Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T01:50:50.977Z Has data issue: false hasContentIssue false

Section 1 - Basic Principles

Published online by Cambridge University Press:  03 December 2019

Pedro L. Gambús
Affiliation:
Hospital Clinic de Barcelona, Spain
Jan F. A. Hendrickx
Affiliation:
Aalst General Hospital, Belgium
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Personalized Anaesthesia
Targeting Physiological Systems for Optimal Effect
, pp. 1 - 102
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Holford, NH, Yim, DS: Volume of Distribution. Trans.Clin.Pharm. 2016; 24: 74–7.Google Scholar
Avram, MJ, Krejcie, TC: Using front-end kinetics to optimize target-controlled drug infusions. Anesthesiology. 2003; 99: 1078–86.CrossRefGoogle ScholarPubMed
Krejcie, TC, Avram, MJ: Recirculatory pharmacokinetic modeling: what goes around, comes around. Anesth.Analg. 2012; 115: 223–6.CrossRefGoogle ScholarPubMed
Krejcie, TC, Avram, MJ: What determines anesthetic induction dose? It’s the front-end kinetics, doctor! Anesth.Analg. 1999; 89: 541–4.Google Scholar
Holford, NH, Yim, DS: Clearance. Trans.Clin.Pharm. 2015; 23: 42–5.Google Scholar
Schnider, TW, Minto, CF, Shafer, SL, Gambus, PL, Andresen, C, Goodale, DB, Youngs, EJ: The influence of age on propofol pharmacodynamics. Anesthesiology. 1999; 90: 1502–16.Google Scholar
Schnider, TW, Minto, CF, Gambus, PL, Andresen, C, Goodale, DB, Shafer, SL, Youngs, EJ: The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998; 88: 1170–82.Google Scholar
Minto, CF, Schnider, TW, Shafer, SL: Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology. 1997; 86: 2433.CrossRefGoogle ScholarPubMed
Minto, CF, Schnider, TW, Egan, TD, Youngs, E, Lemmens, HJ, Gambus, PL, Billard, V, Hoke, JF, Moore, KH, Hermann, DJ, Muir, KT, Mandema, JW, Shafer, SL: Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997; 86: 1023.Google ScholarPubMed
Minto, CF, Schnider, TW: PKPD Tools for EXCEL (with XLMEM). 1st(1.02). 1995. Stanford, CA: Anesthesia Department., Stanford University School of Medicine. www.pkpdtools.comGoogle Scholar
Sheiner, LB, Stanski, DR, Vozeh, S, Miller, RD, Ham, J: Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin.Pharmacol.Ther. 1979; 25: 358–71.Google Scholar
Hull, CJ, Van Beem, HB, McLeod, K, Sibbald, A, Watson, MJ: A pharmacodynamic model for pancuronium. Br.J.Anaesth. 1978; 50: 1113–23.Google Scholar
Hill, AV: The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. J.Physiol. 1910; 40: ivvii.Google Scholar
Gambus, PL, Gregg, KM, Shafer, SL: Validation of the alfentanil canonical univariate parameter as a measure of opioid effect on the electroencephalogram. Anesthesiology. 1995; 83: 747–56.Google Scholar
Sharma, A, Jusko, WJ: Characterization of four basic models of indirect pharmacodynamic responses. J.Pharmacokinet.Biopharm. 1996; 24: 611–35.CrossRefGoogle ScholarPubMed
Minto, CF, Schnider, TW, Gregg, KM, Henthorn, TK, Shafer, SL: Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology. 2003; 99: 324–33.CrossRefGoogle ScholarPubMed
Cortinez, LI, Nazar, C, Munoz, HR: Estimation of the plasma effect-site equilibration rate constant (ke0) of rocuronium by the time of maximum effect: a comparison with non-parametric and parametric approaches. Br.J.Anaesth. 2007; 99: 679–85.CrossRefGoogle ScholarPubMed
Munoz, HR, Leon, PJ, Fuentes, RS, Echevarria, GC, Cortinez, LI: Prospective evaluation of the time to peak effect of propofol to target the effect site in children. Acta Anaesthesiol.Scand. 2009; 53: 883–90.CrossRefGoogle ScholarPubMed
Munoz, HR, Cortinez, LI, Ibacache, ME, Altermatt, FR: Estimation of the plasma effect site equilibration rate constant (ke0) of propofol in children using the time to peak effect: comparison with adults. Anesthesiology. 2004; 101: 1269–74.CrossRefGoogle ScholarPubMed
Shafer, SL, Varvel, JR: Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology. 1991; 74: 5363.Google Scholar
Eger, EI, Shafer, SL: Tutorial: context-sensitive decrement times for inhaled anesthetics. Anesth.Analg. 2005; 101: 688–96.CrossRefGoogle ScholarPubMed

References

Holford, N: Clinical pharmacology = disease progression + drug action. Br.J.Clin.Pharmacol. 2015; 79: 1827.CrossRefGoogle ScholarPubMed
Verotta, D, Sheiner, LB: A general conceptual model for non-steady state pharmacokinetic/pharmacodynamic data. J.Pharmacokinet.Biopharm. 1995; 23: 14.CrossRefGoogle ScholarPubMed
Tozer, TN, Rowland, M: Introduction to Pharmacokinetics and Pharmacodynamics: The Quantitative Basis of Drug Therapy. Philadelphia, PA: Lippincott Williams & Wilkins, 2006.Google Scholar
Holford, NH, Sheiner, LB: Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin.Pharmacokinet. 1981; 6: 429–53.Google Scholar
Schnider, TW, Minto, CF, Gambus, PL, Andresen, C, Goodale, DB, Shafer, SL. Youngs, EJ: The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998; 88: 1170–82.Google Scholar
Hannivoort, LN, Eleveld, DJ, Proost, JH, Reyntjens, KM, Absalom, AR, Vereecke, HE, Struys, MM: Development of an optimized pharmacokinetic model of dexmedetomidine using target-controlled infusion in healthy volunteers. Anesthesiology. 2015; 123: 357–67.CrossRefGoogle ScholarPubMed
Fernández-Candil, J, Gambús, PL, Trocóniz, IF, Valero, R, Carrero, E, Bueno, L, Fábregas, N: Pharmacokinetic-pharmacodynamic modeling of the influence of chronic phenytoin therapy on the rocuronium bromide response in patients undergoing brain surgery. Eur.J.Clin.Pharmacol. 2008; 64: 795806.CrossRefGoogle Scholar
Trocóniz, IF, Armenteros, S, Planelles, MV, Benítez, J, Calvo, R, Domínguez, R: Pharmacokinetic-pharmacodynamic modelling of the antipyretic effect of two oral formulations of ibuprofen. Clin.Pharmacokinet. 2000; 38: 505–18.Google ScholarPubMed
Anderson, BJ, Holford, NH: Understanding dosing: children are small adults, neonates are immature children. Arch.Dis.Child 2013; 98: 737–44.Google Scholar
Holford, N, Heo, YA, Anderson, B: A pharmacokinetic standard for babies and adults. J.Pharm.Sci. 2013; 102: 2941–52.Google Scholar
Allegaert, K, Holford, N, Anderson, BJ, Holford, S, Stuber, F, Rochette, A, Trocóniz, IF, Beier, H, de Hoon, JN, Pedersen, RS, Stamer, U: Tramadol and o-desmethyl tramadol clearance maturation and disposition in humans: a pooled pharmacokinetic study. Clin.Pharmacokinet. 2015; 54: 167–78.Google Scholar
Anderson, BJ, Larsson, P: A maturation model for midazolam clearance. Paediatr.Anaesth. 2011; 21: 302–8.Google Scholar
Björkman, S, Wada, DR, Stanski, DR, Ebling, WF: Comparative physiological pharmacokinetics of fentanyl and alfentanil in rats and humans based on parametric single-tissue models. J.Pharmacokinet.Biopharm. 1994; 22: 381410.CrossRefGoogle ScholarPubMed
Masui, K, Upton, RN, Doufas, AG, Coetzee, JF, Kazama, T, Mortier, EP, Struys, MM: The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth.Analg. 2010; 111: 368–79.Google Scholar
Levitt, DG, Schnider, TW: Human physiologically based pharmacokinetic model for propofol. BMC Anesthesiol. 2005; 5: 4.CrossRefGoogle ScholarPubMed
Holford, NH, Sheiner, LB: Kinetics of pharmacologic response. Pharmacol.Ther. 1982; 16: 143–66.Google Scholar
Yassen, A, Olofsen, E, Dahan, A. Danhof, M: Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentanyl in rats: role of receptor equilibration kinetics. J.Pharmacol.Exp.Ther 2005; 313: 1136–49.Google Scholar
Yassen, A, Olofsen, E, Romberg, R, Sarton, E, Teppema, L, Danhof, M. Dahan, A: Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin.Pharmacol.Ther. 2007; 81: 50–8.CrossRefGoogle ScholarPubMed
Borrat, X, Trocóniz, IF, Valencia, JF, Rivadulla, S, Sendino, O, Llach, J, Muñoz, J, Castellví-Bel, S, Jospin, M, Jensen, EW, Castells, A, Gambús, PL: Modeling the influence of the A118G polymorphism in the OPRM1 gene and of noxious stimulation on the synergistic relation between propofol and remifentanil: sedation and analgesia in endoscopic procedures. Anesthesiology. 2013; 118: 1395–407.Google Scholar
Jonker, DM, Voskuyl, RA, Danhof, M. Pharmacodynamic analysis of the anticonvulsant effects of tiagabine and lamotrigine in combination in the rat. Epilepsia. 2004; 45: 424–35.CrossRefGoogle ScholarPubMed
Minto, CF, Schnider, TW, Short, TG, Gregg, KM, Gentilini, A, Shafer, SL: Response surface model for anesthetic drug interactions. Anesthesiology. 2000; 92: 1603–16.CrossRefGoogle ScholarPubMed
Verotta, D, Kitts, J, Rodriguez, R, Coldwell, J, Miller, RD, Sheiner, LB: Reversal of neuromuscular blockade in humans by neostigmine and edrophonium: a mathematical model. J.Pharmacokinet.Biopharm. 1991; 19: 713–29.CrossRefGoogle ScholarPubMed
Wicha, SG, Chen, C, Clewe, O, Simonsson, USH. A general pharmacodynamic interaction model identifies perpetrators and victims in drug interactions. Nat.Commun. 2017; 8: 2129.Google Scholar
Segre, G. Kinetics of interaction between drugs and biological systems. Farmaco Sci. 1968; 23: 907–18.Google Scholar
Sheiner, LB, Stanski, DR, Vozeh, S, Miller, RD, Ham, J: Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin.Pharmacol.Ther. 1979; 25: 358–71.CrossRefGoogle ScholarPubMed
Struys, MM, Coppens, MJ, De Neve, N, Mortier, EP, Doufas, AG, Van Bocxlaer, JF, Shafer, SL: Influence of administration rate on propofol plasma-effect site equilibration. Anesthesiology. 2007; 107: 386–96.Google Scholar
Wright, PM, McCarthy, G, Szenohradszky, J, Sharma, ML, Caldwell, JE: Influence of chronic phenytoin administration on the pharmacokinetics and pharmacodynamics of vecuronium. Anesthesiology. 2004; 100: 626–33.Google Scholar
Olofsen, E, Burm, AG, Simon, MJ, Veering, BT, van Kleef, JW, Dahan, A: Population pharmacokinetic-pharmacodynamic modeling of epidural anesthesia. Anesthesiology. 2008; 109: 664–74.Google Scholar
Dayneka, NL, Garg, V. Jusko, WJ: Comparison of four basic models of indirect pharmacodynamic responses. J.Pharmacokinet.Biopharm. 1993; 21: 457–78.Google Scholar
