Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T05:55:53.475Z Has data issue: false hasContentIssue false

7 - Modeling: A Powerful Tool for Cloud Investigation

Published online by Cambridge University Press:  22 August 2018

Alexander P. Khain
Affiliation:
Hebrew University of Jerusalem
Mark Pinsky
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Chapter 7 discusses the structure of cloud models and cloud resolving models. We describe simulations of different atmospheric phenomena performed using spectral (bin) microphysics and bulk parameterization and present a detailed comparison of the results obtained in these simulations. Effects of cloud-aerosol interaction on the microstructure and intensity of clouds and cloud-related mesoscale phenomena such as thunderstorms, mesoscale convective systems and hurricanes are described in a systematic presentation, with a special focus put on aerosol effects on precipitation. We discuss most important recent advancements in bin modeling of clouds and cloud-related phenomena, in particular in simulation of drizzle and ice formation in stratocumulus clouds and rain and hail formation in convective clouds. Perspectives of cloud modeling are outlined in the end of the Chapter.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, A.S., Hobbs, P.V., and Toon, O.B., 1995: A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. J. Atmos. Sci., 52, 12041236.2.0.CO;2>CrossRefGoogle Scholar
Ackerman, A.S., van Zanten, M.C., Stevens, B., Savic-Jovcic, V., Bretherton, C.S., et al., 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Weather Rev., 137, 10831110.CrossRefGoogle Scholar
Albrecht, B., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 245, 12271230.Google Scholar
Alexandrov, M.D., Cairns, B., Emde, C., Ackerman, A.S., and van Diedenhoven, B., 2012: Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter. Remote Sens. Environ., 125, 92111.Google Scholar
Altaratz, O., Koren, I., Reisin, T., Kostinski, A., Feingold, G., et al., 2008: Aerosols’ influence on the interplay between condensation, evaporation and rain in warm cumulus cloud. Atmos. Chem. Phys. 8, 1524.Google Scholar
Andreae, M.O., Rosenfeld, D., Artaxo, P., Costa, A.A., Frank, G.P., et al., 2004: Smoking rain clouds over the Amazon, Science. 303, 13371342.Google Scholar
Andreas, E.L., 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440.2.0.CO;2>CrossRefGoogle Scholar
Andrejczuk, M., Grabowski, W.W., Malinowski, S.P., and Smolarkiewicz, P.K., 2009: Numerical simulation of cloud–clear air interfacial mixing: Homogeneous versus inhomogeneous mixing. J. Atmos. Sci., 66, 24932500.Google Scholar
Andrejczuk, M., Grabowski, W.W., Reisner, J., and Gadian, A., 2010: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model. J. Geophys. Res., 115, D22214.Google Scholar
Andrejczuk, M., Reisner, J.M., Henson, B., Dubey, M.K., and Jeffery, C.A., 2008: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type? J. Geophys. Res., 113, D19204.CrossRefGoogle Scholar
Anthes, T.A., 1977: A cumulus parameterization scheme utilizing a one dimensional cloud model. Mon. Weather Rev., 105, 270286.2.0.CO;2>CrossRefGoogle Scholar
Arabas, S., Pawlowska, H., and Grabowski, W.W., 2009: Effective radius and droplet spectral width from in-situ aircraft observations in trade-wind cumuli during RICO. Geophys. Res. Lett., 36, L11803, doi:10.1029/2009GL038257.Google Scholar
Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932522.Google Scholar
Arakawa, A., and Shubert, W.H., 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part. 1. J. Atmos. Sci., 31, 674701.Google Scholar
Avramov, A., and Harrington, J.Y., 2010: Influence of parameterized ice habit on simulated mixed phase Arctic clouds. J. Geophys. Res., 115, D03205, doi:10.1029/2009JD012108.Google Scholar
Baik, J.-J., Kim, Y.-H., and Chun, H.-Y., 2001: Dry and moist convection forced by an urban heat island. J. Appl. Meteorol., 40, 14621475.2.0.CO;2>CrossRefGoogle Scholar
Bao, J.W, Fairall, C.W., Michelson, S.A., and Bianco, L., 2011: Parameterizations of sea-spray impact on the air-sea momentum and heat fluxes. Mon. Weather Rev., 139, 37813797.CrossRefGoogle Scholar
Baldauf, M., Seifert, A., Forstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T., 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Weather Rev., 139, 38873905.Google Scholar
Beals, M.J., Fugal, J.P., Shaw, R.A., Lu, J., Spuler, S.M., and Stith, J.L., 2015: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science, 350, 8990.CrossRefGoogle ScholarPubMed
Beheng, K.D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193206.Google Scholar
Bell, T.L., Rosenfel, D., Kim, K.-M., Yoo, J.-M., Lee, M.-I., and Hahnenberger, M., 2008: Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res., 113 (D2), D02209.Google Scholar
Benmoshe, N., and Khain, A.P., 2014: The effects of turbulence on the microphysics of mixed-phase deep convective clouds investigated with a 2-D cloud model with spectral bin microphysics. J. Geophys. Res., 119, 207221, doi:10.1002/2013JD020118.Google Scholar
Benmoshe, N., Khain, A., Pinsky, M., and Pokrovsky, A., 2012: Turbulent effects on cloud microstructure and precipitation of deep convective clouds as seen from simulations with a 2-D spectral microphysics cloud model. J. Geophys. Res., 117, D06220, doi:10.1029/2011JD016603.Google Scholar
Berry, E.X., and Reinhardt, R.L., 1974a: An analysis of cloud droplet growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824.Google Scholar
Berry, E.X., and Reinhardt, R.L., 1974b: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 18251831.Google Scholar
Berry, E.X., and Reinhardt, R.L., 1974c: An analysis of cloud drop growth by collection: part III. Accretion and selfcollection. J. Atmos. Sci., 31, 21182126.Google Scholar
Bodenschatz, E., 2015: Clouds resolved. Science, 350, 4041, DOI: 10.1126/science.aad1386.Google Scholar
Bornstein, R., and Lin, Q., 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516.CrossRefGoogle Scholar
Borys, R.D., Lowenthal, D.H., and Mitchell, D.L., 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 25932602.Google Scholar
Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293.2.0.CO;2>CrossRefGoogle Scholar
Bott, A., 2000: A numerical model of the cloud-topped planetary boundary-layer: Influence of the physico-chemical properties of aerosol particles on the effective radius of stratiform clouds. Atmos. Res., 53, 1527.Google Scholar
Boucher, O., and Lohmann, U., 1995: The sulfate-CCN-cloud albedo effect, a sensitivity study with two general circulation models. Tellus, 47B, 281300.Google Scholar
Braun, S.A., and House, R. Jr., 1997: The evolution of the 10–11 June 1985 PRE-STORM squall line: Initiation, development of rear inflow, and dissipation. Mon. Weather Rev., 125, 478504.Google Scholar
Carlin, J., Ryzhkov, A., Snyder, J., and Khain, A., 2016: Hydrometeor mixing ratio retrievals for storm-scale radar data assimilation: Utility of current relations and potential benefits of polarimetry. Mon. Weather Rev., 144, 29813001. doi:10.1175/MWR-D-15-0423.1.Google Scholar
Carrió, G.G., and Cotton, W.R., 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11, 25572567.CrossRefGoogle Scholar
Carrió, G.G., van den Heever, S.C., and Cotton, W.R., 2007: Impacts of nucleating aerosol on anvil-cirrus clouds: A modeling study. Atmos. Res., 84, 111131.Google Scholar
Chen, S.-H., and Sun, W.-Y., 2002: A one-dimensional time dependent cloud model. J. Meteorol. Soc. Japan, 80, 99118.Google Scholar
Cheng, C.-T., Wang, W.-C., and Chen, J.-P., 2007: A modeling study of aerosol impacts on cloud microphysics and radiative properties. Q. J. Royal Meteorol. Soc., 133, 283297.Google Scholar
Cheng, L., English, M., and Wong, R., 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteorol., 24, 10591067.Google Scholar
Clark, T.L., 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857878.Google Scholar
Cohard, J.-M., and Pinty, J.P., 2000: A comprehensive two-moment warm microphysical bulk model scheme: I: Description and tests. Q. J. Royal Meteorol. Soc., 126, 18151842.Google Scholar
Cohen, N., and Khain, A.P., 2009: Aerosol effects on lightning and intensity of landfalling hurricanes. In Hurricanes and Climate Change, Elsner, J.B. and Jagger, T.H., eds. New York: Springer, pp. 189212.Google Scholar
