Skip to main content Accessibility help
×
  • Cited by 63
Publisher:
Cambridge University Press
Online publication date:
March 2013
Print publication year:
2013
Online ISBN:
9780511794285

Book description

This key new textbook provides a state-of-the-art view of the physics of cloud and precipitation formation, covering the most important topics in the field: the microphysics, thermodynamics and cloud-scale dynamics. Highlights include: the condensation process explained with new insights from chemical physics studies; the impact of the particle curvature (the Kelvin equation) and solute effect (the Köhler equation); homogeneous and heterogeneous nucleation from recent molecular dynamic simulations; and the hydrodynamics of falling hydrometeors and their impact on collision growth. 3D cloud-model simulations demonstrate the dynamics and microphysics of deep convective clouds and cirrus formation, and each chapter contains problems enabling students to review and implement their new learning. Packed with detailed mathematical derivations and cutting-edge stereographic illustrations, this is an ideal text for graduate and advanced undergraduate courses, and also serves as a reference for academic researchers and professionals working in atmospheric science, meteorology, climatology, remote sensing and environmental science.

Reviews

‘Finally a comprehensive textbook, filling an empty slot between mainly descriptive and encyclopaedic cloud physics books. It is carefully written, covering all relevant aspects, and starts from first principles in a pedagogic way: invaluable for cloud physics teachers and graduate students.’

Andrea Flossmann - Université Blaise Pascal de Clermont Ferrand

‘Without hesitation I am endorsing this book. It will be a great addition to atmospheric science.’

Hans R. Pruppacher - author of Microphysics of Clouds and Precipitation

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Ackerman, S. A., and Stephens, G. L. (1987) The absorption of solar radiation by cloud droplets: an application of anomalous diffraction theory. J. Atmos. Sci., 44, 1574–1588.
Anderson, J. K., Droegemier, K., and Wilhelmson, R. B. (1985) Simulation of the thunderstorm subcloud environment. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN. Boston, MA: American Meteorological Society, pp. 147–150.
Andsager, K., Beard, K. V., and Laird, N. F. (1999) Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56, 2673–2683.
Auer, A. H., and Marwitz, J. D. (1972) Hail in the vicinity of organized updrafts. J. Appl. Meteorol., 11, 748–752.
Auer, A. H., and Veal, D. L. (1970) The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919–926.
Baboolal, L. A., Pruppacher, H. R., and Topalian, J. H. (1981) A sensitivity study of a theoretical model of SO2 scavenging by water drops in air. J. Atmos. Sci., 38, 856–870.
Bailey, M., and Hallett, J. (2004) Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514–544.
Bailey, M., and Hallett, J. (2009) A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888–2899.
Baker, M. B., Christian, H. J., and Latham, J. (1995) A computational study of the relationships linking lightning frequency and other thundercloud parameters. Q. J. R. Meteorol. Soc., 121, 1525–1548.
Beard, K. V. (1976) Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851–864.
Beard, K. V., and Chuang, C. H. (1987) A new model for the equilibrium shapes of raindrops. J. Atmos. Sci., 44, 1509–1524.
Beard, K. V., and Kubesh, R. J. (1991) Laboratory measurements of small raindrop distortion. Part 2: Oscillation frequencies and modes. J. Atmos. Sci., 48, 2245–2264.
Beard, K. V., and Ochs, H. T. (1983) Measured collection efficiencies for cloud drops. J. Atmos. Sci., 40, 146–153.
Beard, K. V., and Ochs, III H. T. (1993) Warm-rain initiation: an overview of microphysical mechanisms. J. Appl. Meteorol., 32, 608–625.
Beard, K. V., and Ochs, H. T. (1995) Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites. J. Atmos. Sci., 52, 3977–3996.
Beard, K. V., and Pruppacher, H. R. (1969) A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J. Atmos. Sci., 26, 1066–1072.
Beard, K. V., and Pruppacher, H. R. (1971) A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci., 28, 1455–1464.
Beard, K. V., Johnson, D. B., and Baumgardner, D. (1986) Aircraft observations of large raindrops in warm, shallow convective clouds. Geophys. Res. Lett., 13, 991–994.