Hannam, JA, Borrat, X, Trocóniz, IF, Valencia, JF, Jensen, EW, Pedroso, A, Muñoz, J, Castellví-Bel, S, Castells, A, Gambús, PL: Modeling respiratory depression induced by remifentanil and propofol during sedation and analgesia using a continuous non-invasive measurement of pCO2. J.Pharmacol.Exp.Ther. 2016; 356: 563–73.CrossRefGoogle Scholar
Trocóniz, IF, Wolters, JM, Tillmann, C, Schaefer, HG, Roth, W: Modelling the anti-migraine effects of BIBN 4096 BS: a new calcitonin gene-related peptide receptor antagonist. Clin.Pharmacokinet. 2006; 45: 715–28.Google Scholar
Mandema, JW, Stanski, DR: Population pharmacodynamic model for ketorolac analgesia. Clin.Pharmacol.Ther. 1996; 60: 619–35.CrossRefGoogle ScholarPubMed
Fábregas, N, Rapado, J, Gambús, PL, Valero, R, Carrero, E, Salvador, L, Nalda-Felipe, MA, Trocóniz, IF: Modeling of the sedative and airway obstruction effects of propofol in patients with Parkinson’s disease undergoing stereotactic surgery. Anesthesiology. 2002; 97: 1378–86.Google Scholar
Juul, RV, Rasmussen, S, Kreilgaard, M, Christrup, LL, Simonsson, US, Lund, TM: Repeated time-to-event analysis of consecutive analgesic events in postoperative pain. Anesthesiology. 2015; 123: 1411–19.Google Scholar
Bonate, PL: Pharmacokinetic-pharmacodynamic Modeling and Simulation. New York: Springer, 2005.Google Scholar
Beal, S, Sheiner, LB, Boeckmann, A, Bauer, RJ: NONMEM User’s Guides (1989–2015). Ellicott City: Icon Development Solutions, 2015.Google Scholar
Monolix version 192018R1. Antony, France: Lixoft SAS, 2018. http://lixoft.com/products/monolix/ [last accessed 6 June 2019].Google Scholar
Petersson, KJ, Hanze, E, Savic, RM, Karlsson, MO: Semiparametric distributions with estimated shape parameters. Pharm.Res. 2009 Sep; 26(9): 2174–85.CrossRefGoogle ScholarPubMed
Carlsson, KC, Savić, RM, Hooker, AC, Karlsson, MO: Modeling subpopulations with the $MIXTURE subroutine in NONMEM: finding the individual probability of belonging to a subpopulation for the use in model analysis and improved decision making. AAPS J. 2009 Mar; 11(1): 148–54.CrossRefGoogle ScholarPubMed
Ludden, TM, Beal, SL, Sheiner, LB: Comparison of the Akaike information criterion, the Schwarz criterion and the F test as guides to model selection. J.Pharmacokinet.Biopharm. 1994; 22: 431–45.Google Scholar
Jonsson, E, Karlsson, MO: Automated covariate model building within NONMEM. Pharm.Res. 1998; 15: 1463–8.CrossRefGoogle ScholarPubMed
Lindbom, L, Pihlgren, P, Jonsson, EN: PsN toolkit: a collection of computer intensive statistical methods for nonlinear mixed effect modelling using NONMEM. Comput. Methods. Programs. Biomed. 2005; 79: 241–57.Google Scholar
Minto, CF, Schnider, TW, Egan, TD, Youngs, E, Lemmens, HJ, Gambus, PL, Billard, V, Hoke, JF, Moore, KH, Hermann, DJ, Muir, KT, Mandema, JW, Shafer, SL: Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997; 86: 1023.CrossRefGoogle ScholarPubMed
Schnider, TW, Minto, CF, Shafer, SL, Gambus, PL, Andresen, C, Goodale, DB, Youngs, EJ: The influence of age on propofol pharmacodynamics. Anesthesiology. 1999; 90: 1502–16.Google Scholar
Cortínez, LI, Trocóniz, IF, Fuentes, R, Gambús, P, Hsu, YW, Altermatt, F, Muñoz, HR: The influence of age on the dynamic relationship between end-tidal sevoflurane concentrations and bispectral index. Anesth.Analg. 2008; 107: 1566–72.CrossRefGoogle ScholarPubMed
Sarton, E, Olofsen, E, Romberg, R, den Hartigh, J, Kest, B, Nieuwenhuijs, D, Burm, A, Teppema, L, Dahan, A: Sex differences in morphine analgesia: an experimental study in healthy volunteers. Anesthesiology. 2000; 93: 1245–54.Google Scholar
Romberg, RR, Olofsen, E, Bijl, H, Taschner, PE, Teppema, LJ, Sarton, EY, van Kleef, JW, Dahan, A: Polymorphism of mu-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology. 2005; 102: 522–30.CrossRefGoogle Scholar
Bergstrand, M, Hooker, AC, Wallin, JE, Karlsson, MO: Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011; 13 (2): 143–51.Google Scholar

References

Lichtenbelt, BJ, Olofsen, E, Dahan, A, van Kleef, JW, Struys, MMRF, Vuyk, J: Propofol reduces the distribution and clearance of midazolam. Anesth.Analg. 2010; 110(6): 1597–606.Google Scholar
Vuyk, J, Lichtenbelt, BJ, Olofsen, E, van Kleef, JW, Dahan, A: Mixed-effects modeling of the influence of midazolam on propofol pharmacokinetics. Anesth.Analg. 2009; 108(5): 1522–30.Google Scholar
Mertens, MJ, Vuyk, J, Olofsen, E, Bovill, JG, Burm, AG: Propofol alters the pharmacokinetics of alfentanil in healthy male volunteers. Anesthesiology. 2001; 94(6): 949–57.Google Scholar
Manyam, SC, Gupta, DK, Johnson, KB, White, JL, Pace, NL, Westenskow, DR, et al: Opioid-volatile anesthetic synergy: a response surface model with remifentanil and sevoflurane as prototypes. Anesthesiology. 2006; 105(2): 267–78.Google Scholar
Loewe, S: The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953; 3(6): 285–90.Google Scholar
Short, TG, Chui, PT: Propofol and midazolam act synergistically in combination. Br.J.Anaesth. 1991; 67(5): 539–45.Google Scholar
Kissin, I, Vinik, HR, Bradley, EL, Jr.: Midazolam potentiates thiopental sodium anesthetic induction in patients. J.Clin.Anesth. 1991; 3(5): 367–70.Google Scholar
Hill, A: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J.Physiol. 1910; 40(Suppl): ivii.Google Scholar
Greco, WR, Park, HS, Rustum, YM: Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1990; 50(17): 5318–27.Google Scholar
Minto, CF, Schnider, TW, Short, TG, Gregg, KM, Gentilini, A, Shafer, SL: Response surface model for anesthetic drug interactions. Anesthesiology. 2000; 92(6): 1603–16.Google Scholar
Bouillon, TW, Bruhn, J, Radulescu, L, Andresen, C, Shafer, TJ, Cohane, C, et al: Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004; 100(6): 1353–72.CrossRefGoogle ScholarPubMed
Mertens, MJ, Olofsen, E, Engbers, FH, Burm, AG, Bovill, JG, Vuyk, J: Propofol reduces perioperative remifentanil requirements in a synergistic manner: response surface modeling of perioperative remifentanil-propofol interactions. Anesthesiology. 2003; 99(2): 347–59.CrossRefGoogle Scholar
Heyse, B, Proost, JH, Schumacher, PM, Bouillon, TW, Vereecke, HE, Eleveld, DJ, et al: Sevoflurane remifentanil interaction: comparison of different response surface models. Anesthesiology. 2012; 116(2): 311–23.Google Scholar
Short, TG, Ho, TY, Minto, CF, Schnider, TW, Shafer, SL: Efficient trial design for eliciting a pharmacokinetic-pharmacodynamic model-based response surface describing the interaction between two intravenous anesthetic drugs. Anesthesiology. 2002; 96(2): 400–8.Google Scholar
LaPierre, CD, Johnson, KB, Randall, BR, White, JL, Egan, TD, Yang, L, et al: An exploration of remifentanil-propofol combinations that lead to a loss of response to esophageal instrumentation, a loss of responsiveness, and/or onset of intolerable ventilatory depression. Anesth.Analg. 2011; 113(3): 441–3.Google Scholar
Vuyk, J, Lim, T, Engbers, FH, Burm, AG, Vletter, AA, Bovill, JG: The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in women. Anesthesiology. 1995; 83(1): 822.Google Scholar
McClune, S, McKay, AC, Wright, PM, Patterson, CC, Clarke, RS: Synergistic interaction between midazolam and propofol. Br.J.Anaesth. 1992; 69(3): 240–5.Google Scholar
Short, TG, Plummer, JL, Chui, PT: Hypnotic and anaesthetic interactions between midazolam, propofol and alfentanil. Br.J.Anaesth. 1992; 69(2): 162–7.Google Scholar
Short, TG, Galletly, DC, Plummer, JL: Hypnotic and anaesthetic action of thiopentone and midazolam alone and in combination. Br.J.Anaesth. 1991; 66(1): 1319.CrossRefGoogle ScholarPubMed
McAdam, LC, MacDonald, JF, Orser, BA: Isobolographic analysis of the interactions between midazolam and propofol at GABA(A) receptors in embryonic mouse neurons. Anesthesiology. 1998; 89(6): 1444–54.Google Scholar
Ben-Shlomo, I, Abd-el-Khalim, H, Ezry, J, Zohar, S, Tverskoy, M: Midazolam acts synergistically with fentanyl for induction of anaesthesia. Br.J.Anaesth. 1990; 64(1): 45–7.Google Scholar
Kern, SE, Xie, G, White, JL, Egan, TD: A response surface analysis of propofol-remifentanil pharmacodynamic interaction in volunteers. Anesthesiology. 2004; 100(6): 1373–81.Google Scholar
Syroid, ND, Johnson, KB, Pace, NL, Westenskow, DR, Tyler, D, Bruhschwein, F, et al: Response surface model predictions of emergence and response to pain in the recovery room: an evaluation of patients emerging from an isoflurane and fentanyl anesthetic. Anesth.Analg. 2010; 111(2): 380–6.CrossRefGoogle ScholarPubMed
Hannivoort, LN, Vereecke, HEM, Proost, JH, Heyse, BEK, Eleveld, DJ, Bouillon, TW, et al: Probability to tolerate laryngoscopy and noxious stimulation response index as general indicators of the anaesthetic potency of sevoflurane, propofol, and remifentanil. Br.J.Anaesth. 2016; 116(5): 624–31.Google Scholar
Katoh, T, Suguro, Y, Kimura, T, Ikeda, K: Cerebral awakening concentration of sevoflurane and isoflurane predicted during slow and fast alveolar washout. Anesth.Analg. 1993; 77(5): 1012–17.Google Scholar
Katoh, T, Kobayashi, S, Suzuki, A, Iwamoto, T, Bito, H, Ikeda, K: The effect of fentanyl on sevoflurane requirements for somatic and sympathetic responses to surgical incision. Anesthesiology. 1999; 90(2): 398405.Google Scholar
Katoh, T, Ikeda, K: The effects of fentanyl on sevoflurane requirements for loss of consciousness and skin incision. Anesthesiology. 1998; 88(1): 1824.Google Scholar
Murray, DJ, Mehta, MP, Forbes, RB, Dull, DL. Additive contribution of nitrous oxide to halothane MAC in infants and children. Anesth.Analg. 1990; 71(2): 120–4.Google Scholar
Stevens, MD, Wendell, C, Dolan, MD, William, M, Gibbons, MD, Robert, T, White, MSA, Eger, MD, Edmond, I, Miller, MD, Ronald, D, et al: Minimum alveolar concentrations (MAC) of isoflurane with and without nitrous oxide in patients of various ages. Anesthesiology. 1975; 42(2): 197200.Google Scholar
Hendrickx, JFA, Eger, EI, Sonner, JM, Shafer, SL: Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth.Analg. 2008; 107(2): 494506.Google Scholar
