensic Medicine and Human Cell Research: Current Human Cell Research and Applications. Springer: Singapore; 2019. pp. 83103.Google Scholar
Olpin, SE. The metabolic investigation of sudden infant death. Ann Clin Biochem 2004;41(4):282–93.CrossRefGoogle ScholarPubMed
Christodoulou, J, Wilcken, B. Perimortem laboratory investigation of genetic metabolic disorders. Semin Neonatol 2004;9(4):275–80.CrossRefGoogle ScholarPubMed

References

Suvarna, SK, Layton, C, Bancroft, JD. Bancroft’s Theory and Practice of Histological Techniques. 8th edition: Elsevier; 2018.Google Scholar
Kiernan, JA. Histological and Histochemical Methods – Theory and Practice. 5th edition: Scion Publishing; 2015.Google Scholar
Puchtler, H, Waldrop, FS. On the mechanism of Verhoeff’s elastica stain: a convenient stain for myelin sheaths. Histochemistry. 1979;62(3):233–47.Google Scholar
Dingjan, T, Spendlove, I, Durrant, LG, Scott, AM, Yuriev, E, Ramsland, PA. Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies. Mol Immunol. 2015;67(2Pt A):7588.CrossRefGoogle ScholarPubMed
Rekvig, OP. The anti-DNA antibody: origin and impact, dogmas and controversies. Nat Rev Rheumatol. 2015;11(9):530–40.CrossRefGoogle ScholarPubMed
Chu, P, Weiss, L. Modern Immunohistochemistry, 2nd edition: Cambridge University Press; 2014.Google Scholar
Shi, SR, Shi, Y, Taylor, CR. Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem. 2011;59(1):1332.CrossRefGoogle ScholarPubMed
Jakovcevski, I, Mayer, N, Zecevic, N. Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors. Cereb Cortex. 2011;21(8):1771–82.Google Scholar
Schmued, LC, Stowers, CC, Scallet, AC, Xu, L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 2005;1035(1):2431.CrossRefGoogle ScholarPubMed
Spacek, J. Dynamics of the Golgi method: a time-lapse study of the early stages of impregnation in single sections. J Neurocytol. 1989;18(1):2738.Google Scholar
Humberstone, GC, Humberstone, FD. An elastic tissue stain. J Med Lab Technol. 1969;26(2):99101.Google Scholar
Clasen, RA, Simon, GR, Ayer, JP, Pandolfi, S, Laing, IR. A chemical basis for the staining of myelin sheaths by Luxol dye techniques; further observations. J Neuropathol Exp Neurol. 1967;26(1):153–4.Google ScholarPubMed
Kiernan, JA. Chromoxane cyanine R. II. Staining of animal tissues by the dye and its iron complexes. J Microsc. 1984;134(Pt 1):2539.Google ScholarPubMed
Kluver, H, Barrera, E. A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol. 1953;12(4):400–3.Google Scholar
Lendrum, AC, Fraser, DS, Slidders, W, Henderson, R. Studies on the character and staining of fibrin. J Clin Pathol. 1962;15:401–13.CrossRefGoogle ScholarPubMed
Grocott, RG. A stain for fungi in tissue sections and smears using Gomori’s methenamine-silver nitrate technic. Am J Clin Pathol. 1955;25(8):975–9.Google Scholar
Manlow, A, Munoz, DG. A non-toxic method for the demonstration of gliosis. J Neuropathol Exp Neurol. 1992;51:298302.CrossRefGoogle ScholarPubMed
Rahaman, P, Del Bigio, MR. Histology of brain trauma and hypoxia-ischemia. Acad Forensic Pathol. 2018;8(3):539–54.Google Scholar
Byard, RW, Bellis, M. The effect of decalcifying solutions on hemosiderin staining. J Forensic Sci. 2010;55(5):1356–8.CrossRefGoogle ScholarPubMed
Perls, M. Nachweis von Eisenoxyd in gewissen Pigmenten. Arch Pathol Anat Physiol Klin Med. 1867;39(1):42–8.Google Scholar
Reichard, RR, White, CL, Hladik, CL, Dolinak, D. Beta-amyloid precursor protein staining in nonhomicidal pediatric medicolegal autopsies. J Neuropathol Exp Neurol. 2003;62(3):237–47.CrossRefGoogle ScholarPubMed
del Rio, MR, DeFelipe, J. Colocalization of calbindin D-28 k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. J Comp Neurol. 1996;369(3):472–82.3.0.CO;2-K>CrossRefGoogle Scholar
Forutan, F, Mai, JK, Ashwell, KW, Lensing-Hohn, S, Nohr, D, Voss, T, et al. Organisation and maturation of the human thalamus as revealed by CD15. J Comp Neurol. 2001;437(4):476–95.Google Scholar