Beard, K. V., Ochs, H. T., and Kubesh, R. J. (1989a) Natural oscillations of small raindrops. Nature, 342, 408–410.
Beard, K. V., Feng, J. Q., and Chuang, C. (1989b) A simple perturbation model for the electrostatic shape of falling drops. J. Atmos. Sci., 46, 2404–2418.
Beard, K. V., Kubesh, R. J., and Ochs, H. T. (1991) Laboratory measurements of small raindrop distortion. Part 1: Axis ratio and fall behavior. J. Atmos. Sci., 48, 698–710.
Beard, K. V., Bringi, V. N., and Thurai, M. (2010) A new understanding of raindrop shape. Atmos. Res., 97, 396–415.
Berry, E. X. (1968) Modification of the warm rain process. Proc. First Natl. Conf. Weather Modification, State University of New York, Albany. Boston, MA: American Meteorological Society, pp. 81–88.
Berry, E. X., and Reinhardt, R. L. (1974) An analysis of cloud drop growth by collection. Part II. Single initial distributions. J. Atmos. Sci., 31, 2127–2135.
Bigg, E. K., and Hopwood, S. C. (1963) Ice nuclei in the Antarctic. J. Atmos. Sci., 20, 185–188.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960) Transport Phenomena. New York, NY: Wiley.
Blanchard, D. C. (1969) The oceanic production rate of cloud nuclei. J. Rech. Atmos., 4, 1–6.
von Blohn, N., Diehl, K., Mitra, S. K., and Borrmann, S. (2009) Riming of graupel: wind tunnel investigations of collection kernels and growth regimes. J. Atmos. Sci., 66, 2359–2366.
Blyth, A. M., Cooper, W. A., and Jensen, J. B. (1988) A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 3944–3964.
Borovikov, A. M., Gaivoronskii, I. I., Zak, E. G., et al. (1963) Cloud Physics. Jerusalem, Israel: Israel Program of Scientific Translations.
Borrmann, S., Jaenicke, R., and Neumann, P. (1993) On spatial distributions and inter-droplet distances measured in stratus clouds with in-line holography. Atmos. Res., 29, 229–245.
Bowen, E. G. (1950) The formation of rain by coalescence. Austral. J. Sci. Res., 3, 193–213.
Braham, R. R. (1974) Cloud physics of urban weather modification: a preliminary report. Bull. Am. Meteorol. Soc., 55, 100–105.
Braham, R. (1990) Snow particle size spectra in lake effect snows. J. Appl. Meteorol., 29, 200–207.
Brandes, E. A., Zhang, G., and Sun, J. (2006) On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics. J. Appl. Meteorol. Climatol., 45, 259–268.
Bringi, V. N., and Chandrasekar, V. (2001) Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge, UK: Cambridge University Press.
Brook, M. (1958) Studies of charge separation during ice–ice contact. Recent Advances in Thunderstorm Electricity. New York, NY: Pergamon, pp. 383–390.
Brown, P. S. (1988) The effects of filament, sheet, and disk breakup upon the drop spectrum. J. Atmos. Sci., 45, 712–718.
Bruntjes, R. T., Heymsfield, A. J., and Krauss, T. W. (1987) An examination of double-plate ice crystals and the initiation of precipitation in continental cumulus clouds. J. Atmos. Sci., 44, 1331–1349.
Byers, H. R., and Braham, Jr. R. R. (1949) The Thunderstorm: Final Report of the Thunderstorm Project. Washington, DC: US Government Printing Office.
Cameron, A. G. W. (1981) In Essays in Nuclear Astrophysics, ed. Barnas, C. A., Clayton, D. D., and Schramm, D. N.. Cambridge, UK: Cambridge University Press.
Carrier, G. F. (1953) On Slow Viscous Flow, Final Report, Office of Naval Research, Contract No. 653–00/1.
Castro, A., Marcos, J. L., Dessens, J., Sanchez, J. L., and Fraile, R. (2004) Concentration of ice nuclei in continental and maritime air masses in Leon (Spain). Atmos. Res., 47–48, 155–167.