Hong, W, Short, TG, Hui, TW: Hypnotic and anesthetic interactions between ketamine and midazolam in female patients. Anesthesiology. 1993; 79(6): 1227–32.Google Scholar
Hui, TW, Short, TG, Hong, W, Suen, T, Gin, T, Plummer, J: Additive interactions between propofol and ketamine when used for anesthesia induction in female patients. Anesthesiology. 1995; 82(3): 641–8.Google Scholar
Coulter, FL, Hannam, JA, Anderson, BJ: Ketofol simulations for dosing in pediatric anesthesia. Paediatr.Anaesth. 2014; 24(8): 806–12.Google Scholar
Katoh, T, Ikeda, K, Bito, H: Does nitrous oxide antagonize sevoflurane-induced hypnosis? Br.J.Anaesth. 1997; 79(4): 465–8.Google Scholar
Short, TG, Hannam, JA, Laurent, S, Campbell, D, Misur, M, Merry, AF, et al: Refining target-controlled infusion: an assessment of pharmacodynamic target-controlled infusion of propofol and remifentanil using a response surface model of their combined effects on bispectral index. Anesth.Analg. 2016; 122(1): 90–7.Google Scholar
Liu, N, Chazot, T, Hamada, S, Landais, A, Boichut, N, Dussaussoy, C, et al: Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth.Analg. 2011; 112(3): 546–57.Google Scholar
Agarwal, J, Puri, GD, Mathew, PJ: Comparison of closed loop vs. manual administration of propofol using the bispectral index in cardiac surgery. Acta Anaesthesiol.Scand. 2009; 53(3): 390–7.Google Scholar
Puri, GD, Mathew, PJ, Biswas, I, Dutta, A, Sood, J, Gombar, S, et al: A multicenter evaluation of a closed-loop anesthesia delivery system: a randomized controlled trial. Anesth.Analg. 2016; 122(1): 106–14.Google Scholar
Hemmerling, TM, Charabati, S, Zaouter, C, Minardi, C, Mathieu, PA: A randomized controlled trial demonstrates that a novel closed-loop propofol system performs better hypnosis control than manual administration. Can.J.Anaesth. 2010; 57(8): 725–35.Google Scholar
Struys, MM, De Smet, T, Versichelen, LF, Van De Velde, S, Van den Broecke, R, Mortier, EP: Comparison of closed-loop controlled administration of propofol using bispectral index as the controlled variable versus “standard practice” controlled administration. Anesthesiology. 2001; 95(1): 617.Google Scholar

References

Holford, NHG: The target concentration approach to clinical drug development. Clin.Pharmacokinet. 1995; 29 (5): 287–91.Google Scholar
Benet, LZ: Holy, A Grail of clinical pharmacology: prediction of drug pharmacokinetics and pharmacodynamics in the individual patient. Clin.Pharmacol.Ther. 2009; 86 (2): 133–4.Google Scholar
Anderson, BJ, Allegaert, K, Van den Anker, JN, Cossey, V, Holford, NH: Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br.J.Clin.Pharmacol. 2007; 63 (1): 7584.Google Scholar
Tod, M, Jullien, V, Pons, G: Facilitation of drug evaluation in children by population methods and modelling. Clin.Pharmacokinet. 2008; 47 (4): 231–43.Google Scholar
Anderson, BJ, Holford, NH: Understanding dosing: children are small adults, neonates are immature children. Arch.Dis.Child. 2013; 98 (9): 737–44.Google Scholar
Lack, JA, Stuart Taylor, ME: Calculation of drug dosage and body surface area of children. Br.J.Anaesth. 1997; 78 (5): 601–5.Google Scholar
Sumpter, AL, Holford, NH: Predicting weight using postmenstrual age – neonates to adults. Paediatr.Anaesth. 2011; 21 (3): 309–15.Google Scholar
Anderson, BJ, Meakin, GH: Scaling for size: some implications for paediatric anaesthesia dosing. Paediatr.Anaesth. 2002; 12 (3): 205–19.Google Scholar
Anderson, BJ, Holford, NH: Mechanistic basis of using body size and maturation to predict clearance in humans. Drug.Metab.Pharmacokinet. 2009; 24 (1): 2536.Google Scholar
Du Bois, D, Du Bois, EF: Clinical calorimetry: tenth paper. A formula to estimate the approximate surface area if height and weight be known. Arch.Intern.Med. 1916; 17: 863–71.Google Scholar
James, W. Research on Obesity. London: Her Majesty’s Stationary Office, 1976.Google Scholar
Janmahasatian, S, Duffull, SB, Ash, S, Ward, LC, Byrne, NM, Green, B: Quantification of lean bodyweight. Clin.Pharmacokinet. 2005; 44 (10): 1051–65.Google Scholar
Rhodin, MM, Anderson, BJ, Peters, AM, Coulthard, MG, Wilkins, B, Cole, M, et al: Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr.Nephrol. 2009; 24 (1): 6776.CrossRefGoogle ScholarPubMed
West, GB, Brown, JH: The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J.Exp.Biol. 2005; 208 (Pt 9): 1575–92.CrossRefGoogle ScholarPubMed
West, GB, Brown, JH, Enquist, BJ: A general model for the origin of allometric scaling laws in biology. Science. 1997; 276 (5309): 122–6.Google Scholar
Anderson, BJ, Holford, NH: Mechanism-based concepts of size and maturity in pharmacokinetics. Annu.Rev.Pharmacol.Toxicol. 2008; 48: 303–32.Google Scholar
Holford, S, Allegaert, K, Anderson, BJ, Kukanich, B, Sousa, AB, Steinman, A, et al: Parent-metabolite pharmacokinetic models for tramadol – tests of assumptions and predictions. J.Pharmacol.Clin.Toxicol. 2014; 2 (1): 1023.Google Scholar
Ross, AK, Davis, PJ, Gd GL, Dear, Ginsberg, B, McGowan, FX, Stiller, RD, et al: Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth.Analg. 2001; 93 (6): 1393–401.Google Scholar
Rigby-Jones, AE, Priston, MJ, Sneyd, JR, McCabe, AP, Davis, GI, Tooley, MA, et al: Remifentanil-midazolam sedation for paediatric patients receiving mechanical ventilation after cardiac surgery. Brit.J.Anaesth. 2007; 99 (2): 252–61.Google Scholar
Welzing, L, Ebenfeld, S, Dlugay, V, Wiesen, MH, Roth, B, Mueller, C: Remifentanil degradation in umbilical cord blood of preterm infants. Anesthesiology. 2011; 114 (3): 570–7.CrossRefGoogle ScholarPubMed
Potts, AL, Larsson, P, Eksborg, S, Warman, G, Lonnqvist, P-A, Anderson, BJ: Clonidine disposition in children; a population analysis. Pediatr.Anesth. 2007; 17 (10): 924–33.Google Scholar
Anderson, BJ, van Lingen, RA, Hansen, TG, Lin, YC, Holford, NH: Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology. 2002; 96 (6): 1336–45.Google Scholar
Herd, D, Anderson, BJ: Ketamine disposition in children presenting for procedural sedation and analgesia in a children’s emergency department. Paediatr.Anaesth. 2007; 17 (7): 622–9.Google Scholar
Chalkiadis, GA, Anderson, BJ: Age and size are the major covariates for prediction of levobupivacaine clearance in children. Paediatr.Anaesth. 2006; 16 (3): 275–82.Google Scholar
Allegaert, K, van den Anker, JN, de Hoon, JN, van Schaik, RH, Debeer, A, Tibboel, D, et al: Covariates of tramadol disposition in the first months of life. Brit.J.Anaesth. 2008; 100 (4): 525–32.Google Scholar
Allegaert, K, Anderson, BJ, van den Anker, JN, Vanhaesebrouck, S, de Zegher, F: Renal drug clearance in preterm neonates: relation to prenatal growth. Ther.Drug.Monit. 2007; 29 (3): 284–91.Google Scholar
Johnson, TN: The problems in scaling adult drug doses to children. Arch.Dis.Child. 2008; 93 (3): 207–11.CrossRefGoogle ScholarPubMed
Edginton, AN, Schmitt, W, Voith, B, Willmann, S: A mechanistic approach for the scaling of clearance in children. Clin.Pharmacokinet. 2006; 45 (7): 683704.Google Scholar
Holford, N, Heo, YA, Anderson, B: A pharmacokinetic standard for babies and adults. J.Pharm.Sci. 2013; 102 (9): 2941–52.Google Scholar
Hill, AV: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J.Physiol. 1910; 14: ivvii.Google Scholar
Saarenmaa, E, Neuvonen, PJ, Fellman, V. Gestational age and birth weight effects on plasma clearance of fentanyl in newborn infants. J.Pediatr. 2000; 136 (6): 767–70.Google Scholar
Allegaert, K, Palmer, GM, Anderson, BJ: The pharmacokinetics of intravenous paracetamol in neonates: size matters most. Arch.Dis.Child. 2011; 96 (6): 575–80.Google Scholar
Anderson, BJ, Pons, G, Autret-Leca, E, Allegaert, K, Boccard, E: Pediatric intravenous paracetamol (propacetamol) pharmacokinetics: a population analysis. Paediatr.Anaesth. 2005; 15 (4): 282–92.Google Scholar
Pokela, ML, Olkkola, KT, Seppala, T, Koivisto, M: Age-related morphine kinetics in infants. Dev.Pharmacol.Ther. 1993; 20 (1–2): 2634.Google Scholar
Peters, JW, Anderson, BJ, Simons, SH, Uges, DR, Tibboel, D: Morphine metabolite pharmacokinetics during venoarterial extra corporeal membrane oxygenation in neonates. Clin.Pharmacokinet. 2006; 45 (7): 705–14.Google Scholar
Anand, KJ, Anderson, BJ, Holford, NH, Hall, RW, Young, T, Shephard, B, et al: Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Brit.J.Anaesth. 2008; 101 (5): 680–9.CrossRefGoogle ScholarPubMed
Schwartz, GJ, Work, DF: Measurement and estimation of GFR in children and adolescents. CJASN. 2009; 4 (11): 1832–43.Google Scholar
Paap, CM, Nahata, MC: Prospective evaluation of ten methods for estimating creatinine clearance in children with varying degrees of renal dysfunction. J.Clin.Pharm.Ther. 1995; 20 (2): 6773.Google Scholar
Cole, M, Price, L, Parry, A, Keir, MJ, Pearson, AD, Boddy, AV, et al: Estimation of glomerular filtration rate in paediatric cancer patients using 51CR-EDTA population pharmacokinetics. Br.J.Cancer. 2004; 90 (1): 60–4.CrossRefGoogle ScholarPubMed
Schwartz, GJ, Haycock, GB, Edelmann, CM, Jr., Spitzer, A: A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976; 58 (2): 259–63.Google Scholar
Schwartz, GJ, Feld, LG, Langford, DJ: A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J.Pediatr. 1984; 104 (6): 849–54.Google Scholar
Brion, LP, Fleischman, AR, McCarton, C, Schwartz, GJ: A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J.Pediatr. 1986; 109 (4): 698707.Google Scholar
Standing, JF: Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Br.J.Clin.Pharmacol. 2017; 83 (2): 247–54.CrossRefGoogle ScholarPubMed
Eleveld, DJ, Colin, P, Absalom, AR, Struys, M: Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br.J.Anaesth. 2018; 120 (5): 942–59.Google Scholar
Eleveld, DJ, Proost, JH, Vereecke, H, Absalom, AR, Olofsen, E, Vuyk, J, et al: An allometric model of remifentanil pharmacokinetics and pharmacodynamics. Anesthesiology. 2017; 126 (6): 1005–18.Google Scholar