Cooper, W.A., Lasher-Trapp, S.G., and Blyth, A.M., 2011: Initiation of coalescence in a cumulus cloud: A beneficial influence of entrainment and mixing. Atmos. Chem. Phys. Discuss., 11, 1055710613.Google Scholar
Costa, A., de Oliveira, A.C.J., de Oliveira, J.C.P., and Sampaio, A.J.C., 2000: Microphysical observations of warm cumulus clouds in Ceara´, Brazil. Atmos. Res., 54, 167199.Google Scholar
Cotton, W.R., Pielke, R.A. Sr., Walko, R.L., Liston, G.E., Tremback, C.J., Jiang, H., McAnnelly, R.L., Harrington, J.Y., Nicholls, M.E., Carrió, G.G., and McFadden, J.P., 2003: RAMS 2001: Current status and future directions. Meteorol. Atmos. Phys., 82, 529.Google Scholar
Cotton, W.R., Tripoli, G.J., Rauber, R.M., and Mulvihill, E.A., 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Clim. Appl. Meteorol., 25, 16581680.Google Scholar
Cotton, W.R., Zhang, H., McFarquhar, G.M., and Saleeby, S.M., 2007: Should we consider polluting hurricanes to reduce their intensity? J. Weather Modif., 39, 7073.Google Scholar
Dagan, G., Koren, I., Altaratz, O., and Heiblum, R.H., 2016: Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields. Science. Rep., 6, 38769, doi:10.1038/srep38769.Google Scholar
Delanoë, J., Protat, A., Testud, J., Bouniol, D., Heymsfield, A.J., Bansemer, A., Brown, P.R.A., and Forbes, R.M., 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110, D10201, doi:10.1029/2004JD005405.Google Scholar
DeMott, P.J., Prenni, A.J., Liu, X., Kreidenweis, S M., Petters, M.D., Twohy, C.H., Richardson, M.S., Eidhammer, T., and Rogers, D.C., 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci., 107(25), 1121711222.Google Scholar
De Rooy, W.C., Bechtold, P., Frohlich, K., Hohenegger, C., Jonker, H., Mironov, D., Siebesma, A.P., Teixeiraf, J., and Yano, J.-I., 2013: Entrainment and detrainment in cumulus convection: An overview. Q. J. Royal Meteorol. Soc., 139, 119.Google Scholar
Dooley, A.L., 2008: Ice microphysics observations in tropical cyclones from NAMMA. M.S. Thesis, University of Illinois at Urbana-Champaign, p. 65.Google Scholar
Emanuel, K.A., and Raymond, D.J., 1993: The representation of cumulus convection in numerical models. Meteorol. Monogr., 24, (46), 246.Google Scholar
Enukashvili, I.M., 1980: A numerical method for integrating the kinetic equation of coalescence and breakup of cloud droplets. J. Atmos. Sci., 37, 25212534.Google Scholar
Erlick, C., Khain, A., Pinsky, M., and Segal, Y., 2005: The effect of wind velocity fluctuations on drop spectrum broadening in stratocumulus clouds. Atmos. Res., 75, 1545.Google Scholar
Fan, J., Comstock, J.M., and Ovchinnikov, M., 2010: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer. Environ. Res. Lett., 5, 044005, doi:10.1088/1748-9326/5/4/044005.Google Scholar
Fan, J., Ghan, S., Ovchinnikov, M., Liu, X., Rasch, P.J., and Korolev, A., 2011: Representation of Arctic mixed-phase clouds and the Wegener–Bergeron–Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res., 116, D00T07.Google Scholar
Fan, J., Leung, L.R., DeMott, P.J., Comstock, J.M., Singh, B., Rosenfeld, D., Tomlinson, J.M., White, A., Prather, K.A., Minnis, P., Ayers, J.K., and Min, Q., 2014: Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust. Atmos. Chem. Phys., 14, 81101.CrossRefGoogle Scholar
Fan, J., Leung, L.R., Li, Z., Morrison, H., Chen, H., Zhou, Y., Qian, Y., and Wang, Y., 2012a: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, doi: 10.1029/2011JD016537.Google Scholar
Fan, J., Leung, L.R., Rosenfeld, D., Chena, Q., Lid, Z., Zhang, J., and Yan, H., 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. PNAS, November 11, E4581–E4590.Google Scholar
Fan, J., Ovtchinnikov, M., Comstock, J.M., McFarlane, S.A., and Khain, A., 2009a: Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud resolving model with size-resolved aerosol and cloud microphysics. J. Geophys. Res., 114, D04205.Google Scholar
Fan, J., Rosenfeld, D., Ding, Y., Leung, L.R., and Li, Z., 2012b: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806, doi:10.1029/2012GL051851.Google Scholar
Fan, J., Yuan, T., Comstock, J.M., Ghan, S., Khain, A.P., Leung, L.R., Li, Z., Martins, V.J., and Ovchinnikov, M., 2009b: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352.Google Scholar
Fan, J., Zhang, R., Li, G., and Tao, W.-K., 2007a: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, (D14) D14204, doi:10.1029/2006JD008136.Google Scholar
Fan, J., Zhang, R., Li, G., Tao, W.-K., and Li, X., 2007b: Simulations of cumulus clouds using a spectral microphysics cloud resolving model. J. Geophys. Res., 112, D04201.Google Scholar
Feingold, G., Cotton, W.R., Kreidenweis, S.M., and Davis, J., 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 41004117.Google Scholar
Feingold, G., and Heymsfield, A.J., 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49, 23252342.Google Scholar
Feingold, G., Jiang, H., and Harrington, J.Y., 2005: On smoke suppression of clouds in Amazonia. Geophys. Res. Lett., 32, L02804.Google Scholar
Feingold, G., Koren, I., Wang, H., Xue, H., and Brewer, W.A., 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, doi:10.1038/nature09314.Google Scholar
Feingold, G., Koren, I., Yamaguchi, T., and Kazil, J., 2015: On the reversibility of transitions between closed and open cellular convection. Atmos. Chem. Phys., 15, 73517367.Google Scholar
Feingold, G., Kreidenweis, S.M., and Zhang, Y.P., 1998: Stratocumulus processing of gases and cloud condensation nuclei. 1. Trajectory ensemble model. J. Geophys. Res.-Atmos., 103, 1952719542.CrossRefGoogle Scholar
Feingold, G., Stevens, B., Cotton, W.R., and Frisch, A.S., 1996: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus cloud. J. Atmos. Sci., 53, 11081121.Google Scholar
Feingold, G., Tzivion, S., and Levin, Z., 1988: The evolution of raindrop spectra with altitude. 1: Solution to the stochastic collection/breakup equation using the method of moments. J. Atmos. Sci., 45, 33873399.Google Scholar
Ferek, R.J., Garrett, T., Hobbs, P.V., Strader, S., Johnson, D., et al., 2000: Drizzle suppression in ship tracks. J. Atmos. Sci., 57, 27052728.Google Scholar
Ferrier, B.S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280.Google Scholar
Field, P.R., Hogan, R.J., Brown, P.R.A., Illingworth, A.J., Choularton, T.W., and Cotton, R.J., 2005: Parameterization of ice particle size distribution for mid-latitude stratiform cloud. Q. J. Royal Meteorol. Soc., 131, 19972017.Google Scholar
Formenton, M., Panegrossi, G., Casella, D., Dietrich, S., Mugnai, A., Sanò, P., Di Paola, F., Betz, H.-D., Price, C., and Yair, Y., 2013a: Using a cloud electrification model to study relationships between lightning activity and cloud microphysical structure. Nat. Hazards Earth Syst. Sci., 13, 10851104.Google Scholar
Formenton, M., Phillips, V.T.J., and Lienert, B., 2013b: A new snow microphysics parameterization applied to a cloud electrification model: Framework and preliminary results, 93rd AMS Annual Meeting, Austin, Tex., Jan. 6–10.Google Scholar
Freud, E., and Rosenfeld, D., 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457.Google Scholar
Freud, E., Rosenfeld, D., Andreae, M.O., Costa, A.A., and Artaxo, P., 2008: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds. Atmos. Chem. Phys., 8, 16611675.Google Scholar
Geoffroy, O., Brenguier, J.-L., and Burnet, F., 2010: Parametric representation of the cloud droplet spectra for LES warm bulk microphysical schemes. Atmos. Chem. Phys., 10, 48354848.Google Scholar
Geresdi, I., Sarkadi, N., and Thompson, G., 2014: Effect of the accretion by water drops on the melting of snowflakes. Atmos. Res., 149, 96110.Google Scholar
Ghan, S.J., Abdul-Razzak, H., Nenes, A., Ming, Y., Liu, X., Ovchinnikov, M., Shipway, B., Meskhidze, N., Xu, J., and Shi, X., 2011: Droplet nucleation: Physically based parameterizations and comparative evaluation. J. Adv. Model. Earth Syst., 3, M10001, doi:10.1029/2011MS000074.Google Scholar
Ghan, S.J., Easter, R.C., Hudson, J., and Bŕeon, F.-M., 2001: Evaluation of aerosol indirect radiative forcing in MIRAGE. J. Geophys. Res., 106, 53175334.Google Scholar
Givati, A., and Rosenfeld, D., 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteorol., 43, 10381056.Google Scholar
