Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-c8jtx Total loading time: 0 Render date: 2025-12-01T06:16:25.649Z Has data issue: false hasContentIssue false

5 - Warm Microphysical Processes

Published online by Cambridge University Press:  22 August 2018

Alexander P. Khain
Affiliation:
Hebrew University of Jerusalem
Mark Pinsky
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Microphysical processes that are not related to ice formation are often referred to as warm microphysical processes. It does not mean that these processes take place at positive temperatures only. Drops of a particular kind (supercooled drops) can exist at temperatures as cold as −38°C; nevertheless their diffusional growth and collisions are considered as warm microphysical processes. The major warm microphysical processes and terms of kinetic equations describing their rates are listed in Table 5.1.1.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abdul-Razzak, H., and Ghan, S.J., 2000: A parameterization of aerosol activation 2. Multiple aerosol types. J. Geophys. Res., 105 (D5), 68376844.CrossRefGoogle Scholar
Abdul-Razzak, H., Ghan, S.J., and Rivera-Carpio, C., 1998: A parameterization of aerosol activation. 1. Single aerosol type. J. Geophys. Res., 103 D6, 61236131.10.1029/97JD03735CrossRefGoogle Scholar
Almeida, F.C., 1976: The collisional problem of cloud droplets moving in a turbulent environment-part I: A method of solution. J. Atmos. Sci., 33, 15711578.10.1175/1520-0469(1976)033<1571:TCPOCD>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Almeida, F.C., 1979: The collisional problem of cloud droplets moving in a turbulent environment-part II: Turbulent collision efficiencies. J. Atmos. Sci., 36, 15641576.10.1175/1520-0469(1979)036<1564:TCPOCD>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Alofs, D.J., and Liu, T.-H., 1981: Atmospheric measurements of CCN in the supersaturation range 0.013–0.681%. J. Atmos. Sci., 38, 27722778.10.1175/1520-0469(1981)038<2772:AMOCIT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Andreae, M.O., Rosenfeld, D., Artaxo, P., Costa, A.A.. Frank, G.P., Longlo, K.M., and Silva-Dias, M.A.F., 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342.10.1126/science.1092779CrossRefGoogle ScholarPubMed
Andsager, K., Beard, K.V., and Laird, N.F., 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56 (15), 26732683.10.1175/1520-0469(1999)056<2673:LMOARF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Antonia, R.A., Chambers, A.J., and Satyaprakash, B.R., 1981: Reynolds number dependence of high order moments of the streamwise turbulent velocity derivative. Bound.-Layer Meteor., 21, 159171.10.1007/BF02033934CrossRefGoogle Scholar
Arakawa, A., and Shubert, W.H., 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part. 1. J. Atmos. Sci., 31, 674701.10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Arenberg, D., 1939: Turbulence as the major factor in the growth of cloud drops 1939. Bull. Amer. Meteor. Soc., 20, 444448.10.1175/1520-0477-20.10.444CrossRefGoogle Scholar
Ayala, O., Grabowski, W.W., and Wang, L.-P., 2007: A hybrid approach for simulating turbulent collisions of hydrodynamically interacting particles. J. Comp. Phys., 225, 5173.10.1016/j.jcp.2006.11.016CrossRefGoogle Scholar
Ayala, O., Rosa, B., and Wang, L.-P., 2008a: Effects of turbulence on the geometric collision rate of sedimenting droplets: Part 2. Theory and parameterization. New J. Phys., 10, 099802.10.1088/1367-2630/10/9/099802CrossRefGoogle Scholar
Ayala, O., Rosa, B., Wang, L.-P., and Grabowski, W.W., 2008b: Effects of turbulence on the geometric collision rate of sedimenting droplets: Part 1. Results from direct numerical simulation. New J. Phys., 10, 075015.10.1088/1367-2630/10/7/075015CrossRefGoogle Scholar
Baker, M., Corbin, R.G., and Latham, J., 1980: The influence of entrainment on the evolution of cloud drop spectra: I. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581598.10.1002/qj.49710644914CrossRefGoogle Scholar
Baker, M., and Latham, J., 1979: The evolution of droplet spectra and the rate of production of embyonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 16121615.10.1175/1520-0469(1979)036<1612:TEODSA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Baker, M.B., and Latham, J., 1982: A diffusive model of the turbulent mixing of dry and cloudy air. Q. J. Royal Meteorol. Soc., 108, 871898.10.1002/qj.49710845809CrossRefGoogle Scholar
Barlett, J.T., and Jonas, P.R., 1972: On the dispersion of the sizes of droplets growing by condensation in turbulent clouds. Quart. J. Roy. Meteor. Soc., 98, 150164.10.1002/qj.49709841512CrossRefGoogle Scholar
Bar-Or, R.Z., Koren, I., Altaratz, O., and Fredj, E., 2012: Radiative properties of 322 humidified aerosols in cloudy environment. Atmos. Res., 118, 280294.10.1016/j.atmosres.2012.07.014CrossRefGoogle Scholar
Barros, A.P., Prat, O.P., Shrestha, P., and Testic, F.Y., 2008: Revisiting low and list (1982): Evaluation of raindrop collision parameterizations using laboratory observations and modeling. J. Atmos. Sci., 65, 29832993.10.1175/2008JAS2630.1CrossRefGoogle Scholar
Beard, K.V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864.10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Beard, K.V., Kubesh, R.J., and Ochs, H.T., 1991: Laboratory measurements of small raindrop distortion. Part I: Axis ratios and fall behavior. J. Atmos. Sci., 48 (5), 698710.10.1175/1520-0469(1991)048<0698:LMOSRD>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Beard, K.V., and Ochs, H.T., 1984: Collection and coalescence efficiencies for accretion. J. Geophys. Res., 89, 71657169.10.1029/JD089iD05p07165CrossRefGoogle Scholar
Beard, K.V., and Ochs, H.T. III, 1993: Warm-rain initiation: An overview of microphysical mechanisms. J. Appl. Meteorol., 33, 608625.10.1175/1520-0450(1993)032<0608:WRIAOO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Beard, K.V., and Ochs, H.T., 1995: Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites. J. Atmos. Sci., 52, 39773996.10.1175/1520-0469(1995)052<3977:CBSPDP>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Beard, K.V., and Pruppacher, H.R., 1971: A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci., 28, 14551464.10.1175/1520-0469(1971)028<1455:AWTIOT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Bedos, C., Suhre, K., and Rosset, R., 1996: Adaptation of a cloud activation scheme to a spectral-chemical aerosol model. Atmos. Res., 41, 267279.10.1016/0169-8095(96)00014-2CrossRefGoogle Scholar
Beheng, K.D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193206.10.1016/0169-8095(94)90020-5CrossRefGoogle Scholar
Beheng, K.D., and Doms, G., 1986: A general formulation of collection rates of clouds and raindrops using the kinetic equation and comparison with parameterizations. Contib. Atmos. Phys., 59, 6684.Google Scholar
Belin, F., Maurer, J., Tabeling, P., and Willaime, H., 1997: Velocity gradient distributions in fully developed turbulence: An experimental study. Phys. Fluids, 9, 38433850.10.1063/1.869484CrossRefGoogle Scholar
Belyaev, V.I., 1961: Drop-size distribution in a cloud during the condensation stages of development. Akad. Nauk SSSR, Izv, Geophys. Ser., 1209–1213.Google Scholar
Benmoshe, N., Pinsky, M., Pokrovsky, A., and Khain, A., 2012: Turbulent effects on microstructure and precipitation of deep convective clouds as seen from simulations with a 2-D spectral microphysics cloud model. J. Geophys. Res., 117, D06220.Google Scholar
Bera, S., Pandithurai, G., and Prabha, T.V., 2016a: Entrainment and droplet spectral characteristics in convective clouds during transition to monsoon. Atmos. Sci. Lett. 17, 286293.10.1002/asl.657CrossRefGoogle Scholar
Bera, S., Prabha, T.V., and Grabowski, W.W., 2016b: Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing. J. Geophys. Res., 121, 97679788.10.1002/2016JD025133CrossRefGoogle Scholar
Berry, E.X., and Reinhardt, R.L., 1974a: An analysis of cloud droplet growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824.10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Berry, E.X., and Reinhardt, R.L., 1974b: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 18251831.10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Berry, E.X., and Reinhardt, R.L., 1974c: An analysis of cloud drop growth by collection: Part III. Accretion and selfcollection. J. Atmos. Sci., 31, 21182126.10.1175/1520-0469(1974)031<2118:AAOCDG>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Berry, E.X., and Reinhardt, R.L., 1974d: An analysis of cloud drop growth by collection: Part IV. A new parameterization. J. Atmos. Sci., 31, 21272135.10.1175/1520-0469(1974)031<2127:AAOCDG>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Bleck, R., 1970: A fast approximate method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 51655171.10.1029/JC075i027p05165CrossRefGoogle Scholar
Blyth, A.M., Choularton, T.W., Fullarton, G., Latham, J., Mill, C.S., Smith, M.H., and Stromberg, I.M., 1980: The influence of entrainment on the evolution of cloud droplet spectra. 2. Field experiments 5 at Great Dun Fell. Q. J. Royal Meteorol. Soc., 106, 821840.Google Scholar
Blyth, A.M., Cooper, W.A., and Jensen, J.B., 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 39443964.10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Boffetta, G., and Sokolov, I.M., 2002: Relative dispersion in fully developed turbulence: The Richardson’s law and intermittency corrections. Phys. Rev. Let., 88, 094501-1094501-4.10.1103/PhysRevLett.88.094501CrossRefGoogle ScholarPubMed
Bott, A., 1989a: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117, 10061015.10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Bott, A., 1989b: Reply. Mon. Wea. Rev., 117, 26332636.2.0.CO;2>CrossRefGoogle Scholar
Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293.10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294.10.1175/1520-0469(2000)057<0284:AFMFTN>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Boucher, O., and Lohmann, U., 1995: The sulfate CCN-cloud albedo effect. A sensitivity study with 2 general circulation models. Tellus, Ser. B Chem. Phys. Meteorol., 47, 281300.10.3402/tellusb.v47i3.16048CrossRefGoogle Scholar
Bower, K. N., and Choularton, T. W., 1988: The effects of entrainment on the growth of droplets in continental cumulus clouds. Q. J. Royal Meteorol. Soc., 114, 14111434.10.1002/qj.49711448404CrossRefGoogle Scholar
Brenguier, J.-L., and Burnet, F., 1996: Experimental study of the effect of mixing on droplet spectra. Proc. 12th Int. Conf. on Clouds and Precipitation, Zurich, International Commission on Clouds and Precipitation, 6770.Google Scholar
Brenguier, J.-L., and Chaumat, L., 2001: Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores. J. Atmos. Sci., 58, 628641.10.1175/1520-0469(2001)058<0628:DSBICC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Brown, P.S., 1983: Some essential details of Bleck’s method to the collision-breakup equation. J. Clim. Appl. Meteorol., 22, 693697.10.1175/1520-0450(1983)022<0693:SEDFAO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Brown, P., 1986: Analysis of the low and list drop-breakup formulation. J. Climate Appl. Meteorol., 25, 313321.10.1175/1520-0450(1986)025<0313:AOTLAL>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Burnet, F., and Brenguier, J.-L., 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011.10.1175/JAS3928.1CrossRefGoogle Scholar
Carpenter, R.L., Droegemeier, K.K. and Blyth, A.M., 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part I: General results. J. Atmos. Sci., 55, 34173432.10.1175/1520-0469(1998)055<3417:EADINS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Carrio, G.G., and Levi, L., 1995: On the parameterization of autoconversion. Effects of small-scale turbulent motions. Atmos. Res., 38, 2127.10.1016/0169-8095(94)00086-SCrossRefGoogle Scholar
Carrio, G.G., and Nicolini, M., 1999: A double moment warm rain scheme: Description and test within a kinematic framework. Atmos. Res., 52, 116.10.1016/S0169-8095(99)00031-9CrossRefGoogle Scholar
Chun, J., and Koch, D.L., 2005: Coagulation of monodisperse aerosol particles by isotropic turbulence. Phys. Fluid, 17, 27102-1271021-5.10.1063/1.1833406CrossRefGoogle Scholar
Chun, J., Koch, D.L., Rani, S.L.A. Ahluwalia, , and Collins, L.R., 2005: Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech., 536, 219251.10.1017/S0022112005004568CrossRefGoogle Scholar
Clark, A.D., and Kapustin, V., 2002: A Pacific aerosol survey. Part I: A decade of data on particle production, transport, evolution, and mixing in the troposphere. J. Atmos. Sci., 59, 363382.10.1175/1520-0469(2002)059<0363:APASPI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Clark, T.L., 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857878.10.1175/1520-0469(1973)030<0857:NMOTDA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Cohard, J.M., and Pinty, J.P., 2000: A comprehensive two-moment warm microphysical bulk model scheme: I: Description and test. Q. J. Royal Meteorol. Soc., 126, 18151842.Google Scholar
Cohard, J.-M., Pinty, J.-P., and Bedos, C., 1998: Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J. Atmos. Sci., 55, 33483357.10.1175/1520-0469(1998)055<3348:ETSAEO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Cooper, W.A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part 1. Theory. J. Atmos. Sci., 46, 13011311.10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Cooper, W.A., Bruintjes, R., and Mather, G., 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteorol., 36, 14491469.10.1175/1520-0450(1997)036<1449:CPTHSW>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Cooper, W.A., Lasher-Trapp, S.G., and Blyth, A.M., 2011: Initiation of coalescence in a cumulus cloud: A beneficial influence of entrainment and mixing. Atmos. Chem. Phys. Discuss., 11, 1055710613.Google Scholar
Covert, D.S., Kapustin, V.N., Quinn, P.K., and Bates, T.S., 1992: New particle formation in the marine boundary layer. J. Geophys. Res., 97(D18), 2058120589.10.1029/92JD02074CrossRefGoogle Scholar
Damiani, R., Vali, G., and Haimov, S., 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450.10.1175/JAS3701.1CrossRefGoogle Scholar
Devenish, B.J., Bartello, P., Brenguier, J.-L., Collins, L.R., Grabowski, W.W., Ijzermans, R.H.A., Malinovski, S.P., Reeks, M.W., Vassilicos, J.C., Wang, L.-P., and Warhaft, Z., 2012: Droplet growth in warm turbulent clouds. Q. J. Royal Meteorol. Soc., 138, 14011429.10.1002/qj.1897CrossRefGoogle Scholar
Devis, E.J., 2006: A history and state-of-the-art of accommodation coefficients. Atmos. Res., 82, 561578.10.1016/j.atmosres.2006.02.013CrossRefGoogle Scholar
Dinger, J.E., Howell, H.B., and Wojciechowski, T.A., 1970: On the source of composition of cloud nuclei in subsident air mass over the North Atlantic. J. Atmos. Sci., 27, 791797.10.1175/1520-0469(1970)027<0791:OTSACO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Dodin, Z., and Elperin, T., 2002: On the collision rate of particles in turbulent flow with gravity. Phys. Fluid, 14, 29212924.10.1063/1.1490136CrossRefGoogle Scholar
Duru, P., Koch, D.L., and Cohen, C., 2007: Experimental study of turbulence-induced coalescence in aerosols. Int. J. of Multiph. Flow., 33, 9871005.10.1016/j.ijmultiphaseflow.2007.03.006CrossRefGoogle Scholar
Elperin, T., Kleeorin, N., L’vov, V.S., Rogachevskii, I., and Sokoloff, D., 2002a: Clustering instability of the spatial distribution of inertial particles in turbulent flows. Phys. Rev., E66, 36302-136302-16.Google Scholar
Elperin, T., Kleeorin, N., Rogachevskii, I., 1996: Self-excitation of fluctuations of inertial particles concentration in turbulent flow. Phys. Rev. Lett., 77, 53735376.10.1103/PhysRevLett.77.5373CrossRefGoogle Scholar
Elperin, T., Kleeorin, N., and Rogachevskii, I., 2002b: Formation of large scale semiorginized structures in turbulent convection. Phys. Rev. E., 66, 066305, 510.10.1103/PhysRevE.66.066305CrossRefGoogle ScholarPubMed
Emde, K., and Wacker, U., 1993: Comments on the relationship between aerosol spectra, equilibrium drop size spectra, and CCN spectra. Beitr. Phys. Atmosph., 66, 1–2, 157162.Google Scholar
Enukashvily, I.M., 1980: A numerical method for integrating the kinetic equation of coalescence and breakup of cloud droplets. J. Atmos. Sci., 37, 25212534.10.1175/1520-0469(1980)037<2521:ANMFIT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Erlick, C., Khain, A., Pinsky, M., and Segal, Y., 2005: The effect of turbulent velocity fluctuations on drop spectrum broadening in stratiform clouds. Atmos. Res., 75, 1545.10.1016/j.atmosres.2004.10.007CrossRefGoogle Scholar
Falkovich, G., Fouxon, A., and Stepanov, M.G., 2002: Acceleration of rain initiation by cloud turbulence. Nature, 419, 151154.10.1038/nature00983CrossRefGoogle ScholarPubMed
Falkovich, G., and Pumir, A., 2004: Intermittent distribution of heavy particles in a turbulent flow. Phys. Fluids, 16, L47L50.10.1063/1.1755722CrossRefGoogle Scholar
Falkovich, G., and Pumir, A., 2007: Sling effect in collisions of water droplets in turbulent clouds. J. Atmos. Sci., 64, 44974505.10.1175/2007JAS2371.1CrossRefGoogle Scholar
Fan, J., Comstock, J.M., and Ovchinnikov, M., 2010: The cloud condensational nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer. Environ. Res. Lett. 5, doi: 10.1088/1748–9326/5/4/044005.CrossRefGoogle Scholar
Fankhauser, J.C., Barness, G.M., Biter, C.J., Breed, D.W., and LeMone, M.A., 1983: Summary of NCAR Technical Note NCAR/TN-207+STR, p. 134. (Available from NCAR, P.O. Box 3000, Boulder, CO 80307.)Google Scholar
Feingold, G., Kreidenweis, S.M., Stevens, B., and Cotton, W.R., 1996: Numerical simulation of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101, 21,39121,402.10.1029/96JD01552CrossRefGoogle Scholar
Ferrier, B.S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part 1: Description. J. Atmos. Sci., 51, 249280.10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Ferrier, B.S., and Houze, R.A., 1989: One-dimensional time-dependent modeling of GATE cumulonimbus convection. J. Atmos. Sci., 46, 330352.10.1175/1520-0469(1989)046<0330:ODTDMO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Fierro, A.O., Zipser, E.J., Lemone, M.A., Straka, J.M., and Simpson, J., 2012: Tropical oceanic hot towers: Need they be undilute to transport energy from the boundary layer to the upper troposphere effectively? An answer based on trajectory analysis of a simulation of a TOGA COARE convective system. J. Atmos. Sci., 69, 195213.10.1175/JAS-D-11-0147.1CrossRefGoogle Scholar
Flossmann, A.I., and Pruppacher, H.R., 1988: A theoretical study of the wet removal of atmospheric pollutants. Part III: The uptake, redistribution, and deposition of (NH4)2SO4 particles by a convective cloud using a two-dimensional cloud dynamics model. J. Atmos. Sci., 45, 18571871.10.1175/1520-0469(1988)045<1857:ATSOTW>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Fountoukis, C., and Nenes, A., 2005: Continued development of a cloud droplet formation parameterization for global clime models. J. Geophys. Res., 110, D11212.Google Scholar
Franklin, C.N., 2008: A warm rain microphysics parameterization that includes the effect of turbulence. J. Atmos. Sci., 65, 17951816.10.1175/2007JAS2556.1CrossRefGoogle Scholar
Franklin, C.N., Vaillancourt, P.A., and Yau, M.K., 2007: Statistics and parameterizations of the effect of turbulence on the geometric collision kernel of cloud droplets. J. Atmos. Sci., 64, 938954.10.1175/JAS3872.1CrossRefGoogle Scholar