Cheymol, G: Effects of obesity on pharmacokinetics implications for drug therapy. Clin.Pharmacokinet. 2000; 39 (3): 215–31.CrossRefGoogle ScholarPubMed
Cortinez, LI, Anderson, BJ, Holford, NH, Puga, V, de la Fuente, N, Auad, H, et al: Dexmedetomidine pharmacokinetics in the obese. Eur.J.Clin. Pharm. 2015; 71(12): 1501–8.Google Scholar
Egan, TD, Huizinga, B, Gupta, SK, Jaarsma, RL, Sperry, RJ, Yee, JB, et al: Remifentanil pharmacokinetics in obese versus lean patients. Anesthesiology. 1998; 89 (3): 562–73.Google Scholar
Coldrey, JC, Upton, RN, Macintyre, PE: Advances in analgesia in the older patient. Best practice and research. Clin.Anaesth. 2011; 25 (3): 367–78.Google Scholar
McLean, AJ, Le Couteur, DG: Aging biology and geriatric clinical pharmacology. Pharmacol. Rev. 2004; 56 (2): 163–84.Google Scholar
Le Couteur, DG, McLean, AJ: The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis. Clin.Pharm. 1998; 34 (5): 359–73.Google Scholar
Minto, CF, Schnider, TW, Egan, TD, Youngs, E, Lemmens, HJ, Gambus, PL, et al: Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. Anesthesiology. 1997; 86: 1023.Google Scholar
Schuttler, J, Ihmsen, H: Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000; 92 (3): 727–38.Google Scholar
Eleveld, DJ, Proost, JH, Cortinez, LI, Absalom, AR, Struys, MM: A general purpose pharmacokinetic model for propofol. Anesth.Analg. 2014; 118 (6): 1221–37.Google Scholar
Upton, RN, Ludbrook, GL: A physiological model of induction of anaesthesia with propofol in sheep. 1. Structure and estimation of variables. Br.J.Anaesth. 1997; 79 (4): 497504.Google Scholar
Cortinez, LI, Troconiz, IF, Fuentes, R, Gambus, P, Hsu, YW, Altermatt, F, et al: The influence of age on the dynamic relationship between end-tidal sevoflurane concentration and bispectral index. Anesth.Anal. 2008; 107: 1566–72.Google Scholar
Minto, CF, Schnider, TW, Egan, TD, Youngs, E, Lemmens, HJ, Gambus, PL, et al: Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997; 86 (1): 1023.Google Scholar
Vuyk, J, Lichtenbelt, BJ, Olofsen, E, van Kleef, JW, Dahan, A: Mixed-effects modeling of the influence of midazolam on propofol pharmacokinetics. Anesth.Analg. 2009; 108 (5): 1522–30.Google Scholar
Verbeeck, RK: Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur.J.Clin.Pharm. 2008; 64 (12): 1147–61.Google Scholar
Blaschke, TF: Protein binding and kinetics of drugs in liver diseases. Clin.Pharmacokinet. 1977; 2 (1): 3244.Google Scholar
Kaivosaari, S, Toivonen, P, Aitio, O, Sipila, J, Koskinen, M, Salonen, JS, et al: Regio- and stereospecific N-glucuronidation of medetomidine: the differences between UDP glucuronosyltransferase (UGT) 1A4 and UGT2B10 account for the complex kinetics of human liver microsomes. Drug.Metab.Dispos. 2008; 36 (8): 1529–37.Google Scholar
Kohli, U, Pandharipande, P, Muszkat, M, Sofowora, GG, Friedman, EA, Scheinin, M, et al: CYP2A6 genetic variation and dexmedetomidine disposition. Eur.J.Clin.Pharm. 2012; 68 (6): 937–42.Google Scholar
Song, JC, Gao, H, Qiu, HB, et al. The pharmacokinetics of dexmedetomidine in patients with obstructive jaundice: A clinical trial. PLoS One 2018; 13: e0207427.Google Scholar
Servin, F, Cockshott, ID, Farinotti, R, Haberer, JP, Winckler, C, Desmonts, JM: Pharmacokinetics of propofol infusions in patients with cirrhosis. Br.J.Anaesth. 1990; 65 (2): 177–83.Google Scholar
Elston, AC, Bayliss, MK, Park, GR: Effect of renal failure on drug metabolism by the liver. Br.J.Anaesth. 1993; 71 (2): 282–90.Google Scholar
Chauvin, M, Sandouk, P, Scherrmann, JM, Farinotti, R, Strumza, P, Duvaldestin, P: Morphine pharmacokinetics in renal failure. Anesthesiology. 1987; 66 (3): 327–31.Google Scholar
Hannam, JA, Anderson, BJ: Contribution of morphine and morphine-6-glucuronide to respiratory depression in a child. Anaesth.Intensive.Care. 2012; 40 (5): 867–70.Google Scholar
Verbeeck, RK, Musuamba, FT: Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur.J.Clin.Pharm. 2009; 65 (8): 757–73.Google Scholar
Hannam, JA, Anderson, BJ: Pharmacodynamic interaction models in pediatric anesthesia. Paediatr.Anaesth. 2015; 25: 970–80.Google Scholar
Chan, PL, Holford, NH: Drug treatment effects on disease progression. Annu.Rev.Pharmacol.Toxicol. 2001; 41: 625–59.Google Scholar
Brown, RD, Kearns, GL, Wilson, JT: Integrated pharmacokinetic-pharmacodynamic model for acetaminophen, ibuprofen, and placebo antipyresis in children. J.Pharmacokinet.Biopharm. 1998; 26 (5): 559–79.Google Scholar
Lavy, JA: Post-tonsillectomy pain: the difference between younger and older patients. Int.J.Pediatr.Otorhinolaryngol. 1997; 42 (1): 1115.Google Scholar
Murthy, P, Laing, MR: Dissection tonsillectomy: pattern of post-operative pain, medication and resumption of normal activity. J.Laryngol.Otol. 1998; 112 (1): 41–4.Google Scholar
Stewart, DW, Ragg, PG, Sheppard, S, Chalkiadis, GA: The severity and duration of postoperative pain and analgesia requirements in children after tonsillectomy, orchidopexy, or inguinal hernia repair. Pediatr.Anesth. 2012; 22 (2): 136–43.Google Scholar
Anderson, BJ, Woollard, GA, Holford, NH: Acetaminophen analgesia in children: placebo effect and pain resolution after tonsillectomy. Eur.J.Clin.Pharmacol. 2001; 57 (8): 559–69.Google Scholar
Anderson, BJ, Holford, NH, Woollard, GA, Kanagasundaram, S, Mahadevan, M: Perioperative pharmacodynamics of acetaminophen analgesia in children. Anesthesiology. 1999; 90 (2): 411–21.Google Scholar
Anderson, B, Cranswick, N: The placebo (I shall please)–is it so pleasing in children? Paediatr.Anaesth. 2005; 15 (10): 809–13.Google Scholar
Simmons, K, Ortiz, R, Kossowsky, J, Krummenacher, P, Grillon, C, Pine, D, et al: Pain and placebo in pediatrics: a comprehensive review of laboratory and clinical findings. J.Pain. 2014; 155 (11): 2229–35.Google Scholar
Weimer, K, Gulewitsch, MD, Schlarb, AA, Schwille-Kiuntke, J, Klosterhalfen, S, Enck, P: Placebo effects in children: a review. Pediatr.Res. 2013; 74 (1): 96102.Google Scholar
Krummenacher, P, Kossowsky, J, Schwarz, C, Brugger, P, Kelley, JM, Meyer, A, et al: Expectancy-induced placebo analgesia in children and the role of magical thinking. J.Pain. 2014; 15 (12): 1282–93.Google Scholar
Bjornsson, MA, Simonsson, US: Modelling of pain intensity and informative dropout in a dental pain model after naproxcinod, naproxen and placebo administration. Br.J.Clin.Pharmacol. 2011; 71 (6): 899906.Google Scholar
Johr, M: Postanaesthesia excitation. Paediatr.Anaesth. 2002; 12 (4): 308–12.Google Scholar
Benedetti, F: Placebo and endogenous mechanisms of analgesia. Handb.Exp.Pharmacol. 2007; 177: 393413.Google Scholar
Marchand, S, Gaumond, I: Placebo and nocebo: how to enhance therapies and avoid unintended sabotage to pain treatment. Pain.Manag. 2013; 3 (4): 285–94.Google Scholar
Zaccara, G, Giovannelli, F, Schmidt, D: Placebo and nocebo responses in drug trials of epilepsy. Epilepsy. Behav. 2015; 43: 128–34.Google Scholar
Manchikanti, L, Pampati, V, Damron, K: The role of placebo and nocebo effects of perioperative administration of sedatives and opioids in interventional pain management. Pain.Physician. 2005; 8 (4): 349–55.Google ScholarPubMed
Rothman, KJ, Michels, KB: The continuing unethical use of placebo controls. N.Engl.J.Med. 1994; 331 (6): 394–8.Google Scholar
Sheiner, LB: A new approach to the analysis of analgesic drug trials, illustrated with bromfenac data. Clin.Pharmacol.Ther. 1994; 56 (3): 309–22.Google Scholar
Anderson, BJ, Hannam, JA: Considerations when using pharmacokinetic/pharmacodynamic modeling to determine the effectiveness of simple analgesics in children. Expert.Opin. Drug.Metab.Toxicol. 2015; 11 (9): 1393–408.CrossRefGoogle ScholarPubMed
Hannam, J, Anderson, BJ: Explaining the acetaminophen-ibuprofen analgesic interaction using a response surface model. Paediatr.Anaesth. 2011; 21 (12): 1234–40.Google Scholar
Gal, P, Gilman, JT: Drug disposition in neonates with patent ductus arteriosus. Ann.Pharmacother. 1993; 27 (11): 1383–8.Google Scholar
Rabbitts, JA, Groenewald, CB, Rasanen, J: Geographic differences in perioperative opioid administration in children. Pediatr.Anesth. 2012; 22 (7): 676–81.Google Scholar
Klockars, JG, Hiller, A, Munte, S, van Gils, MJ, Taivainen, T: Spectral entropy as a measure of hypnosis and hypnotic drug effect of total intravenous anesthesia in children during slow induction and maintenance. Anesthesiology. 2012; 116 (2): 340–51.Google Scholar
Henthorn, TK, Liu, Y, Mahapatro, M, Ng, KY: Active transport of fentanyl by the blood-brain barrier. J.Pharmacol.Exp.Ther. 1999; 289 (2): 1084–9.Google Scholar
Hamabe, W, Maeda, T, Kiguchi, N, Yamamoto, C, Tokuyama, S, Kishioka, S: Negative relationship between morphine analgesia and P-glycoprotein expression levels in the brain. J.Pharmacol.Sci. 2007; 105 (4): 353–60.Google Scholar
Wietasch, JK, Scholz, M, Zinserling, J, Kiefer, N, Frenkel, C, Knufermann, P, et al: The performance of a target-controlled infusion of propofol in combination with remifentanil: a clinical investigation with two propofol formulations. Anesth.Analg. 2006; 102 (2): 430–7.Google Scholar
Choi, L, Ferrell, BA, Vasilevskis, EE, Pandharipande, PP, Heltsley, R, Ely, EW, et al: Population pharmacokinetics of fentanyl in the critically ill. Crit.Care.Med. 2016; 44 (1): 6472.Google Scholar
Potts, AL, Cheeseman, JF, Warman, GR: Circadian rhythms and their development in children: implications for pharmacokinetics and pharmacodynamics in anesthesia. Pediatr.Anesth. 2011; 21 (3): 238–46.Google Scholar
Brainard, J, Gobel, M, Bartels, K, Scott, B, Koeppen, M, Eckle, T: Circadian rhythms in anesthesia and critical care medicine: potential importance of circadian disruptions. Semin.Cardiothorac.Vasc.Anesth. 2015; 19 (1): 4960.Google Scholar
Reinberg, A, Reinberg, MA: Circadian changes of the duration of action of local anaesthetic agents. Naunyn-Schmiedebergs Arch.Pharmacol. 1977; 297 (2): 149–52.Google Scholar