Goke, S, Ochs, H.T. III, and Raube, R.M., 2007: Radar analysis of precipitation initiation in maritime versus continental clouds near the Florida coast: Inferences concerning the role of CCN and giant nuclei. J. Atmos. Sci., 64, 36953707.Google Scholar
Goren, T., and Rosenfeld, D., 2015: Extensive closed cell marine stratocumulus downwind of Europe – A large aerosol cloud mediated radiative effect or forcing? J. Geophys. Res. Atmos., 120(12), 60986116.Google Scholar
Grabowski, W.W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997.Google Scholar
Grabowski, W.W., 2003: Impact of cloud microphysics on convective-radiative quasi-equilibrium revealed by cloud-resolving convection parameterization (CRCP). J. Climate, 16, 34633475.2.0.CO;2>CrossRefGoogle Scholar
Grabowski, W.W., 2006: Comments on “Preliminary tests of multiscale modeling with a two-dimensional framework: Sensitivity to coupling methods” by Jung and Arakawa. Mon. Weather Rev., 134, 20212026.Google Scholar
Grabowski, W.W., and Smolarkiewicz, P.K., 1999: CRCP: A cloud resolving convection parameterization for modeling the Tropical convecting atmosphere. Physica D., 133, 171178.Google Scholar
Grell, G.A., and Devenyi, D., 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), 1693.Google Scholar
Grell, G., Dudhia, J., and Stauffer, D.R., 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, p. 121.Google Scholar
Gultepe, I., Isaac, G.A., Leaitch, W.R., and Banic, C.M., 1996: Parameterizations of marine stratus microphysic based on in situ observations: Implications for GCMs. J. Climate, 9(2), 345357.Google Scholar
Hall, W.D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507.Google Scholar
Han, J.-G., Baik, J.-J., and Khain, A.P., 2012: A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci., 69, 504520.Google Scholar
Handwerker, J., and Straub, W., 2011: Optimal determination of parameters for Gamma-type drop size distributions based on moments. J. Atmos. Oceanic Technol., 28, 513529.Google Scholar
Harrington, J.Y., Feingold, G., and Cotton, W.R., 2000: Radiative impacts on the growth of a population of drops within simulated Summertime Arctic stratus. J. Atmos. Sci., 57, 766785.Google Scholar
Hashino, T., and Tripoli, G.J., 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 22102237.CrossRefGoogle Scholar
Hashino, T., and Tripoli, G.J., 2008: The Spectral Ice Habit Prediction System (SHIPS). Part II: Simulation of nucleation and depositional growth of polycrystals. J. Atmos. Sci., 65, 30713094, doi:10.1175/2008JAS2615.1.CrossRefGoogle Scholar
Hashino, T., and Tripoli, G.J., 2011: The Spectral Ice Habit Prediction System (SHIPS). Part IV: Box model simulations of the habit-dependent aggregation process. J. Atmos. Sci., 68, 11421161, doi:10.1175/2011JAS3667.1.Google Scholar
Heymsfield, A.J., Bansemer, A., Field, P.R., Durden, S.L., Stith, J.L., Dye, J.E., Hall, W., and Grainger, C.A., 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491.Google Scholar
Heymsfield, A.J., and Miloshevich, L.M., 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci., 50, 23352353.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A.J., and Sabin, R.M., 1989: Cirrus crystal nucleation by homogeneous freezing of solution droplets. J. Atmos. Sci., 46, 22522264.Google Scholar
Heymsfield, A., Schmitt, C., and Bansemer, A., 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0 to −86 C. J. Atmos. Sci., 70, 41234154.Google Scholar
Hong, S.-Y., Dudhia, J., and Chen, S.-H., 2004: A revised approach to ice microphysics processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev., 132, 103120.Google Scholar
Hong, S.-Y., and Lim, J.-O.J., 2006: The WRF single-moment 6-Class microphysics scheme (WSM6). J. Korean Meteorol. Soc., 42, 2, 129151.Google Scholar
Hudson, J.G., and Mishra, S., 2007: Relationships between CCN and cloud microphysics variations in clean maritime air. Geophys. Res. Lett., 34, L16804.Google Scholar
Hudson, J.G., and Yum, S.S., 2001: Maritime-continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58, 915–26.Google Scholar
Igel, A.L., and van den Heever, S.C., 2017: The Role of the Gamma Function Shape Parameter in Determining Differences between Condensation Rates in Bin and Bulk Microphysics Schemes. Atmos. Chem. Phys., 17, 45994609.Google Scholar
Iguchi, T., Matsui, T., Shi, J.J., Tao, W.-K., Khain, A.P., Hou, A., Cifelli, R., Heymsfield, A., and Tokay, A., 2012a: Numerical analysis using WRF-SBM for the cloud microphysical structures in the C3VP field campaign: Impacts of supercooled droplets and resultant riming on snow microphysics. J. Geophys. Res., 117, D23206, doi:10.1029/2012JD018101.Google Scholar
Iguchi, T., Matsui, T., Tao, W.-K., Khain, A.P., Phillips, V.T.J., Kidd, C., L’Ecuyer, T., Braun, S.A., and Hou, A., 2014: WRF-SBM simulations of melting layer structure in mixed-phase precipitation events observed during LPVEx. J. Appl. Meteorol. Climatol., 53, 27102731.Google Scholar
Iguchi, T., Nakajima, T., Khain, A., Saito, K., Takemura, T., Okamoto, H., Nishizawa, T., and Tao, W.-K., 2012b: Evaluation of cloud microphysics in JMA-NHM simulations using bin or bulk microphysical schemes through comparison with cloud radar observations. J. Atmos. Sci., 69, 25662586.Google Scholar
Illingworth, A.J., and Blackman, T.M., 2002: The need to represent raindrop size spectra as normalized Gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteorol., 41, 286297.Google Scholar
Ilotoviz, E., Khain, A.P., Phillips, V., Benmoshe, N., and Ryzhkov, A., 2016: Effect of aerosols on freezing drops, hail and precipitation in a mid-latitude storm. J. Atmos. Sci., 73, 1, 109144.Google Scholar
Ilotoviz, E., Khain, A., Ryzhkov, A., and Snyder, J.C., 2017: Relationship between hail microphysics and Zdr columns. J. Atmos. Sci. (in press).Google Scholar
Inoue, T., and Kimura, F., 2004: Urban effects on low-level clouds around the Tokyo metropolitan area on clear summer days. Geophys. Res. Lett., 31, L05103.Google Scholar
Janjic, Z.I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models.” J. Atmos. Sci., 57, 3686.Google Scholar
Jensen, J.B., and Lee, S., 2008: Giant sea-salt aerosols and warm rain formation in marine stratocumulus. J. Atmos. Sci., 65, 36783694.Google Scholar
Jirak, I.L., and Cotton, W.R., 2006: Effect of air pollution on precipitation along the front range of the Rocky Mountains. J. Appl. Meteorol. Climatol., 45, 236245.Google Scholar
Johnson, D.W., Brown, P.R.A., Martin, G.M., and Moss, S.J., 1992: Recent measurement campaigns at the U.K. Meteorological research flight to improve numerical cloud parameterizations, in Proceedings of WMO Workshop on Cloud Microphysics and Applications to Global Change, pp. 257–262, World Meteorol. Organ., Geneva, Switzerland.Google Scholar
Johnson, R.H., and Hamilton, P.J., 1988: The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Weather Rev., 16, 14441472.Google Scholar
Kain, J.S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170181.Google Scholar
Kazil, J., Wang, H., Feingold, G., Clarke, A.D., Snider, J.R., and Bandy, A.R., 2011: Chemical and aerosol processes in the transition from closed to open cells during VOCALS-REx. Atmos. Chem. Phys., 11, 74917514.Google Scholar
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. Meteorol. Monogr., 10, Amer. Meteorol. Soc., 10, #32.Google Scholar
Khain, A.P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004.Google Scholar
Khain, A.P., Arkhipov, V., Pinsky, M., Feldman, Y., and Ryabov, Y., 2004a: Rain enhancement and fog elimination by seeding with charged droplets. Pt. 1. Theory and numerical simulations. J. Appl. Meteorol., 43, 15131529.CrossRefGoogle Scholar
Khain, A.P., Beheng, K.D., Heymsfield, A., Korolev, A., Krichak, S.O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S.C., and Yano, J.-I., 2015: Representation of microphysical processes in cloud resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322.Google Scholar
Khain, A.P., Benmoshe, N., and Pokrovsky, A., 2008a. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt of classification. J. Atmos. Sci., 65, 17211748.Google Scholar
Khain, A.P., Cohen, N., Lynn, B., and Pokrovsky, A., 2008b: Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci., 65, 36523667.Google Scholar