Franklin, C.N., Vaillancourt, P.A., Yau, M.K., and Bartello, P., 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci., 62, 24512466.10.1175/JAS3493.1CrossRefGoogle Scholar
Freud, E., and Rosenfeld, D., 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207.Google Scholar
Freud, E., Rosenfeld, D., Andreae, M.O., Costa, A.A., and Artaxo, P., 2008: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds. Atmos. Chem. Phys., 8, 16611675.10.5194/acp-8-1661-2008CrossRefGoogle Scholar
Freud, E., Rosenfeld, D., Axisa, D., and Kulkarni, J.R., 2011: Resolving both entrainment-mixing and number of activated CCN in deep convective clouds. Atmos. Chem. Phys., 11, 1288712900.10.5194/acp-11-12887-2011CrossRefGoogle Scholar
Fridlind, A. et al., 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718722.10.1126/science.1094947CrossRefGoogle ScholarPubMed
Fung, J.C.H., 1993: Gravitational settling of particles and bubbles in homogeneous turbulence. J. Geoph. Res., 98, 20,28720,297.10.1029/93JC01845CrossRefGoogle Scholar
Fung, J.C.H., Hunt, J.C.R., Malik, N.A., and Perkins, R.J., 1992: Kinematic simulation of homogeneous turbulent flows generated by unsteady random Fourier modes. J. Fluid Mech., 236, 281317.10.1017/S0022112092001423CrossRefGoogle Scholar
Gerber, H., Frick, G., Jensen, J.B., and Hudson, J.G., 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteorol. Soc. Jpn., 86A, 87106.10.2151/jmsj.86A.87CrossRefGoogle Scholar
Ghan, S.J., Chuang, C.C., Easter, R.C., and Penner, J.E., 1995: A parameterization of cloud droplet nucleation. Pt. 2: Multiple aerosol types. Atmos. Res., 36, 3954.10.1016/0169-8095(94)00005-XCrossRefGoogle Scholar
Ghan, S.J., Chuang, C.C., and Penner, J.E., 1993: A parameterization of cloud droplet nucleation. Pt.1: Single aerosol type. Atmos. Res., 30, 197221.10.1016/0169-8095(93)90024-ICrossRefGoogle Scholar
Ghan, S.J., Hayder, A.-R., Nenes, A., Ming, Y., Xiaohong, L., Ovchinnikov, M., Shipway, B., Meskhidze, N., Xu, J., and Shi, X., 2011: Droplet nucleation: Physically-based parameterizations and comparative evaluation. J. Adv. Model. Earth Syst., 3, M10001, p. 33, DOI:10.1029/2011MS000074.Google Scholar
Gilmore, M.S., and Straka, J.M., 2008: The Berry and Reinhardt autoconversion parameterization: A digest. J. Appl. Meteorol. Climatol., 47, 375396.10.1175/2007JAMC1573.1CrossRefGoogle Scholar
Giola, G., Lacorata, G., Marques Filho, E.P., Mazzino, A., and Rizza, U., 2004: Richardson’s law in large-eddy simulations of boundary-layer flows. Boundary-Layer Met., 113, 187199.Google Scholar
Grabowski, W.W., 2006: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19, 46644682.10.1175/JCLI3857.1CrossRefGoogle Scholar
Grabowski, W.W., 2007: Representation of turbulent mixing and buoyancy reversal in bulk cloud models. J. Atmos. Sci., 64, 36663680.10.1175/JAS4047.1CrossRefGoogle Scholar
Grabowski, W.W., Andrejczuk, M., and Wang, L.-P., 2011: Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmos. Res., 99, 290301.10.1016/j.atmosres.2010.10.020CrossRefGoogle Scholar
Grabowski, W.W., and Clark, T.L., 1991: Cloud-entrainment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527546.10.1175/1520-0469(1991)048<0527:CIIRTC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Grabowski, W.W., and Clark, T.L., 1993: Cloud-enviromental interface instability. Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50, 555573.10.1175/1520-0469(1993)050<0555:CEIIPI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Grabowski, W.W., and Morrison, H., 2008: Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Wea. Rev., 136, 12241234.10.1175/2007MWR2283.1CrossRefGoogle Scholar
Grabowski, W.W., and Vaillancourt, P., 1999: Comments on “Preferential concentration of cloud droplets by turbulence: effects on the early evolution of cumulus cloud droplet spectra.” J. Atmos. Sci., 56, 14331436.10.1175/1520-0469(1999)056<1433:COPCOC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Gras, J.L., 1989: Baseline atmospheric condensation nuclei at Cape grim. J. Atmos. Chem., 11, 89106.10.1007/BF00053669CrossRefGoogle Scholar
Gras, J.L., 1990: Cloud condensation nuclei over the Southern Ocean. Geophys. Res. Lett., 17, 15651567.10.1029/GL017i010p01565CrossRefGoogle Scholar
Grits, B., Pinsky, M., and Khain, A., 2006: Investigation of small-scale droplet concentration inhomogeneities in a turbulent flow. Meteorol. Atmos. Phys., 92, 191204.10.1007/s00703-005-0157-4CrossRefGoogle Scholar
Hall, W.D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507.10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hamielec, A.E., and Johnson, A.I., 1962: Viscous flow around fluid spheres at intermediate Reynolds numbers. Can. J. Chem. Eng., April, 4145.10.1002/cjce.5450400202CrossRefGoogle Scholar
Hegg, D.A., and Hobbs, P.V.,1992: Cloud condensation nuclei in the marine atmosphere, In N. Fukuta, P.E. Wagner (Eds.), Nucl. and Atmos. Aerosols. - Proc. 13-th Int. Conf. Nucl. Atmos. Aerosol, A. Deepak Publishing, Hampton, VA. pp. 181–192.Google Scholar
Hegg, D.A., Radke, L.F., and Hobbs, P.V., 1991: Measurements of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-cloud-climate hypothesis. J. Geophys. Res., 96, 18,72718,733.10.1029/91JD01870CrossRefGoogle Scholar
Heus, T., and Jonker, H., 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018.10.1175/2007JAS2322.1CrossRefGoogle Scholar
Hill, A.A., Feingold, G., and Jiang, H., 2009: The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci., 66, 14501464.10.1175/2008JAS2909.1CrossRefGoogle Scholar
Hill, R.J., 2002: Scaling of acceleration in locally isotropic turbulence. J. Fluid Mech., 452, 361370.10.1017/S0022112001007091CrossRefGoogle Scholar
Hill, T.A., and Choularton, T.W., 1986: A model of the development of the droplet spectrum in a growing cumulus cloud. Q. J. Royal Meteorol. Soc., 112, 531554.CrossRefGoogle Scholar
Hobbs, P.V. et al., 1978: Res. Rept. XIII, Dept. Atmos. Sci., Univ. Washington, DC.Google Scholar
Hobbs, P.V., 1993: Aerosol-cloud-climate interactions. Academic Press, p. 236.Google Scholar
Hobbs, P.V., Bowdle, D.A., and Radke, L.F., 1985: Particles in the lower troposphere over the High Plains of the United States. 1: Size distributions, elemental compositions and morphologies. J. Clim. Appl. Meteorol., 24, 13441356.10.1175/1520-0450(1985)024<1344:PITLTO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hobbs, P.V., and Rangno, A.L., 2004: Super-large raindrops. Geophys. Res. Lett., 31, L13102, doi:10.1029/2004GL020167.CrossRefGoogle Scholar
Hocking, L.M., and Jonas, P.R., 1970: The collision efficiency of small drops. Q. J. Royal Meteorol. Soc., 96, 722729.10.1002/qj.49709641013CrossRefGoogle Scholar
Hong, S.-.Y, Lim, K.-S. S., Lee, Y.-H., Ha, J.-C., Kim, H.-W., Ham, S.-J., and Dudhia, J., 2010: Evaluation of the WRF double moment 6-class microphysics scheme for precipitating convection. Advances in Meteorology, ID 707253, doi:10.1155/2010/707253.CrossRefGoogle Scholar
Hoppel, W.A., Dinger, J.E., and Ruskin, R.E.,1973: Vertical profiles of CCN at various geographical locations. J. Atmos. Sci., 30, 14101420.10.1175/1520-0469(1973)030<1410:VPOCAV>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hoppel, W.A., Fitzgerald, J.W., Frick, G.M., Larson, R.E., and Mack, E.J., 1990: Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean. J. Geophys. Res., 95, 36593686.10.1029/JD095iD04p03659CrossRefGoogle Scholar
Hu, Z., and Srivastava, R.C., 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783.10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hudson, J.G., 1984: Cloud condensation nuclei measurements within clouds. J. Climate Appl. Meteorol., 23, 4251.10.1175/1520-0450(1984)023<0042:CCNMWC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hudson, J.G., and Frisbie, P.R., 1991: Cloud condensation nuclei near marine stratus. J. Geophys. Res., 96, 20,79520,808.10.1029/91JD02212CrossRefGoogle Scholar
Hudson, J.G., and Li, H., 1995: Microphysical contrasts in Atlantic stratus. J. Atmos. Sci., 52, 30313040.10.1175/1520-0469(1995)052<3031:MCIAS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hudson, J.G., and Yum, S.S., 1997: Droplet spectral broadening in marine stratus. J. Atmos. Sci., 54, 26422654.10.1175/1520-0469(1997)054<2642:DSBIMS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hudson, J.G., and Yum, S.S., 2002: Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. J. Geophys.Res., 107(D19), 8022, doi:10.1029/2001JD000829.Google Scholar
Ivanova, E.T., Kogan, Y.L., Mazin, I.P., and Permyakov, M.S., 1977: The ways of parameterization of condensation drop growth in numerical models. Izv. Atmos. Oceanic Phys., 13 (N11), 11931201.Google Scholar
Jaenicke, R., 1993: “Tropospheric Aerosols,” chapter in book by Aerosol-Cloud-Climate Interactions, edited by Hobbs, Peter. Academic Press, p. 236.Google Scholar
Jamerson, A.R., and Kostinski, A.B., 2000: Fluctuation properties of precipitation. Part 4: Observations of hyperfine clustering and drop size distribution structures in three-dimensional rain. J. Atmos. Sci., 57, 373388.10.1175/1520-0469(2000)057<0373:FPOPPV>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Jarecka, D., Grabowski, W.W., and Pawlowska, H., 2009: Modeling of subgrid-scale mixing in large-eddy simulation of shallow convection. J. Atmos. Sci., 66, 21252133.10.1175/2009JAS2929.1CrossRefGoogle Scholar
Jarecka, D., Pawlowska, H., Grabowski, W.W., and Wyszogrodzki, A.A., 2013: Modeling microphysical effects of entrainment in clouds observed during EUCAARI-IMPACT field campaign. Atmos. Chem. Phys. Discuss., 13, 14891526, doi:10.5194/acpd-13-1489-2013.Google Scholar
Jeffery, C.A., and Reisner, J.M., 2006: A study of cloud mixing and evolution using PDF methods. Part I: Cloud front propagation and evaporation. J. Atmos. Sci., 63, 28482864.10.1175/JAS3760.1CrossRefGoogle Scholar