Lemmer, B, Wiemers, R: Circadian changes in stimulus threshold and in the effect of a local anaesthetic drug in human teeth: studies with an electronic pulptester. Chronobiol.Intern. 1989; 6 (2): 157–62.Google Scholar
Debon, R, Chassard, D, Duflo, F, Boselli, E, Bryssine, B, Allaouchiche, B: Chronobiology of epidural ropivacaine: variations in the duration of action related to the hour of administration. Anesthesiology. 2002; 96 (3): 542–5.Google Scholar
Cheeseman, JF, Merry, AF, Pawley, MD, de Souza, RL, Warman, GR: The effect of time of day on the duration of neuromuscular blockade elicited by rocuronium. Anaesthesia. 2007; 62 (11): 1114–20.Google Scholar
Levi, FA, Zidani, R, Vannetzel, JM, Perpoint, B, Focan, C, Faggiuolo, R, et al: Chronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: a randomized multi-institutional trial. J.Natl.Canc.Inst. 1994; 86 (21): 1608–17.Google Scholar
Kamali, F, Fry, JR, Bell, GD: Temporal variations in paracetamol absorption and metabolism in man. Xenobiotica. 1987; 17 (5): 635–41.Google Scholar
Halsas, M, Hietala, J, Veski, P, Jurjenson, H, Marvola, M: Morning versus evening dosing of ibuprofen using conventional and time-controlled release formulations. Int.J.Pharmaceut. 1999; 189 (2): 179–85.Google Scholar
Clench, J, Reinberg, A, Dziewanowska, Z, Ghata, J, Smolensky, M: Circadian changes in the bioavailability and effects of indomethacin in healthy subjects. Eur.J.Clin.Pharmacol. 1981; 20 (5): 359–69.Google Scholar
Mustofa, M, Suryawati, S, Dwiprahasto, I, Santoso, B: The relative bioavailability of diclofenac with respect to time of administration. Brit.J.Clin.Pharmacol. 1991; 32 (2): 246–7.Google Scholar
Ollagnier, M, Decousus, H, Cherrah, Y, Levi, F, Mechkouri, M, Queneau, P, et al: Circadian changes in the pharmacokinetics of oral ketoprofen. Clin.Pharmacokinet. 1987; 12 (5): 367–78.Google Scholar
Han, PY, Duffull, SB, Kirkpatrick, CM, Green, B: Dosing in obesity: a simple solution to a big problem. Clin.Pharmacol.Ther. 2007; 82 (5): 505–8.Google Scholar
Abernethy, DR, Greenblatt, DJ: Drug disposition in obese humans. An update. Clin.Pharmacokinet. 1986; 11 (3): 199213.Google Scholar
Mulla, H, Johnson, TN. Dosing dilemmas in obese children. Arch.Dis.Child.Educ.Pract.Ed. 2010; 95 (4): 112–17.Google Scholar
Anderson, BJ, Holford, NH: Getting the dose right for obese children. Arch.Dis.Child. 2017; 102 (1): 54–5.Google Scholar
Anderson, BJ, Holford, NH: What is the best size predictor for dose in the obese child? Pediatr.Anesth. 2017; 27 (12): 1176–84.Google Scholar
Chidambaran, V, Venkatasubramanian, R, Sadhasivam, S, Esslinger, H, Cox, S, Diepstraten, J, et al: Population pharmacokinetic-pharmacodynamic modeling and dosing simulation of propofol maintenance anesthesia in severely obese adolescents. Pediatr.Anesth. 2015; 25 (9): 911–23.Google Scholar
Cortinez, LI, Anderson, BJ, Penna, A, Olivares, L, Munoz, HR, Holford, NH, et al: Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Brit.J.Anaesth. 2010; 105 (4): 448–56.Google Scholar
Diepstraten, J, Chidambaran, V, Sadhasivam, S, Esslinger, HR, Cox, SL, Inge, TH, et al: Propofol clearance in morbidly obese children and adolescents: influence of age and body size. Clin.Pharmacokinet. 2012; 51 (8): 543–51.Google Scholar
Holford, NHG, Anderson, BJ: Allometric size: the scientific theory and extension to normal fat mass. Eur.J.Pharm.Sci. 2017; 109S: S59S64.Google Scholar
Allegaert, K, Olkkola, KT, Owens, KH, Van de Velde, M, de Maat, MM, Anderson, BJ: Covariates of intravenous paracetamol pharmacokinetics in adults. BMC Anesthesiol. 2014; 14: 77.Google Scholar
Tham, LS, Wang, LZ, Soo, RA, Lee, HS, Lee, SC, Goh, BC, et al: Does saturable formation of gemcitabine triphosphate occur in patients? Canc.Chemother.Pharmacol. 2008; 63 (1): 5564.Google Scholar
McCune, JS, Bemer, MJ, Barrett, JS, Scott Baker, K, Gamis, AS, Holford, NHG: Busulfan in infant to adult hematopoietic cell transplant recipients: a population pharmacokinetic model for initial and bayesian dose personalization. Clin.Canc.Res. 2014; 20 (3): 754–63.Google Scholar
Cortinez, LI, Anderson, BJ, Holford, NH, Puga, V, de la Fuente, N, Auad, H, et al: Dexmedetomidine pharmacokinetics in the obese. Eur.J.Clin.Pharmacol. 2015; 71 (12): 1501–8.Google Scholar
Van Boxtel, C, Holford, N, Danhof, M: In Vivo Study of Drug Action. Amsterdam: Elsevier, 1992.Google Scholar
Schnider, TW, Minto, CF, Shafer, SL, Gambus, PL, Andresen, C, Goodale, DB, et al: The influence of age on propofol pharmacodynamics. Anesthesiology. 1999; 90 (6): 1502–16.Google Scholar
Lerman, J. Pharmacology of inhalational anaesthetics in infants and children. Paediatr.Anaesth. 1992; 2: 191203.Google Scholar
LeDez, KM, Lerman, J. The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology. 1987; 67 (3): 301–7.Google Scholar
Warner, MA, Kunkel, SE, Offord, KO, Atchison, SR, Dawson, B: The effects of age, epinephrine, and operative site on duration of caudal analgesia in pediatric patients. Anesth.Analg. 1987; 66 (10): 995–8.Google Scholar
Lerman, J, Robinson, S, Willis, MM, Gregory, GA: Anesthetic requirements for halothane in young children 0–1 month and 1–6 months of age. Anesthesiology. 1983; 59 (5): 421–4.Google Scholar
Molin, JC, Bendhack, LM: Clonidine induces rat aorta relaxation by nitric oxide-dependent and -independent mechanisms. Vascul.Pharmacol. 2004; 42 (1): 16.Google Scholar
Chugani, DC, Muzik, O, Juhasz, C, Janisse, JJ, Ager, J, Chugani, HT: Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann.Neurol. 2001; 49 (5): 618–26.Google Scholar
Herlenius, E, Lagercrantz, H: Development of neurotransmitter systems during critical periods. Exp.Neurol. 2004; 190 Suppl 1: S821.Google Scholar
Chugani, HT, Kumar, A, Muzik, O: GABA(A) receptor imaging with positron emission tomography in the human newborn: a unique binding pattern. Pediatr.Neurol. 2013; 48 (6): 459–62.Google Scholar
Koch, SC, Fitzgerald, M, Hathway, GJ: Midazolam potentiates nociceptive behavior, sensitizes cutaneous reflexes, and is devoid of sedative action in neonatal rats. Anesthesiology. 2008; 108 (1): 122–9.Google Scholar
Choudhuri, S, Klaassen, CD: Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int.J.Toxicol. 2006; 25 (4): 231–59.Google Scholar
Herd, DW, Anderson, BJ, Keene, NA, Holford, NH: Investigating the pharmacodynamics of ketamine in children. Paediatr.Anaesth. 2008; 18 (1): 3642.Google Scholar
Sani, O, Shafer, SL: MAC Attack? Anesthesiology. 2003; 99 (6): 1249–50.Google Scholar
Dilger, JP: From individual to population: the minimum alveolar concentration curve. Curr.Opin.Anaesthesiol. 2006; 19 (4): 390–6.Google Scholar
de Jong, RH, Eger, EI: 2nd. MAC expanded: AD50 and AD95 values of common inhalation anesthetics in man. Anesthesiology. 1975; 42 (4): 384–9.Google Scholar
Gourlay, GK, Kowalski, SR, Plummer, JL, Cousins, MJ, Armstrong, PJ: Fentanyl blood concentration-analgesic response relationship in the treatment of postoperative pain. Anesth.Analg. 1988; 67 (4): 329–37.Google Scholar
Dutta, S, Matsumoto, Y, Ebling, WF: Is it possible to estimate the parameters of the sigmoid Emax model with truncated data typical of clinical studies? J.Pharm.Sci. 1996; 85 (2): 232–9.Google Scholar
Dixon, WJ: Staircase bioassay: the up-and-down method. Neurosci.Biobehav.Rev. 1991; 15 (1): 4750.Google Scholar
Gorges, M, Zhou, G, Brant, R, Ansermino, JM: Sequential allocation trial design in anesthesia: an introduction to methods, modeling, and clinical applications. Paediatr.Anaesth. 2017; 27 (3): 240–7.Google Scholar
Hansen, MS, Mathiesen, O, Trautner, S, Dahl, JB: Intranasal fentanyl in the treatment of acute pain – a systematic review. Acta.Anaesthesiol.Scand. 2012; 56 (4): 407–19.Google Scholar
Lotsch, J, Skarke, C, Liefhold, J, Geisslinger, G: Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin.Pharmacokinet. 2004; 43 (14): 9831013.Google Scholar
Hannam, J, Anderson, BJ, Veyckemans, F: Tears at breakfast. Pediatr.Anesth. 2012; 22 (4): 419.Google Scholar
Jimenez, N, Anderson, GD, Shen, DD, Nielsen, SS, Farin, FM, Seidel, K, et al: Is ethnicity associated with morphine’s side effects in children? Morphine pharmacokinetics, analgesic response, and side effects in children having tonsillectomy. Pediatr.Anesth. 2012; 22 (7): 669–75.Google Scholar
Myles, PS, Buchanan, FF, Bain, CR: The effect of hair colour on anaesthetic requirements and recovery time after surgery. Anaesth. Intensive Care. 2012; 40 (4): 683–9.Google Scholar
Kaitin, KI: Deconstructing the drug development process: the new face of innovation. Clin.Pharmacol.Ther. 2010; 87 (3): 356–61.Google Scholar
Long, LS, Ved, S, Koh, JL: Intraoperative opioid dosing in children with and without cerebral palsy. Paediatr.Anaesth. 2009; 19 (5): 513–20.Google Scholar
Valkenburg, AJ, de Leeuw, TG, Tibboel, D, Weber, F: Lower bispectral index values in children who are intellectually disabled. Anesth.Analg. 2009; 109 (5): 1428–33.Google Scholar
Hallett, BR, Chalkiadis, GA: Suspected opioid-induced hyperalgesia in an infant. Br.J.Anaesth. 2012; 108 (1): 116–18.Google Scholar
Meibohm, B, Beierle, I, Derendorf, H: How important are gender differences in pharmacokinetics? Clin.Pharmacol. 2002; 41 (5): 329–42.Google Scholar
Beierle, I, Meibohm, B, Derendorf, H: Gender differences in pharmacokinetics and pharmacodynamics. Int.J.Clin.Pharm.Ther. 1999; 37 (11): 529–47.Google Scholar
Apfelbaum, JL, Grasela, TH, Hug, CC, Jr., McLeskey, CH, Nahrwold, ML, Roizen, MF, et al: The initial clinical experience of 1819 physicians in maintaining anesthesia with propofol: characteristics associated with prolonged time to awakening. Anesth.Analg. 1993; 77 (4 Suppl): S1014.Google Scholar
Hoymork, SC, Raeder, J, Grimsmo, B, Steen, PA: Bispectral index, predicted and measured drug levels of target-controlled infusions of remifentanil and propofol during laparoscopic cholecystectomy and emergence. Acta Anaesth. Scand. 2000; 44 (9): 1138–44.Google Scholar