Khain, A.P. and Lynn, B., 2009: Simulation of a super cell storm in clean and dirty atmosphere. J. Geophys. Res., 114, D19209, DOI: 10.1029/2009JD011827.Google Scholar
Khain, A.P., Leung, L.R., Lynn, B., and Ghan, S., 2009: Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res., DOI: 10.1029/2009JD011902.Google Scholar
Khain, A., Lynn, B., and Dudhia, J., 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365384.Google Scholar
Khain, A., Lynn, B., and Shpund, J., 2016: High resolution WRF simulations of hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes. Atmos. Res., 167, 129145.Google Scholar
Khain, A.P., Phillips, V., Benmoshe, N., and Pokrovsky, A., 2012: The role of small soluble aerosols in the microphysics of deep maritime clouds. J. Atmos. Sci., 69, 27872807.Google Scholar
Khain, A.P., Pinsky, M., Magariz, L., Krasnov, O., and Russchenberg, H.W.J., 2008c: Combined observational and model investigations of the Z-LWC relationship in stratocumulus clouds. J. Appl. Meteorol., 47, 591606.Google Scholar
Khain, A.P., and Pokrovsky, A., 2004: Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model. Part 2: Sensitivity study. J. Atmos. Sci., 61, 29833001.Google Scholar
Khain, A.P, Pokrovsky, A., Blahak, U., and Rosenfeld, D., 2008d: Is the dependence of warm and ice precipitation on the aerosol concentration monotonic? 15th Int. Conf. on Clouds and Precipitation, Cancun, July.Google Scholar
Khain, A.P., Pokrovsky, A., Pinsky, M., Seifert, A., and Philips, V., 2004b: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds by using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982.Google Scholar
Khain, A., Prabha, T.V., Benmoshe, N., Pandithurai, G., and Ovchinnikov, M., 2013: The mechanism of first raindrops formation in deep convective clouds. J. Geophys. Res., 118, 91239140.Google Scholar
Khain, A., Rosenfeld, D., and Pokrovsky, A., 2005: Aerosol impact on the dynamics and microphysics of convective clouds. Q. J. Royal. Meteorol. Soc., 131, 26392663.Google Scholar
Khain, A.P., Rosenfeld, D., Pokrovsky, A., Blahak, U., and Ryzhkov, A., 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146.Google Scholar
Khain, A.P., and Sednev, I., 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77110.Google Scholar
Khairoutdinov, M.F., and Kogan, Y.L., 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56, 21152131.Google Scholar
Khairoutdinov, M.F., and Kogan, Y.L., 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Weather Rev., 128(1), 229243.Google Scholar
Khairoutdinov, M.F., and Randall, D.A., 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary Results. Geophys. Res. Lett., 28, 36173620.Google Scholar
Khairoutdinov, M.F., Randall, D.A., and DeMotte, C., 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a super-parameterization of physical processes. J. Atmos. Sci., 62, 21362154.Google Scholar
Khairoutdinov, M.F., and Yang, C.E., 2013: Cloud-resolving modeling of aerosol indirect effects in idealized radiative-convective equilibrium with interactive and fixed sea surface temperature. Atmos. Chem. Phys., 13 8, 41334144.Google Scholar
Khvorostyanov, V.I., Khain, A.P., Chrekasova, N., and Kogteva, E.L., 1995: A two-dimensional model of dynamic cloud seeding. Soviet Meteorology and Hydrology, 9, 6884.Google Scholar
Khvorostyanov, V.I., Khain, A.P., and Kogteva, E.L., 1989: A two-dimensional non stationary microphysical model of a three-phase convective cloud and evaluation of the effects of seeding by a crystallizing agent. Soviet Meteorology and Hydrology, 5, 3345.Google Scholar
Kim, K.-Y., Park, R.J., Kim, K.-R., and Na, H., 2010: Weekend effect: Anthropogenic or natural?, Geophys. Res. Lett., 37, L09808, doi:10.1029/2010GL043233.Google Scholar
Kogan, Y.L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189.Google Scholar
Kogan, Y.L. 2006: Large-eddy simulation of air parcels in stratocumulus clouds: Time scales and spatial variability. J. Atmos. Sci., 63, 952967.Google Scholar
Kogan, Y.L., Khairoutdinov, M.P., Lilly, D.K., Kogan, Z.N., and Liu, Q., 1995: Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci., 52, 29232940.Google Scholar
Kogan, Z.N., and Kogan, Y.L., 2001: Parameterization of drop effective radius for drizzling marine stratocumulus. J. Geophys. Res., 106, 97579764.Google Scholar
Kogan, Y., Mazin, I.P., Sergeev, B.N., and Khvorostyanov, V.I., 1984: Numerical Cloud Modeling. Gidrometeoizdat, Moscow, p. 183.Google Scholar
Kogan, Y.L., Mechem, D.B., and Choi, K., 2012: Effects of sea-salt aerosols on precipitation in simulations of shallow cumulus. J. Atmos. Sci., 69, 463483.Google Scholar
Koren, I., Altaratz, O., Remer, L.A., Feingold, G., Martins, J.V., and Heiblum, R.H., 2012: Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci., 5(2), 118122.CrossRefGoogle Scholar
Koren, I., Feingold, G., and Remer, L.A., 2010a: The invigoration of deep convective clouds over the Atlantic: Aerosol effect, meteorology or retrieval artifact?. Atmos. Chem. Phys., 10, 88558872.Google Scholar
Koren, I., Kaufman, Y.J., Rosenfeld, D., Remer, L.A., and Rudich, Y., 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi: 10.1029/2005GL023187.Google Scholar
Koren, I., Martins, J.V., Remer, L.A., and Afargan, H., 2008: Smoke invigoration versus inhibition of clouds over the Amazon. Science, 321, 946949, doi: 10.1126/science.1159185.Google Scholar
Koren, I., Remer, L.A., Altaratz, O., Martins, J.V., and David, A., 2010b: Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos. Chem. Phys., 10, 50015010.Google Scholar
Korolev, A., and Field, P.R., 2015: Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probe measurements. Atmos. Meas. Tech., 8, 761777.Google Scholar
Krasnov, O., and Russchenberg, H., 2002: An enhanced algorithm for the retrieval of liquid water cloud properties from simultaneous radar and lidar measurements. Part I: The basic analysis of in situ measured drop size spectra. European Conference on Radar Meteorology (ERAD), 1, 173178.Google Scholar
Kumjian, M.R., Ganson, S.M., and Ryzhkov, A.V., 2012: Raindrop freezing in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490.Google Scholar
Kumjian, M.R., Khain, A.P., Benmoshe, N., Ilotoviz, E., Ryzhkov, A.V., and Phillips, V.T.J., 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteorol. Climatol., 53, 18201843.CrossRefGoogle Scholar
Lang, S.E., Lang, W.-K., Tao, J.-D., Chern, D., Wu, , and Li, X., 2014: Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci., 71, 35833611.Google Scholar
Lau, K.M., Kim, K.M., Sad, Y.C., and Walker, G.K., 2009: A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann. Geophys., 27, 40234037.Google Scholar
Lawson, R.P., Baker, B., Pilson, B., and Mo, Q., 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63, 31863203.Google Scholar
Lebo, Z.J., and Seinfeld, J.H., 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429.Google Scholar
Lee, H., and Baik, J.-J., 2016: Effects of turbulence-induced collision enhancement on heavy precipitation: The 21 September 2010 case over the Korean Peninsula. J. Geophys. Res., 121, Issue 20, 12,31912,342.Google Scholar
Lee, S.-S., Donner, L.J., and Phillips, V.T.J., 2005: Impact of aerosols on deep convection. Q. J. Roy. Meteorol. Soc., 4 (8).Google Scholar
Lee, S.S., Donner, L.J., Phillips, V.T.J., and Ming, Y., 2008a: Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Q. J. Roy. Meteorol. Soc., 134, 12011220.Google Scholar
Lee, S.S., Donner, L.J., Phillips, V.T.J., and Ming, Y., 2008b: The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res., 113, D16202, doi:10.1029/2007JD009224.Google Scholar
Levin, Z., and Cotton, W.R., 2007: Aerosol pollution impact on precipitation: A scientific review WMO/IUGG Report.Google Scholar
Levin, Z., Feingold, G., Tzivion, S., and Waldvogel, A., 1991: The Evolution of raindrop spectra: Comparison between modeled and observed spectra along a mountain slope in Switzerland. J. Appl. Meteorol., 30, 893900.Google Scholar
Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D., and Ding, Y., 2011: The long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, doi: 10.1038/ngeo1313.Google Scholar
Li, X., Sui, C.-H., and Lau, K.-N., 2002: Precipitation efficiency in the tropical deep convection: A 2D cloud resolving model study. J. Meteorol. Soc. Jpn, 80, 205212.Google Scholar