Jeffery, C.A., Reisner, J.M., and Andrejczuc, M., 2007: Another look at stochastic condensation for subgrid cloud modeling: Adiabatic evolution and effects. J. Atmos. Sci., 64, 39493969.10.1175/2006JAS2147.1CrossRefGoogle Scholar
Jensen, J.B., Baker, M., 1989: A simple model of droplet spectral evolution during turbulent mixing. J. Atmos. Sci., 46, 28122829.10.1175/1520-0469(1989)046<2812:ASMODS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Jin, G., He, G.-W., and Wang, L.-P., 2010: Large-eddy simulation of turbulent collision of heavy particles in isotropic turbulence. Phys. Fluids, 22, 055106.10.1063/1.3425627CrossRefGoogle Scholar
Jiusto, J.E., 1967: Aerosol and cloud microphysics measurements in Hawaii. Tellus, 19, 359368.Google Scholar
Jiusto, J.E., and Lala, G.G., 1981: CCN-supersaturation spectra slopes (k). J. Rech. Atmos., 15, 303311.Google Scholar
Johnson, D.B., 1993: The onset of effective coalescence growth in convective clouds. Q. J. Royal Meteorol. Soc., 119, 925933.10.1002/qj.49711951304CrossRefGoogle Scholar
Jonas, P.R., 1972: The collision efficiency of small drops. Q. J. Royal Meteorol. Soc., 98, 681683.10.1002/qj.49709841717CrossRefGoogle Scholar
Kamra, A.K., Bhalwankar, R.V., and Sathe, A.B., 1991: Spontaneous breakup of charged and uncharged water drops freely suspended in a wind tunnel. J. Geophys. Res., 96 (D9), 17,15917,168.10.1029/91JD01475CrossRefGoogle Scholar
Kato, T., 1995: A box–Lagrangian rain-drop scheme. J. Meteorol. Soc. Jpn., 73, 241245.10.2151/jmsj1965.73.2_241CrossRefGoogle Scholar
Kerstein, A.R., 1988: Linear eddy modelling of turbulent scalar transport and mixing. Combust. Sci. Technol., 60, 391421.10.1080/00102208808923995CrossRefGoogle Scholar
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. Meteorol. Monogr., 32.Google Scholar
Khain, A.P., Beheng, K.D., Heymsfield, A., Korolev, A., Krichak, S.O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S.C., and Yano, J.-I., 2015: Representation of microphysical processes in cloud resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322.10.1002/2014RG000468CrossRefGoogle Scholar
Khain, A.P., Benmoshe, N., and Pokrovsky, A., 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt of classification. J. Atmos. Sci., 65, 17211748.10.1175/2007JAS2515.1CrossRefGoogle Scholar
Khain, A.P., Ovtchinnikov, M., Pinsky, M., Pokrovsky, A., and Krugliak, H., 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224.10.1016/S0169-8095(00)00064-8CrossRefGoogle Scholar
Khain, A.P., Phillips, V., Benmoshe, N., and Pokrovsky, A., 2012: The role of small soluble aerosols in the microphysics of deep maritime clouds. J. Atmos. Sci., 69, 27872807.10.1175/2011JAS3649.1CrossRefGoogle Scholar
Khain, A.P., and Pinsky, M.B., 1995: Drops’ inertia and its contribution to turbulent coalescence in convective clouds: Part 1: Drops’ fall in the flow with random horizontal velocity. J. Atmos. Sci., 52, 196206.10.1175/1520-0469(1995)052<0196:DIAICT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Khain, A., Pinsky, M., Elperin, T., Kleeorin, N., Rogachevskii, I., and Kostinski, A., 2007: Critical comments to results of investigations of drop collisions in turbulent clouds. Atmos. Res., 86, 120.10.1016/j.atmosres.2007.05.003CrossRefGoogle Scholar
Khain, A.P., and Pokrovsky, A., 2004: Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model Part 2: Sensitivity study. J. Atmos. Sci., 61, 29833001.10.1175/JAS-3281.1CrossRefGoogle Scholar
Khain, A., Pokrovsky, A., Pinsky, M., Seifert, A., and Phillips, V., 2004: Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model Part 1: Model description. J. Atmos. Sci., 61, 29632982.10.1175/JAS-3350.1CrossRefGoogle Scholar
Khain, A., Prabha, T.V., Benmoshe, N., Pandithurai, G., and Ovchinnikov, M., 2013: The mechanism of first raindrops formation in deep convective clouds. J. Geophys. Res. Atmos., 118, 91239140, doi:10.1002/jgrd.50641.CrossRefGoogle Scholar
Khain, A.P., Rosenfeld, D., and Sednev, I.L., 1993: Coastal effects in the Eastern Mediterranean as seen from experiments using a cloud ensemble model with a detailed description of warm and ice microphysical processes. Atmos. Res., 30, 295319.10.1016/0169-8095(93)90029-NCrossRefGoogle Scholar
Khain, A.P., and Sednev, I.L., 1995: Simulation of hydrometeor size spectra evolution by water-water, ice water and ice-ice interection. Atmos. Res., 36, 107138.10.1016/0169-8095(94)00030-HCrossRefGoogle Scholar
Khain, A.P., and Sednev, I., 1996: Simulation of precipitation formation in the Eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77110.10.1016/S0169-8095(96)00005-1CrossRefGoogle Scholar
Khairoutdinov, M., and Kogan, Y., 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243.10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kholmyansky, M., Tsinober, A., and Yorich, S., 2001: Velocity derivatives in the atmospheric surface layer at Reλ = 104. Phys. Fluids, 13, 311314.10.1063/1.1328358CrossRefGoogle Scholar
Khvorostyanov, V.I., and Curry, J.A., 1999a: Toward the theory of stochastic condensation in clouds. Part 1: A general kinetic equation. J. Atmos. Sci., 56, 39853996.10.1175/1520-0469(1999)056<3985:TTTOSC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Khvorostyanov, V.I., and Curry, J.A., 1999b: Toward the theory of stochastic condensation in clouds. Part 2: Analytical solutions of the gamma-distribution type. J. Atmos. Sci., 56, 39974013.10.1175/1520-0469(1999)056<3997:TTTOSC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Khvorostyanov, V.I., and Curry, J.A., 2006: Aerosol size spectra and CCN activity spectra: Reconciling the lognormal, algebraic, and power laws. J. Geophys. Res., 111, D12202.Google Scholar
Khvorostyanov, V.I., and Curry, J.A., 2008: Kinetics of cloud drop formation and its parametrization for cloud and climatemodels. J. Atmos. Sci., 65, 27842802.10.1175/2008JAS2606.1CrossRefGoogle Scholar
Khvorostyanov, V.I., Khain, A.P., and Kogteva, E.L., 1989: A two-dimensional non stationary microphysical model of a three-phase convective cloud and evaluation of the effects of seeding by a crystallizing agent. Soviet Meteorology and Hydrology, 5, 3345.Google Scholar
Kim, S., and Karrila, S.J., 1991: Microhydrodynamics Principles and Selected Applications. Butterworth-Heinmann, p. 507.Google Scholar
Kim, Y.J., and Boatman, J.F., 1990: Size calibration corrections for the Active Scattering Aerosol Spectrometer Probe (ASASP-100X). Aerosol Sci. Technol., 12, 665672.10.1080/02786829008959381CrossRefGoogle Scholar
Kinzer, G.D., and Gann, R., 1951: The evaporation temperature and thermal relaxation time of freely falling water drops. J. Meteorol., 8, 7183.10.1175/1520-0469(1951)008<0071:TETATR>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kivekäs, N., Kerminen, V.-M., Anttila, T., Korhonen, H., Lihavainen, H., Komppula, M., and Kulmala, M., 2008: Parameterization of cloud droplet activation using a simplified treatment of the aerosol number size distribution. J. Geophys. Res., 113, D15207.Google Scholar
Klaassen, G.P., and Clark, T.L., 1985: Dynamics of the cloud environment interface and entrainment in small cumuli: Two dimensional simulations in the absence of ambient shear. J. Atmos. Sci., 42, 26212642.10.1175/1520-0469(1985)042<2621:DOTCEI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Klett, J.D., and Davis, M.H., 1973: Theoretical collision efficiencies of cloud droplets at small Reynolds numbers. J. Atmos. Sci., 30, 107117.10.1175/1520-0469(1973)030<0107:TCEOCD>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Knight, C.A., and Miller, L.J., 1998: Early radar echoes from small, warm cumulus: Bragg and hydrometeor scattering. J. Atmos. Sci., 55, 29742992.10.1175/1520-0469(1998)055<2974:EREFSW>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kocmond, W.C., 1965: Res. Rept. RM-1788-p9, p. 36, Cornell Aeronaut. Lab. Buffalo, NY.Google Scholar
Kogan, Y., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part 1: Model description and sensitivity experiments. J. Atmos. Sci. 48, 11601189.10.1175/1520-0469(1991)048<1160:TSOACC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kogan, Y.L. 2006: Large-eddy simulation of air parcels in stratocumulus clouds: Time scales and spatial variability. J. Atmos. Sci., 63, 952967.10.1175/JAS3665.1CrossRefGoogle Scholar
Komabayasi, M., Gond, T., and Isono, K., 1964: Lifetime of water drops before breaking and size distribution of fragment droplets. J. Meteorol. Soc. Jpn., 42, 330340.10.2151/jmsj1923.42.5_330CrossRefGoogle Scholar
Korolev, A.V., 1995: The influence of supersaturation fluctuations on droplet size spectra formation. J. Atmos. Sci., 52, 36203634.10.1175/1520-0469(1995)052<3620:TIOSFO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Korolev, A., Khain, A., Pinsky, M., and French, J., 2016: Theoretical study of mixing in liquid clouds – Part 1: Classical concept. Atmos. Chem. Phys., 16, 92359254.10.5194/acp-16-9235-2016CrossRefGoogle Scholar
Korolev, A.V., and Mazin, I.P., 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974.10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Korolev, A., Pinsky, M., and Khain, A., 2013: A new mechanism of droplet size distribution broadening during diffusional growth. J. Atmos. Sci., 70, 20512071.10.1175/JAS-D-12-0182.1CrossRefGoogle Scholar
Kostinski, A.B., and Shaw, R.A., 2001: Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech., 434, 389398.10.1017/S0022112001004001CrossRefGoogle Scholar
Kostinski, A.B., and Shaw, R.A., 2005: Fluctuations and luck in droplet growth by coalescence. Bull. Am. Meteorol. Soc., 86, 235244.10.1175/BAMS-86-2-235CrossRefGoogle Scholar