Hoymork, SC, Raeder, J, Grimsmo, B, Steen, PA: Bispectral index, serum drug concentrations and emergence associated with individually adjusted target-controlled infusions of remifentanil and propofol for laparoscopic surgery. Br.J.Anaesth. 2003; 91 (6): 773–80.Google Scholar
Vuyk, J, Oostwouder, CJ, Vletter, AA, Burm, AG, Bovill, JG: Gender differences in the pharmacokinetics of propofol in elderly patients during and after continuous infusion. Br.J.Anaesth. 2001; 86 (2): 183–8.Google Scholar
Hoymork, SC, Raeder, J. Why do women wake up faster than men from propofol anaesthesia? Br.J.Anaesth. 2005; 95 (5): 627–33.Google Scholar
Niesters, M, Dahan, A, Kest, B, Zacny, J, Stijnen, T, Aarts, L, et al: Do sex differences exist in opioid analgesia? A systematic review and meta-analysis of human experimental and clinical studies. J.Pain. 2010; 151 (1): 61–8.Google Scholar
Sarton, E, Olofsen, E, Romberg, R, den Hartigh, J, Kest, B, Nieuwenhuijs, D, et al: Sex differences in morphine analgesia: an experimental study in healthy volunteers. Anesthesiology. 2000; 93 (5): 1245–54; discussion 6A.Google Scholar
Dahan, A, Kest, B, Waxman, AR, Sarton, E: Sex-specific responses to opiates: animal and human studies. Anesth.Analg. 2008; 107 (1): 8395.Google Scholar
Rabbitts, JA, Groenewald, CB, Dietz, NM, Morales, C, Rasanen, J: Perioperative opioid requirements are decreased in hypoxic children living at altitude. Pediatr.Anesth. 2010; 20 (12): 1078–83.Google Scholar
Sadhasivam, S, Chidambaran, V, Ngamprasertwong, P, Esslinger, HR, Prows, C, Zhang, X, et al: Race and unequal burden of perioperative pain and opioid related adverse effects in children. Pediatrics. 2012; 129 (5): 832–8.Google Scholar
Sadhasivam, S, Krekels, EH, Chidambaran, V, Esslinger, HR, Ngamprasertwong, P, Zhang, K, et al: Morphine clearance in children: does race or genetics matter? J. Opioid Manag. 2012; 8 (4): 217–26.Google Scholar
Chidambaran, V, Ngamprasertwong, P, Vinks, AA, Sadhasivam, S: Pharmacogenetics and anesthetic drugs. Curr.Clin.Pharmacol. 2012; 7 (2): 78101.Google Scholar
Cohen, M, Sadhasivam, S, Vinks, AA: Pharmacogenetics in perioperative medicine. Curr.Opin.Anaesthesiol. 2012; 25 (4): 419–27.Google Scholar
Stamer, UM, Stuber, F: Pharmacogenetics of anesthetic and analgesic agents: CYP2D6 genetic variations. Anesthesiology. 2005; 103 (5): 1099; author reply 101.Google Scholar
Williams, DG, Patel, A, Howard, RF: Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Brit.J.Anaesth. 2002; 89 (6): 839–45.Google Scholar
Anderson, BJ. Is it farewell to codeine? Arch.Dis.Child. 2013; 98 (12): 986–8.Google Scholar
Rigby-Jones, A, Sneyd, JR: Cardiovascular changes after achieving constant effect site concentration of propofol. Anaesthesia. 2008; 63 (7): 780.Google Scholar
Hutchinson, MR, Coats, BD, Lewis, SS, Zhang, Y, Sprunger, DB, Rezvani, N, et al: Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain.Behav.Immun. 2008; 22 (8): 1178–89.Google Scholar
Candiotti, KA, Yang, Z, Morris, R, Yang, J, Crescimone, NA, Sanchez, GC, et al: Polymorphism in the interleukin-1 receptor antagonist gene is associated with serum interleukin-1 receptor antagonist concentrations and postoperative opioid consumption. Anesthesiology. 2011; 114 (5): 1162–8.Google Scholar
Lotsch, J, Geisslinger, G: Relevance of frequent mu-opioid receptor polymorphisms for opioid activity in healthy volunteers. J. Pharmacogenomics. 2006; 6 (3): 200–10.Google Scholar
Walter, C, Lotsch, J: Meta-analysis of the relevance of the OPRM1 118A> G genetic variant for pain treatment. J.Pain. 2009; 146 (3): 270–5.Google Scholar
Ross JR, Rutter D, Welsh K, Joel SP, Goller K, Wells AU, et al: Clinical response to morphine in cancer patients and genetic variation in candidate genes. J. Pharmacogenomics. 2005; 5 (5): 324–36.Google Scholar
Liem, EB, Joiner, TV, Tsueda, K, Sessler, DI: Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads. Anesthesiology. 2005; 102 (3): 509–14.Google Scholar
Lotsch, J, Geisslinger, G: Pharmacogenetics of new analgesics. Br.J.Pharmacol. 2011; 163 (3): 447–60.Google Scholar
Tournier, N, Decleves, X, Saubamea, B, Scherrmann, JM, Cisternino, S: Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: implications for neuropsychopharmacology. Curr.Pharm.Des. 2011; 17 (26): 2829–42.Google Scholar
Holford, NH, Buclin, T: Safe and effective variability-a criterion for dose individualization. Ther. Drug Monit. 2012; 34 (5): 565–8.Google Scholar
Palomaki, GE, Bradley, LA, Douglas, MP, Kolor, K, Dotson, WD: Can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? An evidence-based review. Genet.Med. 2009; 11 (1): 2134.Google Scholar
Fredriksson, A, Archer, T, Alm, H, Gordh, T, Eriksson, P: Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav. Brain Res. 2004; 153 (2): 367–76.Google Scholar
Wang, C, Sadovova, N, Fu, X, Schmued, L, Scallet, A, Hanig, J, et al: The role of the N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture. Neuroscience. 2005; 132 (4): 967–77.Google Scholar
Bates, E, Reilly, J, Wulfeck, B, Dronkers, N, Opie, M, Fenson, J, et al: Differential effects of unilateral lesions on language production in children and adults. Brain. Lang. 2001; 79 (2): 223–65.Google Scholar
Ansermino, M, Basu, R, Vandebeek, C, Montgomery, C: Nonopioid additives to local anaesthetics for caudal blockade in children: a systematic review. Paediatr.Anaesth. 2003; 13 (7): 561–73.Google Scholar
Dodwell, ER, Latorre, JG, Parisini, E, Zwettler, E, Chandra, D, Mulpuri, K, et al: NSAID exposure and risk of nonunion: a meta-analysis of case-control and cohort studies. Calcif.Tissue.Int. 2010; 87 (3): 193202.Google Scholar
Anderson, BJ, Ralph, CJ, Stewart, AW, Barber, C, Holford, NH: The dose-effect relationship for morphine and vomiting after day-stay tonsillectomy in children. Anaesth.Intens.Care. 2000; 28 (2): 155–60.Google Scholar
Weinstein, MS, Nicolson, SC, Schreiner, MS: A single dose of morphine sulfate increases the incidence of vomiting after outpatient inguinal surgery in children. Anesthesiology. 1994; 81 (3): 572–7.Google Scholar
Bouillon, T, Bruhn, J, Radu-Radulescu, L, Andresen, C, Cohane, C, Shafer, SL: A model of the ventilatory depressant potency of remifentanil in the non-steady state. Anesthesiology. 2003; 99 (4): 779–87.Google Scholar
Standing, JF, Hammer, GB, Sam, WJ, Drover, DR. Pharmacokinetic-pharmacodynamic modeling of the hypotensive effect of remifentanil in infants undergoing cranioplasty. Paediatr.Anaesth. 2010; 20 (1): 718.Google Scholar

References

Win, NN, Fukayama, H, Kohase, H, Umino, M: The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anaesth.Analges. 2005; 101: 97102.Google Scholar
Rantanen, M: Novel multiparameter approach for measurement of nociception at skin incision during general anaesthesia. Br.J.Anaesth. 2006; 96: 367–76.Google Scholar
Miller, RD: Miller’s Anesthesia: 1. Amsterdam: Elsevier, 2010.Google Scholar
Jensen, EW, Valencia, JF, López, A, Anglada, T, Agustí, M, Ramos, Y, Serra, R, Jospin, M, Pineda, P, Gambus, P: Monitoring hypnotic effect and nociception with two EEG-derived indices, qCON and qNOX, during general anaesthesia. Acta Anaesthesiol.Scand. 2014; 58: 933–41.Google Scholar
Viertiö-Oja, H, Maja, V, Särkelä, M, Talja, P, Tenkanen, N, Tolvanen-Laakso, H, Paloheimo, M, Vakkuri, A, Yli-Hankala, A, Meriläinen, P: Description of the Entropy algorithm as applied in the Datex-Ohmeda S/5 Entropy Module. Acta.Anaesthesiol.Scand. 2004; 48: 154–61.Google Scholar
Bouillon, TW: Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004; 100: 1353–72.Google Scholar
Jensen, EW, Lindholm, P, Henneberg, S: Auto regressive modeling with exogenous input of auditory evoked potentials to produce an on-line depth of anaesthesia index. Methods.Inf.Med. 1996; 35: 256260.Google Scholar
Cohen, L: Time-Frequency Analysis. New Jersey: Prentice Hall, 1995.Google Scholar
Walling, PT, Kenneth, NH: Nonlinear changes in brain dynamics during emergence from sevoflurane anaesthesia: preliminary exploration using new software. Anesthesiology 2006; 105: 927–35.Google Scholar
Lalitha, V, Eswaran, C: Automated detection of anesthetic depth levels using chaotic features with artificial neural networks. J.Med.Syst. 2007; 31: 445–52.Google Scholar
Natarajan, K, Acharya, R, Alias, F, Tiboleng, T, Puthusserypady, SK: Nonlinear analysis of EEG signals at different mental states. Biomed.Eng.OnLine. 2004; 3: 718.Google Scholar
Ferenets, R, Lipping, T, Anier, A, Jantti, V, Melto, S, Hovilehto, S: Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans.Biomed.Eng. 2006; 53: 1067–77.Google Scholar
Hornero, R, Abásolo, D, Escudero, J, Gómez, C: Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos.Trans.Royal.Soc. A. 2009; 367: 317–36.Google Scholar
Struys, MM, Jensen, EW, Smith, W, Smith, NT, Rampil, I, Dumortier, FJ, Mestach, C, Mortier, EP. Performance of the ARX-derived auditory evoked potential index as an indicator of anesthetic depth: a comparison with bispectral index and hemodynamic measures during propofol administration. Anesthesiology. 2002; 96: 803–16.Google Scholar
Leslie, K, Sessler, DI, Smith, WD, Larson, MD, Ozaki, M, Blanchard, D, Crankshaw, DP: Prediction of movement during propofol/nitrous oxide anaesthesia: performance of concentration, electroencephalographic, pupillary, and hemodynamic indicators. Anesthesiology. 1996; 84: 5263.Google Scholar
Kato, M, Komatsu, T, Kimura, T, Sugiyama, F, Nakashima, K, Shimada, Y: Spectral analysis of heart rate variability during isoflurane anaesthesia. Anesthesiology. 1992; 77: 669–74.Google Scholar
Sato, A, Sato, Y, Shimada, F, Torigata, Y: Varying changes in heart rate produced by nociceptive stimulation of the skin in rats at different temperatures. Brain.Res. 1976; 110: 301–11.Google Scholar
Jeanne, M, Logier, R, De Jonckheere, J, Tavernier, B: Heart rate variability during total intravenous anaesthesia: effects of nociception and analgesia. Auton.Neurosci. 2009; 147: 91–6.Google Scholar
