Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-15T22:29:05.782Z Has data issue: false hasContentIssue false

6 - Interstellar polycyclic aromatic hydrocarbon molecules

Published online by Cambridge University Press:  05 June 2012

A. G. G. M. Tielens
Affiliation:
Kapteyn Astronomical Institute
Get access

Summary

Introduction

While earlier suggestions had appeared over the years, the importance of large molecules in space was first realized on the basis of the observed strong mid-infrared emission in the ISM. The Infrared Astronomical Satellite (IRAS) discovered widespread emission at 12 μm in the diffuse ISM – the so-called IR cirrus – where the expected temperature of dust in radiative equilibrium with the stellar radiation field is expected to be too cool to emit at such short wavelengths (cf. Section 5.2.3). This problem had actually already been recognized in connection with the observed mid-IR emission from PDRs far from the illuminating stars, which is also much brighter than expected for radiatively heated dust grains (Section 9.4). It was then quickly realized that very small dust grains with 20–100 C atoms – actually, large molecules – can be transiently heated to high temperatures, because of their limited heat capacity. Such hot species will cool through emission in their mid-IR vibrational modes. The observed interstellar IR spectrum is very characteristic of aromatic species and hence the carriers are really large polycyclic aromatic hydrocarbon molecules (PAHs).

In this chapter, we will discuss the physics and chemistry of such large molecules. The emphasis will be on their interaction with radiation. However, the presence of large molecules in space will also have profound influence on other aspects of the ISM and these will be examined as well.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×