Kovetz, A., and Olund, B., 1969: The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26, 10601065.10.1175/1520-0469(1969)026<1060:TEOCAC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Koziol, A.S., Leighton, H.G., 1996: The effect of turbulence on the collision rates of small cloud drops. J. Atmos. Sci., 53, 19101920.10.1175/1520-0469(1996)053<1910:TEOTOT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kraichnan, R.H., 1970: Diffusion by a random velocity field. Phys. Fluid, 13, 2231.10.1063/1.1692799CrossRefGoogle Scholar
Krueger, S.K., 1993: Linear eddy modeling of entrainment and mixing in stratus clouds. J. Atmos. Sci., 50, 30783090.10.1175/1520-0469(1993)050<3078:LEMOEA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Krueger, S., Su, C.-W., and McMurtry, P., 1997: Modeling entrainment and fine-scale mixing in cumulus clouds. J. Atmos. Sci., 54, 26972712.10.1175/1520-0469(1997)054<2697:MEAFMI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Krueger, S.K., Lehr, P.J., and Su, C.W., 2006: How entrainment and mixing scenarios affect droplet spectra in cumulus clouds. 12th Conference on Cloud Physics, and 12th Conference on Atmospheric Radiation, Madison WI, USA, July, 1014.Google Scholar
Kubesh, R.J., and Beard, K.V., 1993: Laboratory measurements of spontaneous oscillations for moderate-size raindrops. J. Atmos. Sci., 50(8), 10891098.10.1175/1520-0469(1993)050<1089:LMOSOF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kumar, B., Bera, S., Prabhakaran, T., and Grabowski, W.W., 2016: Cloud-edge mixing: Direct numerical simulation and observations in Indian monsoon clouds. Submitted to JAMES.Google Scholar
Kumar, B., Schumacher, J., and Shaw, R.A., 2013: Cloud microphysical effects of turbulent mixing and entrainment. Theor. Comput. Fluid Dyn., 27, 361376.10.1007/s00162-012-0272-zCrossRefGoogle Scholar
Kumar, B., Schumacher, J., and Shaw, R.A., 2014: Lagrangian mixing dynamics at the cloudy–clear air interface. J. Atmos. Sci., 71, 25642580.10.1175/JAS-D-13-0294.1CrossRefGoogle Scholar
La Porta, A., Voth, G.A., Crawford, A.M., Alexander, J., and Bodenschatz, E., 2001: Fluid particle accelerations in fully developed turbulence. Nature, 409, 10171019.10.1038/35059027CrossRefGoogle ScholarPubMed
Lanotte, A.S., Seminara, A., and Toschi, F., 2009: Cloud droplet growth by condensation in homogeneous isotropic turbulence. J. Atmos. Sci., 66, 16851697.10.1175/2008JAS2864.1CrossRefGoogle Scholar
Lasher-Trapp, S.G., Knight, C., Straka, J.M., 1998: Ultragiant aerosol growth by collection within a warm continental cumulus. AMS Conference on Cloud Physics, August 17–21, Everett, WA, pp. 494–497.Google Scholar
Latham, J., and Reed, R.L., 1977: Laboratory studies of effects of mixing on evolution of cloud droplet spectra, Q. J. Royal Meteorol. Soc., 103, 297306.10.1002/qj.49710343607CrossRefGoogle Scholar
Lehmann, K., Siebert, H., and Shaw, R.A., 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659.10.1175/2009JAS3012.1CrossRefGoogle Scholar
Leon, D.C., French, J.R., Lasher-Trapp, S., Blyth, A.M., Abel, V., Ballard, S., Bennett, L.J., Bower, K., Brooks, B., Brown, P., Choularton, T., Clark, P., Collier, C., Crosier, J., Cui, Z., Dufton, D., Eagle, C., Flynn, M.J., Gallagher, M., Hanley, K., Huang, Y., Kitchen, M., Korolev, A., Lean, H., Liu, Z., Marsham, J., Moser, D., Nicol, J., Norton, E.G., Plummer, D., Price, J., Ricketts, H., Roberts, N., Rosenberg, P.D., Taylor, J.W., Williams, P.I., and Young, G., 2016: The Convective Precipitation Experiment (COPE): Investigating the origins of heavy precipitation in the southwestern UK. Bull. Amer. Meteor. Soc., 97, 10031020.10.1175/BAMS-D-14-00157.1CrossRefGoogle Scholar
Levin, L.M., and Sedunov, Y.S., 1966: Stochastic condensation of drops and kinetics of cloud spectrum formation. J. Rech. Atmos., 2, 425432.Google Scholar
Levin, Z., and Cotton, W.R. (Eds.), 2009: Aerosol Pollution Impact on Precipitation: A Scientific Review. Springer, p. 386.10.1007/978-1-4020-8690-8CrossRefGoogle Scholar
Lewis, E.R., 2008: An examination of Kohler theory resulting in an accurate expression for the equilibrium radius ratio of a hygroscopic aerosol particle valid up to and including relative humidity 100%. J. Geoph. Res., 113, D03205.10.1029/2007JD008590CrossRefGoogle Scholar
Lin, C.L., and Lee, S.C., 1975: Collision efficiency of water drops in the atmosphere. J. Atmos. Sci., 32, 14121418.10.1175/1520-0469(1975)032<1412:CEOWDI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Lin, Y.-L., Farley, R.D., and Orville, H.D., 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteorol., 22, 10651092.10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
List, R., and Gillespie, J.R., 1976: Evolution of raindrop spectra with collision-induced breakup. J. Atmos. Sci., 33, 20072013.10.1175/1520-0469(1976)033<2007:EORSWC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
List, R., and McFarquhar, G.M., 1990: The role of breakup and coalescence in the three-peak equilibrium distribution of raindrops. J. Atmos. Sci., 47, 22742292.10.1175/1520-0469(1990)047<2274:TROBAC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
List, R., Nissen, R., and Fung, C., 2009: Effects of pressure on collision, coalescence, and breakup of raindrops. Part II: Parameterization and spectra evolution at 50 and 100 kPa. J. Atmos. Sci., 66, 22042215.10.1175/2009JAS2875.1CrossRefGoogle Scholar
Liu, Q., Kogan, Y., Lilly, D.K., and Khairoutdinov, M.P., 1997: Variational optimization method for calculation of cloud drop growth in Eulerian drop-size framework. J. Atmos. Sci., 54, 24932504.10.1175/1520-0469(1997)054<2493:VOMFCO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Long, A., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31, 10401052.10.1175/1520-0469(1974)031<1040:STTDCE>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Low, T.B., and List, R., 1982a: Collision, coalescence, and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 15911606.10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Low, T.B., and List, R., 1982b: Collision, coalescence, and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci., 39, 16071618.10.1175/1520-0469(1982)039<1607:CCABOR>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Lu, C., Liu, Y., Niu, S., and Endo, S., 2014: Scale dependence of entrainment-mixing mechanisms in cumulus clouds. J. Geophys. Res. Atmos., 119, 13,87713,890.10.1002/2014JD022265CrossRefGoogle Scholar
Magaritz, L., Pinsky, M., and Khain, A., 2010: Effects of stratocumulus clouds on aerosols in the maritime boundary layer. Atmos. Res., 97, 498512.10.1016/j.atmosres.2010.06.010CrossRefGoogle Scholar
Magaritz, L., Pinsky, M., Krasnov, O., and Khain, A., 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part 2: Lucky parcels in non-mixing limit. J. Atmos. Sci., 66, 781805.10.1175/2008JAS2789.1CrossRefGoogle Scholar
Magaritz-Ronen, L., Pinsky, M., and Khain, A., 2014: Effects of turbulent mixing on the structure and macroscopic properties of stratocumulus clouds demonstrated by a Lagrangian trajectory model. J. Atmos. Sci., 71, 18431862.10.1175/JAS-D-12-0339.1CrossRefGoogle Scholar
Magaritz-Ronen, L., Pinsky, M., and Khain, A., 2016a: Drizzle formation in stratocumulus clouds: Effects of turbulent mixing. Atmos. Chem. Phys., 16, 18491862.10.5194/acp-16-1849-2016CrossRefGoogle Scholar
Magaritz-Ronen, L., Pinsky, M., and Khain, A., 2016b: About the horizontal variability of effective radius in stratocumulus clouds. J. Geophys. Res., 121(16), 96409660.10.1002/2016JD024977CrossRefGoogle Scholar
Manton, M.J., 1977: The equation of motion for a small aerosol in a continuum. PAGEOPH, 115, 547559.10.1007/BF00876120CrossRefGoogle Scholar
Manton, M.J., 1979: On the broadening of a droplet distribution by turbulence near cloud base. Q. J. Royal Meteorol. Soc., 105, 899914.10.1002/qj.49710544613CrossRefGoogle Scholar
Marchuk, G.I., 1974: Numerical Methods in Weather Prediction. Akademic Press, p. 277.Google Scholar
Marchuk, G.I., 1980: Methods of Computational Mathematics (in Russian). Nauka Press, p. 536.Google Scholar
Martin, G.M., Johnson, D.W., and Spice, A., 1994: The measurements and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842.10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Maxey, M.R., 1987: The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441465.10.1017/S0022112087000193CrossRefGoogle Scholar
Mazin, I.P., 1965: To the theory of formation of size spectra of particles in clouds and precipitation (in Russian). Proc. of Central Aerologic Observatory, 64, 5770.Google Scholar
Mazin, I.P., 1967: A relationship between fluctuations of supersaturation in clouds and fluctuations of temperature and of vertical flows (in Russian). Proc. of Central Aerologic Observatory, 79, 38.Google Scholar
Mazin, I.P., 1968: Effect of Phase Transition on Formation of Temperature and Humidity Stratification in Clouds. Proc. Int. Conf. on Cloud Physics. Toronto, Ontario, Canada, Amer. Meteor. Soc., 132137.Google Scholar
Mazin, I.P., Khrgian, A.K., and Imyanitov, I.M., 1989: Handbook of Clouds and Cloudy atmosphere. Gidrometeoizdat, p. 647.Google Scholar
Mazin, I.P., and Merkulovich, V.M., 2008: Stochastic condensation and its possible role in liquid cloud microstructure formation (Review). In Some Problems of Cloud Physics, Collected papers, Memorial Issue dedicated to Prof. S.M. Shmeter, Moscow, National Geophysical Committee, Russian Academy of Science, 263295.Google Scholar
Mazin, I.P., and Shmeter, S.M., 1983: Clouds, Their Structure and Formation. Gidrometeoizdat, p. 279.Google Scholar
Mazin, I.P., and Smirnov, V.I., 1969: On the theory of cloud drop size spectrum formation by stochastic condensation. Proceed. CAO, 89, 9294.Google Scholar