Jeanne, M, Clément, C, De Jonckheere, J, Logier, R, Tavernier, B: Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery. J.Clin.Monit.Comput. 2012; 26: 289–94.Google Scholar
Jubran, A: Pulse oximetry. Crit.Care. 2015; 19: 17.Google Scholar
Smith, WD, Dutton, RC, Smith, NT: Measuring the performance of anesthetic depth indicators. Anesthesiology. 1996; 84: 3851.Google Scholar
Gugino, LD, Chabot, RJ, Prichep, LS, John, ER, Formanek, V: Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. Brit.J.Anaesth. 2001; 87: 421–8.Google Scholar
Feshchenko, VA, Veselis, RA, Reinsel, RA: Propofol-induced alpha rhythm. Neuropsychobiology. 2004; 50: 257–66.Google Scholar
Hindriks, R, van Putten, MJ: Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms. Neuroimage. 2002; 60: 2323–34.Google Scholar
Ching, S, Cimenser, A, Purdon, PL, Brown, EN, Kopell, NJ: Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc.Natl.Acad.Sci.USA. 2010; 107: 22665–70.Google Scholar
Melia, U, Vallverdú, M, Borrat, X, Valencia, JF, Jospin, M, Jensen, EW, Gambus, P, Caminal, P: Prediction of nociceptive responses during sedation by linear and non-linear measures of EEG signals in high frequencies. PloS.One. 2015; 10: e0123464.Google Scholar
Valencia, JF, Melia, U, Vallverdú, M, Borrat, X, Jospin, M, Jensen, EW, Gambus, P, Caminal, P. Assessment of nociceptive responsiveness levels during sedation-analgesia by entropy analysis of EEG. Entropy. 2016; 18: 103–14.Google Scholar
Guyon, I: An introduction to variable and feature selection. J.Mach.Learn.Res. 2003; 3: 1157–82.Google Scholar

References

Kuck, K, Johnson, KB: The three laws of autonomous and closed-loop systems in anesthesia. Anesth.Analg. 2017; 124 (2): 377–80.Google Scholar
Brogi, E, Cyr, S, Kazan, R, Giunta, F, Hemmerling, TM: Clinical performance and safety of closed-loop systems: a systematic review and meta-analysis of randomized controlled trials. Anesth.Analg. 2016; 124 (2): 446–55.Google Scholar
Glass, PS: Anesthetic drug interactions: an insight into general anesthesia – its mechanism and dosing strategies. Anesthesiology. 1998; 88 (1): 56.Google Scholar
Rampil, IJ, King, BS: Volatile anesthetics depress spinal motor neurons. Anesthesiology. 1996; 85 (1): 129–34.Google Scholar
Sonner, JM, Antognini, JF, Dutton, RC, Flood, P, Gray, AT, Harris, RA, et al: Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth.Analg. 2003; 97 (3): 718–40.Google Scholar
Vuyk, J, Engbers, FH, Burm, AGL, Vletter, AA, Griever, GE, Olofsen, E, et al: Pharmacodynamic interaction between propofol and alfentanil when given for induction of anesthesia. Anesthesiology. 1996; 84 (2): 288–99.Google Scholar
Hendrickx, JFA, Eger, EI, Sonner, JM, Shafer, SL: Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth.Analg. 2008; 107 (2): 494506.Google Scholar
Krüger-Thiemer, E: Continuous intravenous infusion and multicompartment accumulation. Eur.J.Pharmacol. 1968; 4 (3): 317–24.Google Scholar
Hughes, MA, Glass, PS, Jacobs, JR: Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992; 76 (3): 334–41.Google Scholar
Bailey, JM: Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth.Analg. 1997; 85 (3): 681–6.Google Scholar
Youngs, EJ, Shafer, SL: Pharmacokinetic parameters relevant to recovery from opioids. Anesthesiology. 1994; 81 (4): 833–42.Google Scholar
Eger, EI, Shafer, SL: Tutorial: context-sensitive decrement times for inhaled anesthetics. Anesth.Analg. 2005; 101 (3): 688–96.Google Scholar
Frei, FJ, Zbinden, AM, Thomson, DA, Rieder, HU: Is the end-tidal partial pressure of isoflurane a good predictor of its arterial partial pressure? Br.J.Anaesth. 1991; 66 (3): 331–9.Google Scholar
Kennedy, RR, Minto, C, Seethepalli, A: Effect-site half-time for burst suppression is longer than for hypnosis during anaesthesia with sevoflurane. Br.J.Anaesth. 2008; 100 (1): 72–7.Google Scholar
Lerou, JGC, Mourisse, J: Applying a physiological model to quantify the delay between changes in end-expired concentrations of sevoflurane and bispectral index. Br.J.Anaesth. 2007; 99 (2): 226–36.Google Scholar
Absalom, AR, Mani, V, De Smet, T, Struys, MM: Pharmacokinetic models for propofol – defining and illuminating the devil in the detail. Br.J.Anaesth. 2009; 103 (1): 2637.Google Scholar
Schnider, TW, Minto, CF, Gambus, PL, Andresen, C, Goodale, DB, Shafer, SL, et al: The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998; 88 (5): 1170–82.Google Scholar
Quasha, AL, Eger, EI, Tinker, JH: Determination and applications of MAC. Anesthesiology. 1980; 53 (4): 315–34.Google Scholar
Gaumann, DM, Mustaki, JP, Tassonyi, E: MAC-awake of isoflurane, enflurane and halothane evaluated by slow and fast alveolar washout. Br.J.Anaesth. 1992; 68 (1): 81–4.Google Scholar
Kimura, T, Watanabe, S, Asakura, N, Inomata, S, Okada, M, Taguchi, M: Determination of end-tidal sevoflurane concentration for tracheal intubation and minimum alveolar anesthetic concentration in adults. Anesth.Analg. 1994; 79 (2): 378–81.Google Scholar
Kennedy, RR: Effect-site estimation of volatile anaesthetic agents: Beyond MAC fractions as a target for anaesthesia delivery. Trends in Anaesthesia and Critical Care 2013; 3 (4): 211–15.Google Scholar
Roberts, FL, Dixon, J, Lewis, GT, Tackley, RM, Prys-Roberts, C: Induction and maintenance of propofol anaesthesia. A manual infusion scheme. Anaesthesia. 1988; 43 Suppl: 1417.Google Scholar
Cowles, AL, Borgstedt, HH, Gillies, AJ: Digital computer prediction of the optimal anaesthetic inspired concentration. Br.J.Anaesth. 1972; 44: 420–5.Google Scholar
Mapleson, WW: The theoretical ideal fresh-gas flow sequence at the start of low-flow anaesthesia. Anaesthesia. 1998; 53 (3): 264–72.Google Scholar
Lowe, HJ, Ernst, EA: The Qualitative Practice of Anaesthesia: Use of Closed Circuit. Baltimore/London: Williams & Wilkins, 1981.Google Scholar
da Silva, JM, Mapleson, WW, Vickers, MD: Quantitative study of Lowe’s square-root-of-time method of closed-system anaesthesia. Br.J.Anaesth. 1997; 79 (1): 103–12.Google Scholar
Bangaari, A, Panda, NB, Puri, GD: A simple method for evaluation of the uptake of isoflurane and its comparison with the square root of time model. Indian.J.Anaesth. 2013; 57 (3): 230–5.Google Scholar
Hendrickx, JF, Vandeput, DM, De Geyndt, AM, De Ridder, KP, Haenen, JS, Deloof, T, et al: Maintaining sevoflurane anesthesia during low-flow anesthesia using a single vaporizer setting change after overpressure induction. J.Clin.Anesth. 2000; 12 (4): 303–7.Google Scholar
Hendrickx, JFA, Dewulf, BBC, De Mey, N, Carette, R, Deloof, T, De Cooman, S, et al: Development and performance of a two-step desflurane-O(2)/N(2)O fresh gas flow sequence. J.Clin.Anesth. 2008; 20 (7): 501–7.Google Scholar
Van Zundert, T, Brebels, A, Hendrickx, J, Carette, R, De Cooman, S, Gatt, S, et al: Derivation and prospective testing of a two-step sevoflurane-O2-N2O low fresh gas flow sequence. Anaesth.Intens.Care. 2009; 37 (6): 911–17.Google Scholar
Albert, V, Mndolo, S, Harrison, EM, O’Sullivan, E, Wilson, IH, Walker, IA: Lifebox pulse oximeter implementation in Malawi: evaluation of educational outcomes and impact on oxygen desaturation episodes during anaesthesia. Anaesthesia. 2017; 72 (6): 686–93.Google Scholar
Sykes, MK: Continuous monitoring of alveolar and inspiratory concentrations of anesthetic and respiratory gases is difficult and potentially unsafe. J.Clin.Monit. 1987; 3 (2): 116–22.Google Scholar
Fahy, BG, Chau, DF: The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia. Anesth.Analg. 2017 3. doi:10.1213/ANE.0000000000002331. [Epub ahead of print]Google Scholar
Absalom, AR, De Keyser, R, Struys, MMRF: Closed loop anesthesia: are we getting close to finding the holy grail? Anesth.Analg. 2011; 112 (3): 516–18.Google Scholar
Upton, HD, Ludbrook, GL, Wing, A, Sleigh, JW: Intraoperative analgesia nociception index guided fentanyl administration during sevoflurane anesthesia in lumbar discectomy and laminectomy. Anesth.Analg. 2017; 125 (1): 8190.Google Scholar
Hannivoort, LN, Vereecke, HEM, Proost, JH, Heyse, BEK, Eleveld, DJ, Bouillon, TW, et al: Probability to tolerate laryngoscopy and noxious stimulation response index as general indicators of the anaesthetic potency of sevoflurane, propofol, and remifentanil. Br.J.Anaesth. 2016; 116 (5): 624–31.Google Scholar
Struys, MMRF, De Smet, T, Glen, JIB, Vereecke, HEM, Absalom, AR, Schnider, TW: The history of target-controlled infusion. Anesth.Analg. 2016; 122 (1): 5669.Google Scholar
Glen, JB: The development of “Diprifusor”: a TCI system for propofol. Anaesthesia. 1998; 53 Suppl 1: 1321.Google Scholar
Absalom, AR, Glen, JIB, Zwart, GJC, Schnider, TW, Struys, MMRF: Target-controlled infusion. Anesth.Analg. 2016; 122 (1): 70–8.Google Scholar
Varvel, J, Donoho, D, Shafer, S: Measuring the predictive performance of computer-controlled infusion pumps. J.Pharmacokinet.Biopharm. 1992; 20 (1): 6394.Google Scholar
Shafer, SL, Egan, T: Target-controlled infusions. Anesth.Analg. 2016; 122 (1): 13.Google Scholar
Schnider, TW, Minto, CF, Struys, MMRF, Absalom, AR: The safety of target-controlled infusions. Anesth.Analg. 2016; 122 (1): 7985.Google Scholar
Ross, JA, Wloch, RT, White, DC, Hawes, DW: Servo-controlled closed-circuit anaesthesia. A method for the automatic control of anaesthesia produced by a volatile agent in oxygen. Br.J.Anaesth. 1983; 55 (11): 1053–60.Google Scholar
O’Callaghan, AC, Hawes, DW, Ross, JA, White, DC, Wloch, RT: Uptake of isoflurane during clinical anaesthesia. Servo-control of liquid anaesthetic injection into a closed-circuit breathing system. Br.J.Anaesth. 1983; 55 (11): 1061–4.Google Scholar
Westenskow, DR, Zbinden, AM, Thomson, DA, Kohler, B: Control of end-tidal halothane concentration. Part A: anaesthesia breathing system and feedback control of gas delivery. Br.J.Anaesth. 1986; 58 (5): 555–62.Google Scholar
Zbinden, AM, Frei, F, Westenskow, DR, Thomson, DA: Control of end-tidal halothane concentration. Part B: verification in dogs. Br.J.Anaesth. 1986; 58 (5): 563–71.Google Scholar