Li, X., Tao, W.-K., Khain, A.P., Simpson, J., and Johnson, D.E., 2009a: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part I: Validation with a PRE-STORM case. J. Atmos. Sci., 66, 321.Google Scholar
Li, X, Tao, W.-K., Khain, A.P., Simpson, J., and Johnson, D.E., 2009b: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part II: Cloud microphysics and storm dynamics interactions. J. Atmos. Sci., 66, 2240.Google Scholar
Li, X., Tao, W.-K., Matsui, T., Liu, C., and Masunaga, H., 2010: Improving a spectral bin microphysics scheme using TRMM satellite observations. Q. J. Royal Meteorol. Soc., 136, 382389, DOI:10.1002/qj.569.CrossRefGoogle Scholar
Lim, J.-O., Lim, J., and Hong, S.-Y., 2005: Effects of bulk ice microphysics on the simulated monsoonal precipitation over east Asia. J. Geophys. Res., 110 (D24), 166–06181.Google Scholar
Lin, K.-S., and Hong, S.-Y., 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Weather Rev., 138, 15871612.Google Scholar
Lin, Y., and Colle, B.A., 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Weather Rev., 139, 10131035.Google Scholar
Lin, Y.-L., Farley, R.D., and Orville, H.D., 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteorol., 22, 10651092.Google Scholar
Liu, Q.-F., Kogan, Y.L., Lilly, D.K., and Khairoutdinov, M.P., 1997: Variational optimization method for calculation of cloud drop growth in an Eulerian drop-size framework. J. Atmos. Sci., 54, 24932504.Google Scholar
Loftus, A.M., and Cotton, W.R., 2014a: A triple-moment hail bulk microphysics scheme. Part II: Verification and comparison with two moment bulk microphysics. Atmos. Res., 150, 97128.Google Scholar
Loftus, A.M., and Cotton, W.R., 2014b: Examination of CCN impacts on hail in a simulated supercell storm with a triple-moment hail bulk microphysics. Atmos. Res., 147 –148, 183204.Google Scholar
Loftus, A.M, Cotton, W.R., and Carrió, G.G., 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmos. Res., 149, 3557.Google Scholar
Lohmann, U., 2008: Global anthropogenic aerosol effects on convective clouds in ECHAM-HAM. Atmos. Chem. Phys., 8, 21152131.Google Scholar
Lohmann, U., and Feichter, J., 1997: Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM GCM. J. Geophys. Res., 102, 13,68513,700.Google Scholar
Long, A., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31, 10401052.Google Scholar
Low, T.B., and List, R., 1982a: Collision coalescence and breakup of raindrops: Part I. Experimentally established coalescence efficiencies and fragments size distribution in breakup. J. Atmos. Sci., 39, 15911606.2.0.CO;2>CrossRefGoogle Scholar
Low, T.B., and List, R., 1982b: Collision coalescence and breakup of raindrops: Part II. Parameterization of fragment size distributions in breakup. J. Atmos. Sci., 39, 16071618.2.0.CO;2>CrossRefGoogle Scholar
Lynn, B., and Khain, A.P., 2007: Utilization of spectral bin microphysics and bulk parameterization schemes to simulate the cloud structure and precipitation in a mesoscale rain event. J. Geophys. Res., 112, D22205.Google Scholar
Lynn, B H., Khain, A.P., Bao, J.W., Michelson, S.A., Yuan, T., Kelman, G., and Benmoshe, N., 2014: The sensitivity of the WRF-simulated hurricane Irene to physics configuration. Abstract at the 94-th AMS conference, Atlanta, February 2014.Google Scholar
Lynn, B.H., Khain, A.P., Bao, J.W., Michelson, S.A., Yuan, T., Kelman, G., Rosenfeld, D., Shpund, J., and Benmoshe, N., 2016: The sensitivity of hurricane Irene to aerosols and ocean coupling: Simulations with WRF spectral bin microphysics. J. Atmos. Sci., 73, 467486.Google Scholar
Lynn, B., Khain, A.P., Dudhia, J., Rosenfeld, D., Pokrovsky, A., and Seifert, A., 2005a: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part 1. Model description and first results. Mon. Weather Rev., 133, 4458.Google Scholar
Lynn, B., Khain, A.P., Dudhia, J., Rosenfeld, D., Pokrovsky, A., and Seifert, A., 2005b: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part 2: Simulation of a CaPe rain event with squall line. Mon. Weather Rev., 133, 5971.Google Scholar
Lynn, B., Khain, A.P., Rosenfeld, D., and Woodley, W.L., 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.Google Scholar
Magaritz, L, Pinsky, M., and Khain, A., 2007: Drizzle formation in stratocumulus clouds Abstracts of IUGG (Perugia, July).Google Scholar
Magaritz, L, Pinsky, M., and Khain, A., 2010: Effects of stratocumulus clouds on aerosols in the maritime boundary layer. Atmos. Res., 97, 498512.Google Scholar
Magaritz, L., Pinsky, M., Khain, A.P., and Krasnov, O., 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part 2: Lucky parcels in non-mixing limit. J. Atmos. Sci., 66, 781805.CrossRefGoogle Scholar
Magaritz-Ronen, L., Pinsky, M., and Khain, A., 2014: Effects of turbulent mixing on the structure and macroscopic properties of stratocumulus clouds, demonstrated by a Lagrangian trajectory model. J. Atmos. Sci., 71, 18431862.Google Scholar
Magaritz-Ronen, L., Pinsky, M., and Khain, A., 2016: Drizzle formation in stratocumulus clouds: Effects of turbulent mixing. Atmos. Chem. Phys., 15, 18491862.Google Scholar
Mansell, E.R., Ziegler, C.L., and Bruning, E.C., 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194.Google Scholar
Martin, G.M., Johnson, D.W., and Spice, A., 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842.2.0.CO;2>CrossRefGoogle Scholar
Martins, J.A., Dias, M.A.F. Silva, and Goncalves, F.L.T., 2009: Impact of biomass burning aerosols on precipitation in the Amazon: A modelling case study J. Geophys. Res. 114, D02207, doi: 10.1029/2007JD009587.Google Scholar
McFarquhar, G.M., Ghan, S., Verlinde, J., Korolev, A., Strapp, J.W., et al., 2011: Indirect and Semi-Direct Aerosol Campaign (ISDAC): The impact of Arctic aerosols on clouds. Bull. Am. Meteorol. Soc., 92, 183201.Google Scholar
McFarquhar, G.M., Timlin, M.S., Rauber, R.M., Jewett, B.F., Grim, J.A., and Jorgensen, D.P., 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Weather Rev., 135, 34053428.Google Scholar
McFarquhar, G.M., and Heymsfield, A.J., 2001: Parameterizations of INDOEX microphysical measurements and calculations of cloud susceptibility: Applications for climate studies. J. Geophys. Res., 106, 2867528698.Google Scholar
Meyers, M.P., Walko, R.L., Harrington, J.Y., and Cotton, W.R., 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339.Google Scholar
Milbrandt, J., and Morrison, H., 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975995.CrossRefGoogle Scholar
Milbrandt, J.A., and Yau, M.K., 2005: A multi-moment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081.Google Scholar
Milbrandt, J.A., and Yau, M.K., 2006: A multi-moment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63, 31143136.Google Scholar
Ming, Y., Ramaswamy, V., Donner, L.J., Phillips, V.T.J., Klein, S.A., Ginoux, P.A., and Horowitz, L.W., 2007: Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model. J. Atmos. Sci., 64, 11891209.Google Scholar
Mitchell, D.L., Chai, S.K., Liu, Y., Heymsfield, A.J., and Dong, Y., 1996: Modeling cirrus clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci., 53, 29522966.Google Scholar
Molinari, J., Moore, P., and Idone, V., 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Weather Rev., 127, 520534.Google Scholar
Morrison, H., Curry, J.A., and Khvorostyanov, V.I., 2005a: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62(6), 16651677.Google Scholar
Morrison, H., and Gettelman, A., 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423658.Google Scholar
Morrison, H., and Grabowski, W.W., 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64(8), 28392861.Google Scholar
Morrison, H., and Milbrandt, J.A., 2015: Parameterization of ice microphysics based on the prediction of bulk particle properties. Part 1: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311.Google Scholar
Morrison, H., Milbrandt, J.A., Bryan, G., Ikeda, K., Tessendorf, S.A., and Thompson, G., 2015: Parameterizing of cloud microphysics based on prediction of bulk ice particle properties. Part 2: Case study comparison with observations and other schemes. J. Atmos. Sci., 72, 312339.Google Scholar