McFarquhar, G.M., 2004a: The effect of raindrop clustering on collision-induced break-up of raindrops. Q. J. Royal Meteorol. Soc., 130, 21692190.10.1256/qj.03.98CrossRefGoogle Scholar
McFarquhar, G.M., 2004b: A new representation of collision induced breakup of raindrops and its implications for the shape of raindrop size distributions. J. Atmos. Sci., 61, 777794.10.1175/1520-0469(2004)061<0777:ANROCB>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Mechem, D. B., and Kogan, Y.L., 2008: A bulk parameterization of giant CCN. J. Atmos. Sci., 65, 24582466.10.1175/2007JAS2502.1CrossRefGoogle Scholar
Merkulovich, V.M., and Stepanov, A.S., 1977: Hygroscopicity effects and surface tension forces during condensational growth of cloud droplet in the presence of turbulence. Izv. Akad. Sci. USSR, Atmos. Oceanic Phys., 13, 163171.Google Scholar
Meyers, M.P., Walko, R.L, Harrington, J.Y., and Cotton, W.R., 1997: New RAMS cloud microphysics parameterization Part 1: The single-moment scheme. Atmos. Res., 45, 339.10.1016/S0169-8095(97)00018-5CrossRefGoogle Scholar
Milbrandt, J.A., and Yau, M.K., 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081.10.1175/JAS3535.1CrossRefGoogle Scholar
Ming, Y., Ramaswamy, V., Donner, L.J., and Phillips, V.T.J., 2006: A new parameterization of cloud droplet activation applicable to general circulation models. J. Atmos. Sci., 63(4), 13481356, doi:10.1175/JAS3686.1.CrossRefGoogle Scholar
Monin, A.S., and Yaglom, A.M., 1971: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. MIT Press, p. 769.Google Scholar
Monin, A.S., and Yaglom, A.M., 1975: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT Press, p. 874.Google Scholar
Morrison, H., Curry, J.A., and Khvorostyanov, V.I., 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677.10.1175/JAS3446.1CrossRefGoogle Scholar
Morrison, H., and Grabowski, W.W., 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812.10.1175/2007JAS2374.1CrossRefGoogle Scholar
Naumann, A.K., and Seifert, A., 2016: Recirculation and growth of raindrops in simulated shallow cumulus. XVII International Conference on Clouds and Precipitation, Manchester, July 25–29, 2016, ICCP 2016 Conference Guide, p. 34.Google Scholar
Nenes, A., and Seinfeld, J.H., 2003: Parameterization of cloud droplet formation in global climate models, J. Geophys. Res., 108(D14), 4415, doi: 10.1029/2002JD002911.Google Scholar
Paluch, I.R., 1986: Mixing and the cloud droplet size spectrum: Generalizations from the CCOPE data. J. Atmos. Sci., 43, 19841993.10.1175/1520-0469(1986)043<1984:MATCDS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Paluch, I.R., and Baumgardner, D., 1989: Entrainment and fine-scale mixing in a continental convective cloud. J. Atmos. Sci., 46, 261273.10.1175/1520-0469(1989)046<0261:EAFSMI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Paluch, I.R., and Knight, C.A., 1984: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41, 18011815.10.1175/1520-0469(1984)041<1801:MATEOC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Paoli, R., and Shariff, K., 2009: Turbulent condensation of droplets: Direct simulation and a stochastic model. J. Atmos. Sci., 66, 723740.10.1175/2008JAS2734.1CrossRefGoogle Scholar
Pawlowska, H., Brenguier, J.L., and Burnet, F., 2000: Microphysical properties of stratocumulus clouds. Atmos. Res., 55, 1533.10.1016/S0169-8095(00)00054-5CrossRefGoogle Scholar
Phillips, V.T.J., DeMott, P.J., and Andronache, C., 2008a: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosols. J. Atmos. Sci., 65, 27572783.10.1175/2007JAS2546.1CrossRefGoogle Scholar
Phillips, V.T.J., Sherwood, S.C., Andronache, C., Bansemer, A., Conant, W.C., DeMott, P.J., Flagan, R.C., Heymsfield, A., Jonsson, H., Poellot, M., Rissman, T.A., Seinfeld, J.H., Vanreken, T., Varutbangkul, V., and Wilson, J.C., 2005: Anvil glaciation in a deep cumulus updraft over Florida simulated with an Explicit Microphysics Model. I: The impact of various nucleation processes. Q. J. Royal Meteorol. Soc., 131, 20192046.10.1256/qj.04.85CrossRefGoogle Scholar
Pinsky, M.B., and Khain, A.P., 1995: A model of homogeneous isotropic turbulence flow and its application for simulation of cloud drop tracks. Geophys. Astrophys. Fluid Dyn. 81, 3355.10.1080/03091929508229069CrossRefGoogle Scholar
Pinsky, M.B., and Khain, A.P., 1996: Simulations of drops’ fall in a homogeneous isotropic turbulence flow. Atmos. Res., 40, 223259.10.1016/0169-8095(95)00047-XCrossRefGoogle Scholar
Pinsky, M.B., and Khain, A.P., 1997a: Turbulence effects on the collision kernel. Part 1: Formation of velocity deviations of drops falling within a turbulent three-dimensional flow. Q. J. Royal Meteorol. Soc., 123, 15171542.10.1002/qj.49712354204CrossRefGoogle Scholar
Pinsky, M.B., Khain, A.P., 1997b: Turbulence effects on the collision kernel. Part 2: Increase of swept volume of colliding drops. Q. J. Royal Meteorol. Soc., 123, 15431560.Google Scholar
Pinsky, M., and Khain, A.P., 1997c: Formation of inhomogeneity in drop concentration induced by the inertia of drops falling in a turbulent flow, and the influence of the inhomogeneity on the drop-spectrum broadening quart. J. Royal Meteorol. Soc., 123, 165186.Google Scholar
Pinsky, M.B., and Khain, A., 2001: Fine structure of cloud drop concentration as seen from the Fast-FSSP measurements. Part 1: Method of analysis and preliminary results. J. Appl. Meteorol., 40, 15151537.10.1175/1520-0450(2001)040<1515:FSOCDC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Pinsky, M., and Khain, A.P., 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Q. J. Royol Meteorol. Soc., 128, 501533.10.1256/003590002321042072CrossRefGoogle Scholar
Pinsky, M.B., and Khain, A.P., 2003: Fine structure of cloud droplet concentration as seen from the Fast-FSSP measurements. Part 2: Results of in-situ observations. J. Appl. Meteorol., 42, 6573.10.1175/1520-0450(2003)042<0065:FSOCDC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Pinsky, M.B., and Khain, A.P., 2004: Collisions of small drops in a turbulent flow. Part 2: Effects of flow accelerations. J. Atmos. Sci., 61, 19261939.10.1175/1520-0469(2004)061<1926:COSDIA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Pinsky, M.B., Khain, A.P., Grits, B., and Shapiro, M., 2006: Collisions of cloud droplets in a turbulent flow. Part 3: Relative droplet fluxes and swept volumes. J. Atmos. Sci., 63, 21232139.10.1175/JAS3730.1CrossRefGoogle Scholar
Pinsky, M., Khain, A., Krugliak, H., 2008a: Collisions of cloud droplets in a turbulent flow. Part 5: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357374.10.1175/2007JAS2358.1CrossRefGoogle Scholar
Pinsky, M.B., Khain, A.P., and Levin, Z., 1999a: The role of the inertia of cloud drops in the evolution of the drop size spectra during drop growth by diffusion. Q. J. Royal Meteorol. Soc., 125, 553581.10.1002/qj.49712555410CrossRefGoogle Scholar
Pinsky, M., Khain, A., and Magaritz, L., 2010: Representing turbulent mixing of non-conservative values in Eulerian and Lagrangian cloud models. Q. J. Royal. Meteorol. Soc., 136, 12281242.10.1002/qj.624CrossRefGoogle Scholar
Pinsky, M.B., Khain, A.P., and Shapiro, M., 1999b: Collisions of small drops in a turbulent flow. Part I: Collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci., 56, 25852600.10.1175/1520-0469(1999)056<2585:COSDIA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Pinsky, M.B., Khain, A.P., and Shapiro, M., 2000: Stochastic effects on cloud droplet hydrodynamic interaction in a turbulent flow. Atmos. Res., 53, 131169.10.1016/S0169-8095(99)00048-4CrossRefGoogle Scholar
Pinsky, M., Khain, A., Mazin, I., and Korolev, A., 2012: Analytical estimation of droplet concentration at cloud base. J. Geophys. Res., 117, D18211, doi:10.1029/2012JD017753.Google Scholar
Pinsky, M., Khain, A.P., and Shapiro, M., 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764.10.1175/1520-0469(2001)058<0742:CEODIA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Pinsky, M., Khain, A., and Shapiro, M., 2007: Collisions of cloud droplets in a turbulent flow. Part 4. Droplet hydrodynamic interaction. J. Atmos. Sci., 64, 24622482.10.1175/JAS3952.1CrossRefGoogle Scholar
Pinsky, M., Khain, A., Korolev, A. and Magaritz-Ronen, L., 2016a: Theoretical investigation of mixing in warm clouds – Part 2: Homogeneous mixing, Atmos. Chem. Phys., 16, 92559272.10.5194/acp-16-9255-2016CrossRefGoogle Scholar
Pinsky, M., Khain, A., and Korolev, A., 2016b: Theoretical analysis of mixing in liquid clouds ? Part 3: Inhomogeneous mixing, Atmos. Chem. Phys., 16, 92739297.10.5194/acp-16-9273-2016CrossRefGoogle Scholar
Pinsky, M., Magaritz, L., Khain, A., Krasnov, O., and Sterkin, A., 2008b: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part 1: Model description and first results in a non-mixing limit. J. Atmos. Sci., 65, 20642086.10.1175/2007JAS2486.1CrossRefGoogle Scholar
Pinsky, M., Mazin, I.P., Korolev, A., and Khain, A., 2013: Supersaturation and diffusional droplet growth in liquid clouds. J. Atmos. Sci., 70, 27782793.10.1175/JAS-D-12-077.1CrossRefGoogle Scholar
Pinsky, M., Mazin, I.P., Korolev, A., and Khain, A., 2014: Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra. J. Geophys. Res. Atmospheres, 119, 12,87212,887.Google Scholar
Pinsky, M., Shapiro, M., Khain, A., and Wirzberger, H., 2004: A statistical model of strains in homogeneous and isotropic turbulence. Physica D., 191, 297313.10.1016/j.physd.2003.12.008CrossRefGoogle Scholar
Politovich, M.K., 1993: A study of the broadening of droplet size distribution in cumuli. J. Atmos. Sci., 50, 22302244.10.1175/1520-0469(1993)050<2230:ASOTBO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Politovich, M.K., and Cooper, W.A., 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664.10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Pope, S.B., 2000: Turbulent Flows. Cambridge University Press, p. 771.Google Scholar