Gocht, A, Zeunert, G, Laas, R, Lohler, J. The carbohydrate epitope 3-fucosyl-N-acetyllactosamine is developmentally regulated in the human cerebellum. Anat Embryol (Berl). 1992;186(6):543–56.CrossRefGoogle ScholarPubMed
Mai, JK, Krajewski, S, Reifenberger, G, Genderski, B, Lensing-Hohn, S, Ashwell, KW. Spatiotemporal expression gradients of the carbohydrate antigen (CD15) (Lewis X) during development of the human basal ganglia. Neuroscience. 1999;88(3):847–58.Google Scholar
Mo, Z, Moore, AR, Filipovic, R, Ogawa, Y, Kazuhiro, I, Antic, SD, et al. Human cortical neurons originate from radial glia and neuron-restricted progenitors. J Neurosci. 2007;27(15):4132–45.CrossRefGoogle ScholarPubMed
Hendrickx, DAE, van Eden, CG, Schuurman, KG, Hamann, J, Huitinga, I. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. 2017;309:1222.CrossRefGoogle ScholarPubMed
Cho, KH, Cheong, JS, Kim, JH, Abe, H, Murakami, G, Cho, BH. Site-specific distribution of CD68-positive microglial cells in the brains of human midterm fetuses: a topographical relationship with growing axons. Biomed Res Int. 2013;2013:762303.Google Scholar
Del Bigio, MR. Ependymal cells: biology and pathology. Acta Neuropathol. 2010;119(1):5573.Google Scholar
Ng, HK, Tse, CC, Lo, ST. Meningiomas and arachnoid cells: an immunohistochemical study of epithelial markers. Pathology. 1987;19(3):253–7.Google Scholar
Esiri, MM, al Izzi, MS, Reading, MC. Macrophages, microglial cells, and HLA-DR antigens in fetal and infant brain. J Clin Pathol. 1991;44(2):102–6.Google Scholar
Supramaniam, V, Vontell, R, Srinivasan, L, Wyatt-Ashmead, J, Hagberg, H, Rutherford, M. Microglia activation in the extremely preterm human brain. Pediatr Res. 2013;73(3):301–9.CrossRefGoogle ScholarPubMed
Cuylen, S, Blaukopf, C, Politi, AZ, Muller-Reichert, T, Neumann, B, Poser, I, et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature. 2016;535(7611):308–12.CrossRefGoogle ScholarPubMed
Sarnat, HB, Nochlin, D, Born, DE. Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system. Brain Dev. 1998;20(2):8894.Google Scholar
Sternberger, LA, Sternberger, NH. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A. 1983;80(19):6126–30.Google Scholar
van Muijen, GN, Ruiter, DJ, van Leeuwen, C, Prins, FA, Rietsema, K, Warnaar, SO. Cytokeratin and neurofilament in lung carcinomas. Am J Pathol. 1984;116(3):363–9.Google Scholar
Ulfig, N, Nickel, J, Bohl, J. Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain. Cell Tissue Res. 1998;291(3):433–43.CrossRefGoogle ScholarPubMed
Pauly, MC, Dobrossy, MD, Nikkhah, G, Winkler, C, Piroth, T. Organization of the human fetal subpallium. Front Neuroanat. 2013;7:54.Google ScholarPubMed
Jakovcevski, I, Zecevic, N. Olig transcription factors are expressed in oligodendrocyte and neuronal cells in human fetal CNS. J Neurosci. 2005;25(44):10064–73.Google Scholar
Harter, PN, Baumgarten, P, Zinke, J, Schilling, K, Baader, S, Hartmetz, AK, et al. Paired box gene 8 (PAX8) expression is associated with sonic hedgehog (SHH)/wingless int (WNT) subtypes, desmoplastic histology and patient survival in human medulloblastomas. Neuropathol Appl Neurobiol. 2015;41(2):165–79.Google Scholar
Bannykh, SI, Stolt, CC, Kim, J, Perry, A, Wegner, M. Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. J Neurooncol. 2006;76(2):115–27.CrossRefGoogle ScholarPubMed
Reiprich, S, Wegner, M. From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res. 2015;359(1):111–24.CrossRefGoogle ScholarPubMed
Sarnat, HB, Flores-Sarnat, L, Trevenen, CL. Synaptophysin immunoreactivity in the human hippocampus and neocortex from 6 to 41 weeks of gestation. J Neuropathol Exp Neurol. 2010;69(3):234–45.CrossRefGoogle ScholarPubMed
Mori, Y, Takamori, S. Molecular signatures underlying synaptic vesicle cargo retrieval. Front Cell Neurosci. 2017;11:422.Google Scholar
Ambu, R, Vinci, L, Gerosa, C, Fanni, D, Obinu, E, Faa, A, et al. WT1 expression in the human fetus during development. Eur J Histochem. 2015;59(2):2499.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×