Lortat-Jacob, B, Billard, V, Buschke, W, Servin, F: Assessing the clinical or pharmaco-economical benefit of target controlled desflurane delivery in surgical patients using the Zeus® anaesthesia machine. Anaesthesia. 2009; 64 (11): 1229–35.Google Scholar
Tay, S, Weinberg, L, Peyton, P, Story, D, Briedis, J: Financial and environmental costs of manual versus automated control of end-tidal gas concentrations. Anaesth.Intens.Care. 2013; 41 (1): 95101.Google Scholar
Lucangelo, U, Garufi, G, Marras, E, Ferluga, M, Turchet, F, Bernabè, F, et al: End-tidal versus manually-controlled low-flow anaesthesia. J.Clin.Monit.Comput. 2014; 28 (2): 117–21.Google Scholar
Ryan, SM, Nielsen, CJ: Global warming potential of inhaled anesthetics: application to clinical use. Anesth.Analg. 2010; 111 (1): 92–8.Google Scholar
Sulbaek, Andersen MP, Sander, SP, Nielsen, OJ, Wagner, DS, Sanford, TJ, Wallington, TJ: Inhalation anaesthetics and climate change. Br.J.Anaesth. 2010; 105 (6): 760–6.Google Scholar
Kennedy, RR: New technology in anaesthesia: friend or foe? J.Clin.Monit.Comput. 2014; 28 (2): 113–16.Google Scholar
Carette, R, De Wolf, AM, Hendrickx, JFA: Automated gas control with the Maquet FLOW-i. J.Clin.Monit.Comput. 2016; 30 (3): 341–6.Google Scholar
Sieber, TJ, Frei, CW, Derighetti, M, Feigenwinter, P, Leibundgut, D, Zbinden, AM: Model-based automatic feedback control versus human control of end-tidal isoflurane concentration using low-flow anaesthesia. Br.J.Anaesth. 2000; 85 (6): 818–25.Google Scholar
Dussaussoy, C, Peres, M, Jaoul, V, Liu, N, Chazot, T, Picquet, J, et al: Automated titration of propofol and remifentanil decreases the anesthesiologist’s workload during vascular or thoracic surgery: a randomized prospective study. J.Clin.Monit.Comput. 2014; 28 (1): 3540.Google Scholar
Franci, P, Bertamini, A, Bertamini, O, Pilla, T, Busetto, R: Clinical evaluation of an end-tidal target-controlled infusion closed-loop system for isoflurane administration in horses undergoing surgical procedures. Vet.J. 2012; 192 (2): 206–11.Google Scholar
Kennedy, RR, McKellow, MA, French, RA: The effect of predictive display on the control of step changes in effect site sevoflurane levels. Anaesthesia. 2010; 65 (8): 826–30.Google Scholar
Kennedy, RR, French, RA: The development of a system to guide volatile anaesthetic administration. Anaesth.Intens.Care. 2011; 39 (2): 182–90.Google Scholar
Katoh, T, Uchiyama, T, Ikeda, K: Effect of fentanyl on awakening concentration of sevoflurane. Br.J.Anaesth. 1994; 73 (3): 322–5.Google Scholar
Katoh, T, Suguro, Y, Kimura, T, Ikeda, K: Morphine does not affect the awakening concentration of sevoflurane. Can.J.Anaesth. 1993; 40 (9): 825–8.Google Scholar
Gin, T: Clinical pharmacology on display. Anesth.Analg. 2010; 111 (2): 256–8.Google Scholar
Struys, MMRF, Sahinovic, M, Lichtenbelt, BJ, Vereecke, HEM, Absalom, AR: Optimizing intravenous drug administration by applying pharmacokinetic/pharmacodynamic concepts. Br.J.Anaesth. 2011; 107 (1): 3847.Google Scholar
Kennedy, RR: Seeing the future of anesthesia drug dosing: moving the art of anesthesia from impressionism to realism. Anesth.Analg. 2010; 111 (2): 252–5.Google Scholar
van den Berg, JP, Vereecke, HEM, Proost, JH, Eleveld, DJ, Wietasch, JKG, Absalom, AR, et al: Pharmacokinetic and pharmacodynamic interactions in anaesthesia. A review of current knowledge and how it can be used to optimize anaesthetic drug administration. Br.J.Anaesth. 2017; 118 (1): 4457.Google Scholar
DeCou, J, Johnson, K: An introduction to predictive modelling of drug concentration in anaesthesia monitors. Anaesthesia. 2017; 2;72: 5869.Google Scholar
Coppens, M, Van Limmen, JGM, Schnider, T, Wyler, B, Bonte, S, Dewaele, F, et al: Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration: Performance of three pharmacokinetic-dynamic models. Br.J.Anaesth. 2010; 104 (4): 452–8.Google Scholar
Cirillo, V, Zito Marinosci, G, De Robertis, E, Iacono, C, Romano, GM, Desantis, O, et al: Navigator® and SmartPilot® View are helpful in guiding anesthesia and reducing anesthetic drug dosing. Minerva.Anestesiol. 2015 19; 81 (11): 1163–9.Google Scholar
Short, TG, Hannam, JA, Laurent, S, Campbell, D, Misur, M, Merry, AF, et al: Refining target-controlled infusion. Anesth.Analg. 2016; 122 (1): 90–7.Google Scholar
O’Hara, DA, Bogen, DK, Noordergraaf, A: The use of computers for controlling the delivery of anesthesia. Anesthesiology. 1992; 77 (3): 563–81.Google Scholar
Mayo, CW, Bickford, RG, Faulconer, A: Electroencephalographically controlled anesthesia in abdominal surgery. J.Am.Med.Assoc. 1950 25; 144 (13): 1081–3.Google Scholar
Hull, CJ, Van Beem, HB, McLeod, K, Sibbald, A, Watson, MJ: A pharmacodynamic model for pancuronium. Br.J.Anaesth. 1978; 50 (11): 1113–23.Google Scholar
Stanski, DR, Ham, J, Miller, RD, Sheiner, LB: Pharmacokinetics and pharmacodynamics of d-tubocurarine during nitrous oxide-narcotic and halothane anesthesia in man. Anesthesiology. 1979; 51 (3): 235–41.Google Scholar
Cass, NM, Lampard, DG, Brown, WA, Coles, JR: Computer controlled muscle relaxation: a comparison of four muscle relaxants in the sheep. Anaesth.Intens.Care. 1976; 4 (1): 1622.Google Scholar
Lampard, DG, Brown, WA, Cass, NM, Ng, KC: Computer-controlled muscle paralysis with atracurium in the sheep. Anaesth.Intens.Care. 1986 Feb; 14 (1): 711.Google Scholar
Murchie, CJ, Kenny, GN: Comparison among manual, computer-assisted, and closed-loop control of blood pressure after cardiac surgery. J.Cardiothorac.Anesth. 1989; 3 (1): 1619.Google Scholar
Monk, CR, Millard, RK, Hutton, P, Prys-Roberts, C: Automatic arterial pressure regulation using isoflurane: comparison with manual control. Br.J.Anaesth. 1989; 63 (1): 2230.Google Scholar
Mitchell, RR: The need for closed-loop therapy. Crit. Care.Med. 1982; 10 (12): 831–4.Google Scholar
Schwilden, H, Schuttler, J, Stoeckel, H: Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in humans. Anesthesiology. 1987; 67 (3): 341–7.Google Scholar
Schwilden, H, Stoeckel, H, Schuttler, J. Closed-loop feedback control of propofol anaesthesia by quantitative EEG analysis in humans. Br.J.Anaesth. 1989; 62 (3): 290–6.Google Scholar
Mortier, E, Struys, M, De Smet, T, Versichelen, L, Rolly, G: Closed-loop controlled administration of propofol using bispectral analysis. Anaesthesia. 1998; 53 (8): 749–54.Google Scholar
Kenny, GN, Mantzaridis, H: Closed-loop control of propofol anaesthesia. Br.J.Anaesth. 1999; 83 (2): 223–8.Google Scholar
Morley, A, Derrick, J, Mainland, P, Lee, BB, Short, TG: Closed loop control of anaesthesia: an assessment of the bispectral index as the target of control. Anaesthesia. 2000; 55 (10): 953–9.Google Scholar
Struys, MM, De Smet, T, Versichelen, LF, Van De Velde, S, Van den Broecke, R, Mortier, EP: Comparison of closed-loop controlled administration of propofol using bispectral index as the controlled variable versus “standard practice” controlled administration. Anesthesiology. 2001; 95 (1): 617.Google Scholar
Struys, MMRF, De Smet, T, Greenwald, S, Absalom, AR, Bingé, S, Mortier, EP: Performance evaluation of two published closed-loop control systems using bispectral index monitoring: a simulation study. Anesthesiology. 2004; 100 (3): 640–7.Google Scholar
Locher, S, Stadler, KS, Boehlen, T, Bouillon, T, Leibundgut, D, Schumacher, PM, et al: A new closed-loop control system for isoflurane using bispectral index outperforms manual control. Anesthesiology. 2004; 101 (3): 591602.Google Scholar
Luginbühl, M, Bieniok, C, Leibundgut, D, Wymann, R, Gentilini, A, Schnider, TW: Closed-loop control of mean arterial blood pressure during surgery with alfentanil: clinical evaluation of a novel model-based predictive controller. Anesthesiology. 2006; 105 (3): 462–70.Google Scholar
West, N, Dumont, GA, van Heusden, K, Petersen, CL, Khosravi, S, Soltesz, K, et al: Robust closed-loop control of induction and maintenance of propofol anesthesia in children. Paediatr.Anaesth. 2013; 23 (8): 712–19.Google Scholar
Liu, N, Chazot, T, Hamada, S, Landais, A, Boichut, N, Dussaussoy, C, et al: Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth.Analg. 2011; 112 (3): 546–57.Google Scholar
Puri, GD, Mathew, PJ, Biswas, I, Dutta, A, Sood, J, Gombar, S, et al: A multicenter evaluation of a closed-loop anesthesia delivery system: a randomized controlled trial. Anesth.Analg. 2016; 122 (1): 106–14.Google Scholar
Hemmerling, TM, Arbeid, E, Wehbe, M, Cyr, S, Taddei, R, Zaouter, C: Evaluation of a novel closed-loop total intravenous anaesthesia drug delivery system: a randomized controlled trial. BJA. 2013; 110 (6): 1031–9.Google Scholar
Wehbe, M, Arbeid, E, Cyr, S, Mathieu, PA, Taddei, R, Morse, J, et al: A technical description of a novel pharmacological anesthesia robot. J.Clin.Monit.Comput. 2014; 28 (1): 2734.Google Scholar
Pasin, L, Nardelli, P, Pintaudi, M, Greco, M, Zambon, M, Cabrini, L, et al: Closed-loop delivery systems versus manually controlled administration of total IV anesthesia. Anesth.Analg. 2017; 124 (2): 456–64.Google Scholar
Zaouter, C, Hemmerling, TM, Lanchon, R, Valoti, E, Remy, A, Leuillet, S, et al: The feasibility of a completely automated total IV anesthesia drug delivery system for cardiac surgery. Anesth.Analg. 2016; 123 (4): 885–93.Google Scholar
Biswas, I, Mathew, PJ, Singh, RS, Puri, GD: Evaluation of closed-loop anesthesia delivery for propofol anesthesia in pediatric cardiac surgery. Paediatr.Anaesth. 2013; 23 (12): 1145–52.Google Scholar
Zaouter, C, Hemmerling, TM, Mion, S, Leroux, L, Remy, A, Ouattara, A: Feasibility of automated propofol sedation for transcatheter aortic valve implantation: a pilot study. Anesth.Analg. 2017 Nov; 125 (5): 1505–12Google Scholar
Kennedy, RR: Lessons from drug interaction displays. In Absalom AR & Mason KP (eds), Total Intravenous Anesthesia and Target Controlled Infusions. Springer 2017.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×