Chagnon, C. W., and Junge, C. E. (1961) The vertical distribution of submicron particles in the stratosphere. J. Meteorol., 18, 746–752.
Chen, C. J., and Wang, P. K. (2009) Diffusion growth of solid and hollow hexagonal ice columns. Nuovo Cimento, 124, 87–97.
Chen, J. P. (1994) Theory of deliquescence and modified Köhler curves. J. Atmos. Sci., 51, 3505–3516.
Cheng, L., and English, M. (1983) A relationship between hailstone concentration and size. J. Atmos. Sci., 40, 204–213.
Chin, E. H. C., and Neiburger, M. (1972) A numerical simulation of the gravitational coagulation process for cloud droplets. J. Atmos. Sci., 29, 718–727.
Chiruta, M., and Wang, P. K. (2003) On the capacitance of bullet rosette crystals. J. Atmos. Sci., 60, 836–846.
Chiruta, M., and Wang, P. K. (2005) The capacitance of solid and hollow hexagonal ice columns. Geophys. Res. Lett., 32, L05803.
Chiu, C. S., and Klett, J. D. (1976) Convective electrification of clouds. J. Geophys. Res., 81, 1111–1124.
Chuang, C. C., and Beard, K. V. (1990) A numerical model for the equilibrium shape of electrified raindrops. J. Atmos. Sci., 47, 1374–1389.
Clough, S. A., Beers, Y., Klein, G. P., and Rothman, L. S. (1973) Dipole moment of water from Stark measurements of H2O, HDO, and D2O. J. Chem. Phys., 59, 2254–2259.
Cober, S. G., and List, R. (1993) Measurements of the heat and mass transfer parameters characterizing conical graupel growth. J. Atmos. Sci., 50, 1591–1609.
Connolly, P. J., Emersic, C., and Field, P. R. (2012) A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 2055–2076.
Cotton, W. R., and Anthes, R. A. (1989) Storm and Cloud Dynamics. San Diego, CA: Academic Press.
Crutzen, P. J. (1976) The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett., 3(2), 73–76.
Curtius, J., Weigel, R., Vössing, H. -J., et al. (2005) Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements. Atmos. Chem. Phys., 5, 3053–3069.
Czys, R. R. (1994) Preliminary laboratory results on the coalescence of small precipitation-size drops falling freely in a refrigerated environment. J. Atmos. Sci., 51, 3209–3218.
Czys, R. R., and Ochs, H. T. (1988) The influence of charge on the coalescence of water drops in free fall. J. Atmos. Sci., 45, 3161–3168.
Damiani, R., Vali, G., and Haimov, S. (2006) The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 1432–1450.
Davies, C. N. (1945) Definitive equations for the fluid resistance of spheres. Proc. Phys. Soc., 57, 259–270.
Dinger, J. E., and Gunn, R. (1946) Electrical effects associated with a change of state of water. Terr. Magn. Atmos. Electr., 51, 477–494.
Döppenschmidt, A., and Butt, H. -J. (2000) Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy. Langmuir, 16, 6709–6714.
Dosch, H., Lied, A., and Bilgram, J. H. (1995) Glancing-angle X-ray scattering studies of the premelting of ice surfaces. Surf. Sci., 327, 145–164.
Doswell, C. A. (Ed.) (2001) Severe Convective Storms. Boston, MA: American Meteorological Society.
Drake, J. C., and Mason, B. J. (1966) The melting of small ice spheres and cones. Q. J. R. Meteorol. Soc., 92, 500–509.
Dufour, L., and Defay, R. (1963) Thermodynamics of Clouds. New York, NY: Academic Press.
Dusek, U., Frank, G. P., Hildebrandt, L., et al. (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 1375–1378.
Einstein, A. (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik, 17, 549–560.
Feingold, G., and Levin, Z. (1986) The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Clim. Appl. Meteorol., 25, 1346–1363.