Morrison, H., Shupe, M.D., Pinto, J.O., and Curry, J.A., 2005b: Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of Arctic mixed-phase clouds. Geophys. Res. Lett., 32, L18801, doi:10.1029/2005GL023614.Google Scholar
Morrison, H., Thompson, G., and Tatarskii, V., 2009a: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev., 137, 9911007.Google Scholar
Morrison, H., McCoy, R.B., Klein, S.A., Xie, S., Luo, Y., et al., 2009b: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II: Multi-layered cloud. Q. J. Royal Meteorol. Soc., 135, 10031019.CrossRefGoogle Scholar
Morrison, H., Zuidema, P., Ackerman, A.S., Avramov, A., DeBoer, G., Fan, J., Fridlind, A.M., Hashino, T., Harrington, J.Y., Luo, Y., Ovchinnikov, M., and Shipway, B., 2011: Inter-comparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J. Adv. Model. Earth Syst., 3, M06003.Google Scholar
Mote, T.L., Lacke, M.C., and Shepherd, J.M., 2007: Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett., 34, L20710.Google Scholar
Muhlbauer, A., Hashino, T., Xue, L., Teller, A., Lohmann, U., Rasmussen, R., Geresdi, I., and Pan, Z., 2010: Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys., 10, 81738196.Google Scholar
Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud – The 19 July 1981 CCOPE cloud. J. Meteorol. Soc. Jpn, 68, 107128.Google Scholar
Niu, F., and Li, Z., 2011: Cloud invigoration and suppression by aerosols over the tropical region based on satellite observations. Atmos. Chem. Phys. Discuss., 11, 50035017, doi: 10.5194/acpd-11-5003-2011.Google Scholar
Niu, F., and Li, Z., 2012: Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys., 12(18), 84918498.Google Scholar
Noppel, H., Blahak, U., Seifert, A., and Beheng, K.D., 2010a: Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme. Atmos. Res., 96, 286301.Google Scholar
Noppel, H., Pokrovsky, A., Lynn, B., Khain, A.P., and Beheng, K.D., 2010b: A spatial shift of precipitation from the sea to the land caused by introducing submicron soluble aerosols: Numerical modeling. J. Geophys. Res., 115, D18212, doi: 10.1029/2009JD012645.Google Scholar
Onishi, R.Y.O., and Takahashi, K., 2011: A warm-bin–cold-bulk hybrid cloud microphysical model. J. Atmos. Sci., 69, 14741497.Google Scholar
Ortega, K.L., Krause, J.M., and Ryzhkov, A.V., 2016: Polarimetric radar characteristics of melting hail: Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteorol. Climatol., 55, 829848.CrossRefGoogle Scholar
Orville, R.E., Zhang, R., Gammon, J.N., Collins, D., Ely, B., and Steiger, S., 2001: Enhancement of cloud-to-ground lightening over Houston, Texas. Geophys. Res. Lett., 28(13), 25972600, doi: 10.1029/2001GL012990.Google Scholar
Ovchinnikov, M., Ackerman, A.S., Avramov, A., Cheng, A., Fan, J., Fridlind, A.M., Ghan, S., Harrington, J., Hoose, C., Korolev, A., McFarquhar, G.M., Morrison, H., Paukert, M., Savre, J., Shipway, B.J., Shupe, M.D., Solomon, A., and Sulia, K., 2014: Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions. J. Appl. Meteorol. Clim., 6, 223248.Google Scholar
Ovchinnikov, M., Korolev, A., and Fan, J., 2011: Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud. J. Geophys. Res., 116, D00T06.Google Scholar
Phillips, V.T.J., Andronache, C., Christner, B., Morris, C.E., Sands, D.C., Bansemer, A., Lauer, A., McNaughton, C., and Seman, C., 2009: Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically. Biogeosciences, 6, 128.Google Scholar
Phillips, V.T.J., DeMott, P.J., and Andronache, C., 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783.Google Scholar
Phillips, V.T.J., DeMott, P.J., Andronache, C., Pratt, K.A., Prather, K.A., Subramanian, R., and Twohy, C., 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci., 70, 378409.CrossRefGoogle Scholar
Phillips, V.T.J., Donner, L.J., and Garner, S.T., 2007a: Nucleation process in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64, 738761.Google Scholar
Phillips, V.T.J., Khain, A., Benmoshe, N., Ryzhkov, A., and Ilotovich, E., 2014: Theory of time-dependent freezing and its application in a cloud model with spectral bin microphysics. Part I. Wet growth of hail. J. Atmos. Sci., 71, 45274557.Google Scholar
Phillips, V.T.J., Khain, A., Benmoshe, N., Ryzhkov, A., and Ilotovich, E., 2015: Theory of time-dependent freezing and its application in a cloud model with spectral bin microphysics. II: Freezing raindrops and simulations. J. Atmos. Sci., 72, 262286.Google Scholar
Phillips, V., Khain, A. P., and Pokrovsky, A. 2007b: The influence of melting on the dynamics and precipitation production in maritime and continental storm-clouds. J. Atmos. Sci., 64, 338359.Google Scholar
Phillips, V.T.J., Yano, J.-I., Formenton, M., Ilotoviz, E., Kanawade, V., Kudzotsa, I., Sun, J., Bansemer, Aaron, Detwiler, A.G., Khain, A. and Tessendorf, S.A., 2017b: Ice multiplication by break-up in ice-ice collisions. Part 2: Numerical simulationsJ. Atmos. Sci.74, 27892811, doi: 10.1175/JAS-D-16-0223.1.Google Scholar
Phillips, V.T.J, Yano, J.-I., and Khain, A., 2017a: Ice multiplication by break-up in ice-ice collisions. Part 1: Theoretical formulationJ. Atmos. Sci., 74(6), 17051719.Google Scholar
Pielke, R.A., and Pearce, R.P., 1994: Mesoscale modelling of the atmosphere. Meteorol. Manogr., 25 (47), 168.Google Scholar
Pinsky, M., and Khain, A.P., 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Q. J. Roy. Meteorol. Soc., 128, 133.Google Scholar
Pinsky, M., Khain, A., and Magaritz, L., 2010: Representing turbulent mixing of non-conservative values in Eulerian and Lagrangian cloud models. Q. J. Roy. Meteorol. Soc., 136, 12281242.Google Scholar
Pinsky, M., Khain, A., Magaritz, L., and Sterkin, A., 2008: Simulation of droplet size distributions and drizzle formation using a new trajectory ensemble model of cloud topped boundary layer. Part 1: Model description and first results in non-mixing limit. J. Atmos. Sci., 65, 20642086.Google Scholar
Pinsky, M., Khain, A., and Shapiro, M., 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764.Google Scholar
Pinsky, M., Mazin, I., Korolev, A., and Khain, A., 2012: Analytical estimation of droplet concentration at cloud base. J. Geophys. Res., 117, D18211.Google Scholar
Plant, R.S., 2010: A review of the theoretical basis for bulk mass flux convective parameterization. Atmos. Chem. Phys., 10, 35293544.Google Scholar
Plant, R.S., and Yano, J.-I., 2015: Parameterization of Atmospheric Convection (In 2 Volumes). Volume 1: Theoretical Background and Formulation; Volume 2: Current Issues and New Theories. Under editing by Plant, R.S. and Yano, J.-I.. Cambridge University Press.Google Scholar
Prabha, T.V., Khain, A., Maheshkumar, R.S., Pandithurai, G., Kulkarni, J.R., Konwar, M., and Goswami, B.N., 2011: Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during CAIPEEX, J. Atmos. Sci., 68, 18821901.Google Scholar
Prabha, V.T., Patade, S., Pandithurai, G., Khain, A., Axisa, D., Pradeep Kumar, P., Maheshkumar, R.S., Kulkarni, J.R., and Goswami, B.N., 2012: Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley during CAIPEEX, J. Geophys. Res., 117, D20205, doi: 10.1029/2011JD016837.Google Scholar
Pruppacher, H.R., and Klett, J.D., 1997: Microphysics of Clouds and Precipitation, 2nd edition. Oxford University Press, p. 963.Google Scholar
Radke, L.F., Coakley, J.A. Jr., and King, M.D., 1989: Direct and remote sensing observations of the effects of ships on clouds. Science, 246, 11461149, doi: 10.1126/science.246.4934.1146.Google Scholar
Randall, D., Khairoutdinov, M., Arakawa, A., and Grabowski, W., 2003: Breaking the cloud parameterization deadlock. Bull. Am. Meteor. Soc., 84, 15471564.Google Scholar
Reid, J.S., Hobbs, P.V., Rangno, A.L., and Hegg, D.A., 1999: Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke. J. Geophys. Res., 104, 61456153.Google Scholar
Reisin, T., Levin, Z., and Tzvion, S., 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497519.Google Scholar
Reisner, R., Rasmussen, R.M., and Bruintjes, R.T., 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. Royal Meteorol. Soc., 124, 10711107.Google Scholar
Riechelmann, T., Noh, Y., and Raasch, S., 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008.Google Scholar
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M.O., 2006: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys., 6, 471491.Google Scholar
Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108, doi:10.1029/1999GL006066.Google Scholar
Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796.Google Scholar
Rosenfeld, D., and Bell, T.L., 2011: Why do tornados and hailstorms rest on weekends? J. Geophys. Res., 116, D20211, doi:10.1029/2011JD016214.Google Scholar
Rosenfeld, D., Fischman, B., Zheng, Y., Goren, T., and Giguzin, D., 2014: Combined satellite and radar retrievals of drop concentration and CCN at convective cloud base. Geophys. Res. Lett., 41(9), 32593265.Google Scholar
Rosenfeld, D., and Gutman, G., 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34, 259283.Google Scholar
Rosenfeld, D., Lohmann, U., Raga, G.B., O’Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M.O., 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313.Google Scholar
Rosenfeld, D., Woodley, W.L., Khain, A., Cotton, W.R., Carrió, G., Ginis, I., and Golden, J.H., 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bul. Am. Meteorol. Soc., July, 987–1001.Google Scholar
Rotunno, R., Klemp, J.B., and Weisman, M.L., 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.Google Scholar
Rozoff, C.M., Cotton, W.R., and Adegoke, J.O., 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteorol., 42, 716738.Google Scholar
Rutledge, S.A., and Hobbs, P.V., 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972.Google Scholar
Ryzhkov, A.V., Kumjian, M., and Ganson, S., 2013a: Polarimetric radar characteristics of melting hail, Part 1: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteorol. Climatol., 52, 28492869.Google Scholar
Ryzhkov, A.V., Kumjian, M., Ganson, S., and Zhang, P., 2013b: Polarimetric radar characteristics of melting hail, Part 1I: Practical implications. J. Appl. Meteorol. Climatol., 52, 28712886.Google Scholar
Saleeby, S.M., and Cotton, W.R., 2004: A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module Descriptions and Supercell Test Simulations. J. Appl. Meteorol., 43, 182195.Google Scholar
Saleeby, S.M., and Cotton, W.R., 2008: A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteorol. Climatol., 47, 694703.Google Scholar
Saleeby, S.M., and Van den Heever, S.C., 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteorol. Climatol., 52, 26012622.Google Scholar
Sant, V., Lohmann, U., and Seifert, A., 2013: Performance of a tri-class parameterization for the collision–coalescence process in shallow clouds. J. Atmos. Sci., 70, 17441767.Google Scholar
Sarkadi, N., Geresdi, I., and Thompson, G., 2016: Numerical simulation of precipitation formation in the case orographically induced convective cloud: Comparison of the results of bin and bulk microphysical schemes. Atmos. Res., 180, 241261.Google Scholar
Saunders, C.P.R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteorol., 32, 642655.Google Scholar
Saunders, C.P.R., 2008: Lightning: Principles, Instruments and Applications. Springer, Amsterdam.Google Scholar
Schultz, P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Weather Rev., 123, 33313343.Google Scholar
Segal, Y., and Khain, A.P., 2006: Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res., 111, D15204, doi:10.1029/2005JD006561.Google Scholar
Seifert, A., and Beheng, K.D., 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59 –60, 265281.Google Scholar
Seifert, A., and Beheng, K.D., 2006a: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys., 92, 4566.Google Scholar
Seifert, A., and Beheng, K.D., 2006b: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteorol. Atmos. Phys., 92, 6782.Google Scholar
Seifert, A., Khain, A., Pokrovsky, A., and Beheng, K.D., 2006: A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics. Atmos. Res., 80(1), 4666.Google Scholar
Seifert, A., Köhler, C., and Beheng, K.D., 2012: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys., 12, 709725.Google Scholar
Sekhon, R.S., and Srivastava, R.C., 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27, 299307.Google Scholar
Shao, X.M., Harlin, J., Stock, M., Stanley, M., Regan, A., Wiens, K., Hamlin, T., Pongratz, M., Suszcynsky, D., and Light, T., 2005: Katrina and Rita were lit up with lightning. EOS, 86(42), 398399.Google Scholar
Shepherd, J.M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interactions, 9. http://EarthInteractions.org.Google Scholar
Shepherd, J.M., Pierce, H., and Negri, A.J., 2002: Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteorol., 41, 689701.Google Scholar
Shima, S., Kusano, K., Kawano, A., Sugiyama, T., and Kawahara, S., 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Q. J. Royal Meteorol. Soc., 135, 13071320.Google Scholar
Shipway, B.J., and Hill, A.A., 2012: Diagnosis of systematic differences between multiple parameterizations of warm rain microphysics using a kinematic framework. Q. J. Royal Meteorol. Soc., 138, 21962211.Google Scholar
Shpund, J., Khain, A., and Rosenfeld, D., 2016: The Effects of Sea-Spray on Deep Mixed-Phase Convective Cloud under strong wind conditions. ICCP2016, Manchester, July 25–29.Google Scholar
Shpund, J., Pinsky, M., and Khain, A., 2011: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part I: The impact of large eddies. J. Atmos. Sci., 68, 23662384.Google Scholar
Shpund, J., Zhang, J.A., Pinsky, M., and Khain, A., 2012: Microphysical structure of the marine atmospheric mixed layer under strong wind and sea spray formation as seen from a 2-D Explicit Microphysical Model Part ΙΙ: The role of sea spray. J. Atmos. Sci., 69, 35013514.Google Scholar
Shpund, J., Zhang, J.A., Pinsky, M., and Khain, A., 2014: Microphysical structure of the marine boundary layer under strong wind and sea spray formation as seen from a 2D Explicit Microphysical Model. Part III: Parameterization of height-dependent droplet size distribution. J. Atmos. Sci., 71, 19141934.Google Scholar
Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., and Powers, J.G., 2008. A description of the advanced research WRF Version 3. NCAR/TN–475+STR, NCAR Technical note, National Center for Atmospheric Research Boulder, Colorado, USA, p. 113.Google Scholar
Slingo, A., 1990: Sensitivity of the earth’s radiation budget to changes in low clouds. Nature, 349, 4952.Google Scholar
Snyder, J.C., Ryzhkov, A.V., Kumjian, M.R., Khain, A.P., and Picca, J., 2015: A Zdr column detection algorithm to examine convective storm updrafts. Weather and Forecast., 30, 18191844.Google Scholar
Song, X., and Zhang, G.J., 2011: Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests. J. Geophys. Res., 116, D02201, doi:10.1029/2010JD014833.Google Scholar
Squires, P., 1958: The microstructure and colloidal stability of warm clouds. Tellus, 10, 256271.Google Scholar
Steiger, S.M., and Orville, R.E., 2003: Cloud-to-ground lightning enhancement over southern Louisiana. Geophys. Res. Lett., 30(19), 1975, doi:10.1029/2003GL017923.Google Scholar
Steiger, S.M., Orville, R.E., and Huffines, G., 2002: Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J. Geophys. Res., 107(D11), 4117, doi: 10.1029/2001JD001142.Google Scholar
Stevens, B., Lenschow, D.H., Vali, G., Gerber, H., Bandy, A., et al., 2003: Dynamics and chemistry of maritime stratocumulus-DYCOMS-II. Bull. Am. Meteorol. Soc., 84, 579593.Google Scholar
Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Weather Rev., 133, 14431462.Google Scholar
Stevens, B., Feingold, G., Cotton, W.R., and Walko, R.L., 1996: Elements of the Microphysical Structure of Numerically Simulated Nonprecipitating Stratocumulus. J. Atmos. Sci., 53, 9801006.Google Scholar
Sui, C.-S., Li, X.,. and Yang, M.-J., 2007: On the definition of the precipitation efficiency. J. Atmos. Sci., 64, 45064513.Google Scholar
Suzuki, K., Nakajima, T., Nakajima, T.Y., and Khain, A.P., 2010: A Study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. J. Atmos. Sci., 67, 11261141.Google Scholar
Suzuki, K., Stephens, G.L., van den Heever, S.C., and Nakajima, T.Y., 2011: Diagnosis of the warm rain process in cloud-resolving models using joint CloudSat and MODIS observations. J. Atmos. Sci., 68, 26552670.Google Scholar
Swann, H., 1998: Sensitivity to the representation of precipitating ice in CRM simulations of deep convection. Atmos. Res., 48, 415435.Google Scholar
Takahashi, T., 1976: Hail in an axisymmetric cloud model. J. Atmos. Sci., 33, 15791601.Google Scholar
Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548.Google Scholar
Takahashi, I., Nakajima, T., Khain, A., Saito, K., Takemura, T., and Suzuki, K., 2008: A study of the cloud microphysical properties influenced by aerosols in an East Asia region using a meso-scale model coupled with a bin microphysics for clouds. J. Geophys. Res., 113, D14215.Google Scholar
Tampieri, F., and Tomasi, C., 1978: Size distribution models of fog and cloud droplets in terms of the modified Gamma function. Tellus XXVIII, 4, 333347.Google Scholar
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C., 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.Google Scholar
Tao, W.-K., Li, X., Khain, A., Matsui, T., Lang, S., and Simpson, J., 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18.Google Scholar
Tao, W.-K., Simpson, J., Baker, D., Braun, S., Chou, M.-D., Ferrier, B., Johnson, D., Khain, A., Lang, S., Lynn, B., Shie, C.-L., Starr, D., Sui, C.-H., Wang, Y., and Wetzel, P., 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol. Atmos. Phys., 82, 97137.Google Scholar
Tao, W.-K., Simpson, J., and McCumber, M., 1989: An ice-water saturation adjustment. Mon. Weather Rev., 117, 231235.Google Scholar
Tao, W.-K., Shi, J.J., Chen, S.S., Lang, S., Lin, P.-L., Hong, S.-Y., Peters-Lidard, C., and Hou, A., 2011: The impact of microphysical schemes on intensity and track of hurricane. Asia-Pacific J. Atmos. Sci., 47, 116.Google Scholar
Tao, W.-K., Wu, D., Lang, S., Chern, J., Peters-Lidard, C., Fridlind, A., and Matsui, T., 2015: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, 12781305, doi:10.1002/2015JD023986.Google Scholar
Teller, A., Xue, L., and Levin, Z., 2012: The effects of mineral dust particles, aerosol regeneration and ice nucleation parameterizations on clouds and precipitation, Atmos. Chem. Phys., 12, 93039320.Google Scholar
Thompson, G., and Eidhammer, T., 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658.Google Scholar
Thompson, G., Field, P.R., Hall, W.D., and Rasmussen, R., 2006: A new bulk microphysical parameterization for WRF (& MM5). WRF Conference, Natl. Cent. for Atmos. Res., Boulder, Colorado, June.Google Scholar
Thompson, G., Field, P.R., Rasmussen, R.M., and Hall, W.D., 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev., 136, 50955115.Google Scholar
Thompson, G., Rasmussen, R.M., and Manning, K., 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Weather Rev., 132, 519542.Google Scholar
Tian, L., Heymsfield, G.M., Li, L., Heymsfield, A.J., Bansemer, A., Twohy, C.H., Srivastava, R.C., 2010: A study of cirrus ice particle size distribution using TC4 observations. J. Atmos. Sci., 67, 195216.Google Scholar
Tiedtke, M., ECMWF, 1983: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Workshop on Convection in Large-Scale Numerical Models. Nov. 28–Dec. 1, pp. 297–316.Google Scholar
Tripoli, G.J., and Cotton, W.R., 1980. A numerical investigation of several factors contributing to the observed variable density of deep convection over south Florida. J. Appl. Meteorol., 19, 10371063.Google Scholar
Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256.Google Scholar
Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.Google Scholar
Tzivion, S., Feingold, G., and Levin, Z., 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149.Google Scholar
Tzivion, S., Feingold, G., and Levin, Z., 1989: The evolution of raindrop spectra II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 33123327.Google Scholar
Van den Heever, S.C., and Cotton, W.R., 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Climatol., 46, 828850.Google Scholar
Van den Heever, S.C., Carrió, G.G., Cotton, W.R., Demott, P.J., and Prenni, A.J., 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775.Google Scholar
Van den Heever, S.C., Stephens, G.L., and Wood, N.B., 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative-convective equilibrium. J. Atmos. Sci., 68, 699718.Google Scholar
Van Zanten, M.C., Stevens, B., Vali, G., and Lenschow, D.H., 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106.Google Scholar
Verlinde, J., Flatau, P.J., and Cotton, W.R., 1990: Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud micro-physics parameterization schemes. J. Atmos. Sci., 47, 28712880.Google Scholar
Walko, R.L., Cotton, W.R., Meyers, M.P., and Harrington, J.Y., 1995: New RAMS cloud microphysics parameterization Part I: The single-moment scheme. Atmos. Res., 38, 2962.Google Scholar
Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensational nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110, D21211.Google Scholar
Wang, H., and Feingold, G., 2009a: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part 1: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256.Google Scholar
Wang, H., and Feingold, G., 2009b: Modelling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics of the boundary region between open and closed cells. J. Atmos. Sci., 66, 32573275.Google Scholar
Wang, M., Ghan, S., Ovchinnikov, M., Liu, X., Easter, R., Kassianov, E., Qian, Y., Marchand, R., and Morrison, H., 2011: Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF. Atmos. Chem. Phys., 11, 54315455.Google Scholar
Wang, Y., Fan, J., Zhang, R., Leung, L., and Franklin, C., 2013: Improving bulk microphysics parameterization in simulation of aerosol effects. J. Geophys. Res., 118, 119.Google Scholar
Williams, E., Rosenfeld, D., Madden, N., Gerlach, J., Gears, N., et al., 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification, J. Geophys. Res., 107(D20), 8082, doi: 10.1029/2001JD000380.Google Scholar
Wood, R., 2000: Parametrization of the effect of drizzle upon the droplet effective radius in stratocumulus clouds. Q. J. Royal Meteorol. Soc., 126, 33093324.Google Scholar
Wurzler, S., Reisin, T.G., and Levin, Z., 2000: Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. J. Geophys. Res. Atmos., 105, 45014512.Google Scholar
Xue, H., Feingold, G., and Stevens, B., 2008: Aerosol effect on clouds, precipitation, and the organization of shallow cumulus clouds. J. Atmos. Sci., 65, 392406.Google Scholar
Yamaguchi, T., and Feingold, G., 2013: On the size distribution of cloud holes in stratocumulus and their relationship to cloud-top entrainment. Geophys. Res. Lett., 40, 24502454.Google Scholar
Yang, F., Ovchinnikov, M., and Shaw, R.A., 2013: Minimalist model of ice microphysics in mixed-phase stratiform clouds. Geophys. Res. Lett., 40, 37563760, doi: 10.1002/grl.50700.Google Scholar
Yano, J.I., Bister, M., Fuchs, Z., Gerard, L., Phillips, V., Barkidija, S., and Piriou, J.M., 2013: Phenomenology of convection-parameterization closure. Atmos. Phys. Chem., 13, 41114131.Google Scholar
Yano, J.-I., Redelsperger, J.-L., Guichard, F., and Bechtold, P., 2005: Mode decomposition as a methodology for developing convective-scale representations in global models. Q. J. Roy. Meterol. Soc., 131, 23132336.Google Scholar
Yin, Y., Levin, Z., Reisin, T., and Tzivion, S., 2000: Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics. J. Appl. Meteorol., 39, 14601472.Google Scholar
Young, K.C., 1974: A numerical simulation of wintertime, orographic precipitation: Part I. Description of model microphysics and numerical techniques. J. Atmos. Sci., 31, 17351748.Google Scholar
Young, K.C., 1975: The evolution of drop spectra due to condensation, coalescence and breakup. J. Atmos. Sci., 32, 965973.Google Scholar
Yuan, T., Li, Z., Zhang, R., and Fan, J., 2008: Increase of cloud droplet size with aerosol optical depth: An observation and modeling study. J. Geophys. Res., 113, D04201, doi: 10.1029/2007JD008632.Google Scholar
Yuan, T., Remer, L.A., Pickering, K.E., and Yu, H.. 2011: Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett., 38, L04701, doi: 10.1029/2010GL046052.Google Scholar
Yum, S.S. and Hudson, J.G., 2002: Maritime/continental microphysical contrasts in stratus. Tellus. B 54, 6173.Google Scholar
Yuter, S.E., Kingsmill, D., Nance, L.B., and Löffler-Mang, M., 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteorol. Clim., 45, 14501464.Google Scholar
Zhang, D.-L., Gao, K., and Parsons, D.B., 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM, Part 1: Model verification, Mon. Weather Rev., 117, 960994.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×