Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-06T08:20:29.344Z Has data issue: false hasContentIssue false

14 - Discussion and open issues

Published online by Cambridge University Press:  05 August 2012

Lorenza Saitta
Affiliation:
Università degli Studi del Piemonte Orientale Amedeo Avogadro
Attilio Giordana
Affiliation:
Università degli Studi del Piemonte Orientale Amedeo Avogadro
Antoine Cornuéjols
Affiliation:
AgroParis Tech (INA-PG)
Get access

Summary

In the long journey undertaken in this book, we have visited statistical mechanics, constraint satisfaction problems and satisfiability, complex networks and natural systems, and, in particular, many facets of machine learning ranging from propositional to relational learning, grammatical inference, and neural networks. The thread that connects all these fields is the emergence of phenomena exhibiting sharp discontinuities. These phenomena are reminiscent of the phase transitions found in physics and, indeed, the methods of statistical physics have been employed with success to analyze them. In this chapter we try to summarize what we have learned from these connections and in particular from the role played by machine learning. Our aim is to point out gaps in the understanding of basic phenomena and to identify open questions that may suggest future research directions.

Phase transitions or threshold phenomena?

In a recent and very interesting paper, which recalls similar arguments put forwards in Percus et al. (2006), Zweig et al. (2010) have challenged the current view of phase transitions in computational problems, wondering whether the abrupt change observed in the probability of solution (the order parameter) in SAT problems is in fact nothing other than a “self-fulfilling” discontinuity, i.e., an existential discontinuity generated by the very definitions of the problem and of the order parameter.

The first argument in support of their claim is that it is easy to produce rather simple models that exhibit phase transition phenomena while, as most of us would agree, the essential ingredients that underly a “true” phase transition are lacking.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×