Few, A. A., Dessler, A. J., Latham, D. J., and Brook, M. (1967) A dominant 200-Hertz peak in the acoustic spectrum of thunder. J. Geophys. Res., 72, 6149–6154.
Fiebig, M., Lunder, C. R., and Stohl, A. (2009) Tracing biomass burning aerosol from South America to Troll Research Station, Antarctica. Geophys. Res. Lett., 36, L14815.
Field, P. R., and Heymsfield, A. J. (2003) Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544–560.
Fletcher, N. H. (1962) The Physics of Rainclouds. Cambridge, UK: Cambridge University Press.
Flossmann, A. I. (1998) Interaction of aerosol particles and clouds. J. Atmos. Sci., 55, 879–887.
Flossmann, A. I., and Wobrock, W. (2010) A review of our understanding of the aerosol–cloud interaction from the perspective of a bin resolved cloud scale modeling. Atmos. Res., 97, 478–497.
Forster, P. M., and Shine, K. P. (2002) Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29(6), 1086.
Fujita, T. T. (1982) Principle of stereographic height computations and their application to stratospheric cirrus over severe thunderstorms. J. Meteorol. Soc. Japan, 60, 355–368.
Fujita, T. T. (1985) The Downburst – Microburst and Macroburst. Satellite and Mesometeorology Research Project (SMRP), Research Paper 210, Department of Geophysical Sciences, University of Chicago, NTIS PB-148880, February.
Fukuta, N. (1963) Ice nucleation by metaldehyde. Nature, 199, 475–476.
Fukuta, N., and Mason, B. J. (1963) Epitaxial growth of ice on organic crystals. J. Phys. Chem. Solids, 24, 715–718.
Furukawa, Y., Yamamoto, M., and Kuroda, T. (1987) Ellipsometric study of the transition layer on the surface of an ice crystal. J. Crystal Growth, 82, 665–677.
Gillespie, D. T. (1975) An exact method for numerically simulating the stochastic coalescence process in a cloud. J. Atmos. Sci., 32, 1977–1989.
Gish, O. H. (1944) Evaluation and interpretation of the columnar resistance of the atmosphere. Terr. Magn. Atmos. Electr., 49, 159–168.
Goddard, J. W. F., and Cherry, S. M. (1984) The ability of dual-polarization radar (copular linear) to predict rainfall rate and microwave attenuation. Radio Sci., 19, 201–208.
Greenfield, S. (1957) Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteorol., 14, 115–125.
Gunn, K. L. S., and Marshall, J. S. (1958) The distribution with size of snowflakes. J. Meteorol., 15, 452–461.
Gunn, R., and Kinzer, G. D. (1949) The terminal velocity of fall for water droplets in stagnant air. J. Meteorol., 4, 243–248.
Hall, W. D., and Pruppacher, H. R. (1976) The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 1995–2006.
Hallett, J., and Mossop, S. C. (1974) Production of secondary ice particles during the riming process. Nature, 249, 26–28.
Hallgren, R., and Hosler, C. L. (1960) Preliminary results in the aggregation of ice crystals. In Physics of Precipitation, ed. Weickmann, H.. AGU Geophysical Monograph, No. 5, AGU Publ. No. 746. Baltimore, MD: Waverly Press, pp. 257–263.
Hashino, T., Chiruta, M., and Wang, P. K. (2010) A numerical study on the riming process in the transition from a pristine crystal to a graupel particle. In The 13th Conference on Cloud Physics, Portland, OR, 28 June–2 July 2010. Boston, MA: American Meteorological Society, Paper 1.86.
Hegg, D. A., Radke, L. F., and Hobbs, P. V. (1990) Particle production associated with marine clouds. J. Geophys. Res., 95, 13917–13926.
Heymsfield, A. J. (1972) Ice crystal terminal velocities. J. Atmos. Sci., 29, 1348–1357.
Heymsfield, A. J. (1975) Cirrus uncinus generating cells and the evolution of cirriform clouds. Part III: Numerical computations of the growth of the ice phase. J. Atmos. Sci., 32, 820–830.
Heymsfield, A. J., Johnson, P. N., and Dye, J. E. (1978) Observations of moist adiabatic ascent in Northeast Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 1689–1703.