Prabha, T., Khain, A., Goswami, B.N., Pandithurai, G., Maheshkumar, R.S., and Kulkarni, J.R., 2011: Microphysics of pre-monsoon and monsoon clouds as seen from in-situ measurements during CAIPEEX. J. Atmos. Sci., 68, 18821901.10.1175/2011JAS3707.1CrossRefGoogle Scholar
Prabha, V.T., Patade, S., Pandithurai, G., Khain, A., Axisa, D., PradeepKumar, P., Maheshkumar, R.S., Kulkarni, J.R., and Goswami, B.N., 2012: Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley during CAIPEEX. J. Geop. Res., 117, D20205, doi:10.1029/2011JD016837.CrossRefGoogle Scholar
Pruppacher, H.R., and Klett, J.D., 1978: Microphysics of Clouds and Precipitation. Springer, p. 714.10.1007/978-94-009-9905-3CrossRefGoogle Scholar
Pruppacher, H.R., and Klett, J.D., 1997: Microphysics of Clouds and Precipitation, second edition. Kluwer Academic Publishers, p. 914.Google Scholar
Pruppacher, H.R., and Rasmussen, R., 1979: A wind tunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. J. Atmos. Sci., 36, 12551260.10.1175/1520-0469(1979)036<1255:AWTIOT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Raga, G.B., Jensen, J.B., and Baker, M.B., 1990: Characteristics of cumulus band clouds of the coast of Hawaii. J. Atmos. Sci., 47, 338355.10.1175/1520-0469(1990)047<0338:COCBCO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Reade, W., and Collins, L.R., 2000: Effect of preferential concentration on turbulent collision rates. Phys. Fluids, 12, 25302540.10.1063/1.1288515CrossRefGoogle Scholar
Reisin, T., Levin, Z. and Tzivion, S., 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part 1: Description of the model. J. Atmos. Sci., 53, 497519.10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Reisner, J., Rassmussen, R.M., and Bruintjes, R.T., 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. Royal Meteorol. Soc., 124, 10711107.10.1002/qj.49712454804CrossRefGoogle Scholar
Respondek, P.S., Flassman, A.I., Alheit, R.R., and Pruppacher, H.R., 1995: A theoretical study of the wet removal of atmospheric pollutants. Part V: The uptake, redistribution, and deposition of (NH4)2SO4 by a convective cloud containing ice. J. Atmos. Sci., 52, 21212132.10.1175/1520-0469(1995)052<2121:ATSOTW>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Rissler, J., Swietlicki, E., Zhou, J., Roberts, G., Andreae, M.O., Gatti, L.V., and Artaxo, P., 2004: Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition-comparison of modelled and meaqsured CCN concentrations. Atmos. Chem. Phys. Discuss., 4, 31593225.Google Scholar
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M.O., 2006: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys., 6, 471491, doi:10.5194/acp-6-471-2006.CrossRefGoogle Scholar
Roesner, S., Flossmann, A.I., and Pruppacher, H.R., 1990: The effect on the evolution of the drop spectrum in clouds of the preconditioning of air by successive convective elements. Q. J. Royal Meteorol. Soc., 116, 13891403.10.1002/qj.49711649607CrossRefGoogle Scholar
Rogers, R.R., 1975: An elementary parcel model with explicit condensation and supersaturation. Atmosphere, 13, 192204.10.1080/00046973.1975.9648397CrossRefGoogle Scholar
Rogers, R.R, and Yau, M.K., 1996: Short Course in Cloud Physics. Butterworth-Heinemann, p. 304.Google Scholar
Rosenfeld, D., and Gutman, G., 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34, 259283.10.1016/0169-8095(94)90096-5CrossRefGoogle Scholar
Saffman, P.G., Turner, J.S., 1956: On the collision of drops in turbulent clouds. J. Fluid Mech., 1, 16.10.1017/S0022112056000020CrossRefGoogle Scholar
Saxena, V.K., and Fukuta, N., 1976: Preprints Cloud Phys. Conf., Boulder, p. 26, Am. Meteor. Soc., Boston.Google Scholar
Saxena, V.K., and Rathore, R.S., 1984: Preprints 11th Int. Conf. on Atmos. Aerosol,Condensation and Ice Nuclei, p. 292, Hungarian Meteor. Soc., Budapest.Google Scholar
Schlamp, R.J., Grover, S.N., Pruppacher, H.R., and Hamielec, A.E., 1976: A numerical investigation of the effect of electric charges and vertical external electric fields and the collision efficiency of cloud drops. J. Atmos. Sci., 33, 17471755.10.1175/1520-0469(1976)033<1747:ANIOTE>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Schlüter, M.H., 2006: The effects of entrainment and mixing process on the droplet size distribution in cumuli. A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science, Department of Meteorology, The University of Utah, p. 92 (MS Study).Google Scholar
Schlüter, M.H., Krueger, S.K., and Su, C.-W., 2006: The effects of entrainment and mixing on the droplet size distributions in cumuli, 12th Conference on Cloud Physics. Madison, WI, p 234.Google Scholar
Sedunov, Y.S., 1965: The fine structure of the clouds and its role in formation of the cloud droplet spectra. Izv. Acad. Sci. USSR, Atmos. Oceanic. Phys., 1, 722731.Google Scholar
Sedunov, Y.S., 1974: Physics of Drop Formation in the Atmosphere. Wiley, p. 234.Google Scholar
Segal, Y., and Khain, A., 2006: Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res., 111, D15204.Google Scholar
Segal, Y., Pinsky, M., Khain, A., and Erlick, C., 2003: Theromodynamic factors influencing the bimodal spectra formation in cumulus clouds. Atmos. Res., 66, 4364.10.1016/S0169-8095(02)00172-2CrossRefGoogle Scholar
Seifert, A., and Beheng, K.D., 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265281.10.1016/S0169-8095(01)00126-0CrossRefGoogle Scholar
Seifert, A., Khain, A., Blahak, U., and Beheng, K.D., 2005: Possible effects of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model. J. Atmos. Sci., 62, 19171931.10.1175/JAS3432.1CrossRefGoogle Scholar
Seifert, A., Nuijens, L., and Stevens, B., 2010: Turbulence effects on warm-rain autoconversion in precipitating shallow convection. Q. J. Royal Meteorol. Soc., 136, 17531762.10.1002/qj.684CrossRefGoogle Scholar
Shaw, R.A., 2003: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183227.10.1146/annurev.fluid.35.101101.161125CrossRefGoogle Scholar
Shipway, B.J., and Abel, S.J., 2010: Analytical estimation of cloud droplet nucleation based on an underlying aerosol population. Atmos. Res., 96, 344355.10.1016/j.atmosres.2009.10.005CrossRefGoogle Scholar
Shmeter, S.M., 1987: Thermodynamics and Physics of convective clouds. Gidrometizdat, p. 288.Google Scholar
Siebert, H., Lehmann, K., and Wendisch, M., 2006: Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. J. Atmos. Sci., 63, 14511466.10.1175/JAS3687.1CrossRefGoogle Scholar
Simmel, M., Trautmann, T., and Tetzlaff, G., 2002: Numerical solution of the stochastic collection equation – comparison of the linear discrete method with other methods. Atmos. Res., 61, 135148.10.1016/S0169-8095(01)00131-4CrossRefGoogle Scholar
Simpson, J., Helvoirt, G.V., and McCumber, M., 1982: Three-dimensional simulations of cumulus congestus clouds on GATE day 261. J. Atmos. Sci., 39, 126145.10.1175/1520-0469(1982)039<0126:TDSOCC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Small, J.D., and Chuang, P.Y., 2008: New observations of precipitation initiation in warm cumulus clouds. J. Atmos. Sci., 65, 29722982.10.1175/2008JAS2600.1CrossRefGoogle Scholar
Squires, P., 1952: The growth of cloud drops by condensation. Aust. J. Sci. Res., 5, 6686.Google Scholar
Squires, P., 1958: Penetrative downdraughts in cumuli. Tellus, 10, 381389.10.3402/tellusa.v10i3.9243CrossRefGoogle Scholar
Srivastava, R.C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410415.10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Srivastava, R.C., 1989: Growth of cloud drops by condensation: A criticism of currently accepted theory and a new approach. J. Atmos. Sci., 46, 869887.10.1175/1520-0469(1989)046<0869:GOCDBC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Stein, D., Georgii, H.W., and Kramm, V., 1985: Meteor. Rundschau, 38, 15.Google Scholar
Stepanov, A.S., 1975: Condensational growth of cloud droplets in a turbulized atmosphere. Izv. Akad. Sci. USSR, Atmos. Oceanic Phys., 11, 2742.Google Scholar
Stevens, B., et al., 2003: On entrainment rates in nocturnal maritime stratocumulus. Q. J. Royal Meteorol. Soc., 129, 34693492.10.1256/qj.02.202CrossRefGoogle Scholar
Stevens, B.G., et al., 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431455.10.1175/MWR2930.1CrossRefGoogle Scholar
Stevens, B., Walko, R.L., Cotton, W.R., and Feingold, G., 1996: The spurious production of cloud-edge supersaturations by Eulerian models. Mon. Wea. Rev., 124, 10341041.10.1175/1520-0493(1996)124<1034:TSPOCE>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Straka, J.M., and Anderson, J.R., 1993: Numerical simulations of microburst-producing storms – Some results from storms observed during COHMEX. J. Atmos. Sci., 50, 13291348.10.1175/1520-0469(1993)050<1329:NSOMPS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Straka, J.M., 2009: Cloud and Precipitation Microphysics. Principles and Parameterizations. Cambridge University Press, p. 392.10.1017/CBO9780511581168CrossRefGoogle Scholar
Strapp, J.W., Leaitch, W.R., and Liu, P.S.K., 1992: Hydrated and dried aerosol-size-distribution measurements from the particle measuring system FSSP-300 probe and the deiced PCASP-100X probe. J. Atmos. Oceanic Technol., 9, 548555.10.1175/1520-0426(1992)009<0548:HADASD>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Straub, W., Beheng, K.D., Seifert, A., Schlottke, J., and Weigand, B., 2010: Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci., 67, 576588.10.1175/2009JAS3175.1CrossRefGoogle Scholar
Su, C.-W., Krueger, S.K., McMurtry, P.A., and Austin, P.H., 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48, 4158.10.1016/S0169-8095(98)00039-8CrossRefGoogle Scholar
Szakáll, M., Diehl, K., Mitra, S.K., Borrmann, S., 2009: A wind tunnel study on the shape, oscillation, and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm. J. Atmos. Sci., 66 (3), 755765.10.1175/2008JAS2777.1CrossRefGoogle Scholar
Szakáll, M., Mitra, S.K., Diehl, K., and Borrmann, S., 2010: Shapes and oscillations of falling raindrops. Atmos. Res., 97, 416425.10.1016/j.atmosres.2010.03.024CrossRefGoogle Scholar
Takahashi, T., 1976: Hail in axisymmetric cloud model. J. Atmos. Sci., 33, 15791601.10.1175/1520-0469(1976)033<1579:HIAACM>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Telford, J.W., and Chai, S.K., 1980: A new aspect of condensation theory. Pageoph, 118, 720742.10.1007/BF01593025CrossRefGoogle Scholar
Telford, J.W., Keck, T.S., and Chai, S.K., 1984: Entrainment at cloud tops and the droplet spectra. J. Atmos. Sci., 41, 31703179.10.1175/1520-0469(1984)041<3170:EACTAT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Temam, R., 1977: Theory and Numerical Analysis of the Navier_Stokes Equations. North-Holland, p. 465.Google Scholar
Testik, F.Y., and Barros, A.P., 2007: Toward elucidating the microstructure of warm rainfall: A survey. Rev. Geophys., 45, doi:10.1029/2005RG000182.CrossRefGoogle Scholar
Tokay, A., Chamberlain, R., and Schoenhuber, M., 2000: Laboratory and field measurements of raindrop oscillations. Phys. Chem. Earth (B), 25, 867870.10.1016/S1464-1909(00)00117-9CrossRefGoogle Scholar
Twomey, S.A., 1959a: The nuclei of natural cloud formation. part I: The chemical diffusion method and its application to atmospheric nuclei. Geofis. Pure Appl., 43, 227242.Google Scholar
Twomey, S., 1959b: The nuclei of natural cloud formation II. The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys., 43, 243249.Google Scholar
Twomey, S., and Wojciechowski, T.A., 1969: Observations of the geographical variation of cloud nuclei. J. Atmos. Sci., 26, 684688.10.1175/1520-0469(1969)26<648:OOTGVO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Tzivion, S., Feingold, G., and Levin, Z., 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149.10.1175/1520-0469(1987)044<3139:AENSTT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Tzivion, S., Feingold, G., and Levin, Z., 1989: The evolution of raindrop spectra. Part 2. Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 33123327.10.1175/1520-0469(1989)046<3312:TEORSP>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Tzivion, S., Reisin, T.G., and Levin, Z., 1999: A numerical solution of the kinetic collection equation using high spectral grid solution: A proposed reference. J. Comput. Phys., 148, 527544.10.1006/jcph.1998.6128CrossRefGoogle Scholar
Tzivion, S., Reisin, T.G., and Levin, Z., 2001: A new formulation of the spectral multi-moment method for calculating the kinetic collection equation: More accuracy with few bins. J. Comput. Phys., 171, 418.10.1006/jcph.2001.6776CrossRefGoogle Scholar
Vaillancourt, P.A., Yau, M.K., 2000: Review of particle-turbulence interactions and consequences for Cloud Physics. Bull. Am. Meteorol. Soc., 81, 285298.10.1175/1520-0477(2000)081<0285:ROPIAC>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Vaillancourt, P.A., Yau, M.K., Bartello, P., and Grabowski, W.W., 2002: Microscopic approach to cloud droplet growth by condensation. Part 2: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 34213435.10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Van Zanten, M.C., Stevens, B., Vali, G., and Lenschow, D.H., 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106.10.1175/JAS-3355.1CrossRefGoogle Scholar
Verlinde, J., and Cotton, W.R., 1993: Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon. Wea. Rev., 121, 27762793.10.1175/1520-0493(1993)121<2776:FMOONC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Verlinde, J., Flatau, P.J., and Cotton, W.R., 1990: Analytic solution to the collection growth equation: Comparison with an approximate methods and utilization in microphysics parameterization schemes. J. Atmos. Sci., 47, 28712880.10.1175/1520-0469(1990)047<2871:ASTTCG>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Villermaux, E., and Bossa, B., 2009: Single-drop fragmentation determines size distribution of raindrops. Nature Physics, 5, 697702.10.1038/nphys1340CrossRefGoogle Scholar
Vohl, O., Mitra, S.K., Wurzler, S., Diehl, K., and Pruppacher, H.R., 2007: Collision efficiencies empirically determined from laboratory investigations of collisional growth of small raindrops in a laminar flow field. Atmos. Res., 85, 120125.10.1016/j.atmosres.2006.12.001CrossRefGoogle Scholar
Vohl, O., Mitra, S.K., Wurzler, S.C., and Pruppacher, H.R., 1999: A wind tunnel study on the effects of turbulence on the growth of cloud drops by collision and coalescence. J. Atmos. Sci., 56 (24), 40884099.10.1175/1520-0469(1999)056<4088:AWTSOT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Voloshchuk, V.M., and Sedunov, Y.S., 1977: A kinetic equation for the evolution of the droplet spectra in a turbulent medium at the condensation stage of cloud development. Sov. Meteorol. Hydrol., 3, 314.Google Scholar
Voth, G.A., La Porta, A., Crawford, A.M., Alexander, J., and Bodenschatz, E., 2002: Measurements of particle accelerations in fully developed turbulence. J. Fluid Mech., 469, 121160.10.1017/S0022112002001842CrossRefGoogle Scholar
Walko, R.L., Cotton, W.R., Meyers, M.P., and Harrington, J.Y., 1995: New RAMS cloud microphysics parameterization. Part 1: The single-moment scheme. Atmos.Res., 38, 2962.10.1016/0169-8095(94)00087-TCrossRefGoogle Scholar
Wang, L.-P., Ayala, O., and Grabowski, W.W., 2005a: Improved formulations of the superposition method. J. Atmos. Sci., 62, 12551266.10.1175/JAS3397.1CrossRefGoogle Scholar
Wang, L.-P., Ayala, O., Kasprzak, S., and Grabowski, W., 2005b: Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. J. Atmos. Sci., 62, 24332450.10.1175/JAS3492.1CrossRefGoogle Scholar
Wang, L.-P., Ayala, O., Rosa, B., and Grabowski, W., 2008: Turbulent collision efficiency of heavy particles relevant to cloud droplets. New J. Phys. 10, 075013.10.1088/1367-2630/10/7/075013CrossRefGoogle Scholar
Wang, L.-P., Franklin, C.N., Ayala, O., and Grabowski, W., 2006a: Probability distributions of angle of approach and relative velocity for colliding droplets in a turbulent flow. J. Atmos. Sci., 63, 881900.10.1175/JAS3655.1CrossRefGoogle Scholar
Wang, L.-P., and Grabowski, W., 2009: The role of air turbulence in warm rain initiation. Atmos. Sci. Let., 10, 18.10.1002/asl.210CrossRefGoogle Scholar
Wang, L.-P., and Maxey, M.R., 1993: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256, 2768.10.1017/S0022112093002708CrossRefGoogle Scholar
Wang, L.-P., Wexler, A.S., and Zhou, Y., 1998: Statistical mechanical descriptions of turbulent coagulation. Phys. Fluid, 10, 26472651.10.1063/1.869777CrossRefGoogle Scholar
Wang, L.-P., Wexler, A.S., and Zhou, Y., 2000: Statistical mechanical description and modeling of turbulent collision of inertial particles. J. Fluid Mech., 415, 117153.10.1017/S0022112000008661CrossRefGoogle Scholar
Wang, L.-P., Xue, Y., Ayala, O., and Grabowski, W.W., 2006b: Effects of stochastic coalescence and air turbulence on the size distribution of cloud droplets. Atmos. Res., 82, 416432.10.1016/j.atmosres.2005.12.011CrossRefGoogle Scholar
Wang, L.-P., Xue, Y., and Grabowski, W.W., 2007: A bin integral method for solving the kinetic collection equation. J. Comp. Phys., 226, 5988.10.1016/j.jcp.2007.03.029CrossRefGoogle Scholar
Wang, P.K., and Pruppacher, H.R., 1977: Acceleration to terminal velocity of cloud and raindrops. J. Appl. Meteorol., 16, 275280.10.1175/1520-0450(1977)016<0275:ATTVOC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Warner, J., 1969a: The microstructure of cumulus cloud. Pt. I, General features of the droplet spectrum. J. Atmos. Sci., 26, 10491059.10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Warner, J., 1969b: The microstructure of cumulus cloud. Part 2. The effect of droplet size distribution of the cloud nucleus spectrum and updraft velocity. J. Atmos. Sci., 26, 12721282.10.1175/1520-0469(1969)026<1272:TMOCCP>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Warner, J., 1970: The microstructure of cumulus cloud. Part 3. The nature of the updraft. J. Atmos. Sci., 27, 682688.10.1175/1520-0469(1970)027<0682:TMOCCP>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Wex, H., Stratmann, F., Topping, D., and McFiggans, G., 2008: The Kelvin versus the Raoult Term in the Köhler Equation. J. Atmos. Sci., 65, 40044016.10.1175/2008JAS2720.1CrossRefGoogle Scholar
Woo, S.E., and Hamielec, A.E., 1971: A numerical method of determining the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci., 28, 14481454.10.1175/1520-0469(1971)028<1448:ANMODT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Wyngaard, J.C., 2010: Turbulence in the Atmosphere. Cambridge University Press, p. 393.10.1017/CBO9780511840524CrossRefGoogle Scholar
Xue, Y., Wang, L.-P., and Grabowski, W., 2008: Growth of cloud droplets by turbulent collision?coalescence. J. Atmos. Sci., 65, 331356.10.1175/2007JAS2406.1CrossRefGoogle Scholar
Yin, Y., Levin, Z., Reisin, T., and Tzivion, S., 2000: The effects of giant cloud condensational nuclei on the development of precipitation in convective clouds: A numerical study. Atmos. Res., 53, 91116.10.1016/S0169-8095(99)00046-0CrossRefGoogle Scholar
Yin, Y., Carslaw, K.S., and Feingold, G., 2005: Vertical transport and processiong of aerosols in a mixed-phase convective cloud and the feedback on cloud development. Q. J. Royal Meteorol. Soc., 131, 221245.10.1256/qj.03.186CrossRefGoogle Scholar
Zhou, Y., Wexler, A., and Wang, L., 2001: Modeling turbulent collision of bidisperse inertial particles. J. Fluid Mech., 433, 77104.10.1017/S0022112000003372CrossRefGoogle Scholar

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×