Heymsfield, A. J., Bansemer, A., Field, P. R., et al. (2002) Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 3457–3491.
Highwood, E. J., and Hoskins, B. J. (1998) The tropical tropopause. Q. J. R. Meteorol. Soc., 124, 1579–1604.
Hill, M. J. M. (1894) On a spherical vortex. Phil. Trans. R. Soc. Lond. A, 185, 213–245.
Hinds, W. C. (1982) Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York, NY: Wiley-Interscience.
Hobbs, P. V. (1974) Ice Physics. Oxford, UK: Clarendon Press.
Hobbs, P. V., and Rangno, A. L. (1990) Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47, 2710–2722.
Hobbs, P. V., Radke, L. F., and Shumway, S. E. (1970) Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington State. J. Atmos. Sci., 27, 81–89.
Hobbs, P. V., Chang, S., and Locatelli, J. D. (1974) The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 2199–2206.
Hobbs, P. V., Bowdle, D. A., and Radke, L. F. (1985) Particles in the lower troposphere over the High Plains of the United States. Part I: Size distributions, elemental compositions, and morphologies. J. Clim. Appl. Meteorol., 24, 1344–1356.
Hocking, L. M. (1959) The collision efficiency of small droplets. Q. J. R. Meteorol. Soc., 85, 44–50.
Hocking, L. M., and Jonas, P. R. (1970) The collision efficiency of small drops. Q. J. R. Meteorol. Soc., 96, 722–729.
Hoffmann, C., Funk, R., Sommer, M., and Li, Y. (2008) Temporal variations in PM10 and particle size distribution during Asian dust storms in Inner Mongolia. Atmos. Environ., 42, 8422–8431.
Holton, J. R. (2004) An Introduction to Dynamic Meteorology, 4th edn. Burlington, MA: Academic Press.
Holton, J. R., Haynes, P. H., McIntyre, M. E., et al. (1995) Stratosphere–troposphere exchange. Rev. Geophys., 33, 403–439.
Hosler, C. L., and Hallgren, R. E. (1960) The aggregation of small ice crystals. Disc. Faraday Soc., 30, 200–207.
Houze, R. A. (1993) Cloud Dynamics. San Diego, CA: Academic Press.
Huang, C., Wikfeldt, K. T., Tokushima, T., et al. (2009) The inhomogeneous structure of water at ambient conditions. Proc. Natl. Acad. Sci., 106, 15214–15218.
Iribarne, J. V., and Cho, H. R. (1980) Atmospheric Physics. Dordrecht, The Netherlands: Reidel.
Iribarne, J. V., and Godson, W. L. (1973) Atmospheric Thermodynamics. Dordrecht, The Netherlands: Reidel.
Iwai, K. (1983) Three-dimensional structure of plate-like snow crystals. J. Meteorol. Soc. Japan, 61, 746–755.
Iwai, K. (1989) Three-dimensional structures of natural snow crystals by stereo-photomicrographs. Atmos. Res., 24, 137–147.
Iwai, K. (1999) Three dimensional fine structures of bullet-type snow crystals and their growth conditions observed at Syowa Station, Antarctica [in Japanese]. Seppyo [Snow and Ice], 61, 3–12.
Jaenicke, R. (1988) Properties of atmospheric aerosols. In Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 4, Meteorology, Ser. Vol. 4b, Physical and Chemical Properties of the Air. Berlin, Germany: Springer, Chap. 9.3.
Janhäll, S., Andreae, M. O., and Pöschl, U. (2010) Biomass burning aerosol emissions from vegetation fires: particle number and mass emission factors and size distributions. Atmos. Chem. Phys., 10, 1427–1439.
Jayaratne, E. R., Saunders, C. P. R., and Hallett, J. (1983) Laboratory studies of the charging of soft-hail during ice crystal interactions. Q. J. R. Meteorol. Soc., 109, 609–630.
Jayaweera, K. O. L. F., and Mason, B. J. (1965) The behavior of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech., 22, 709–720.
Jensen, E. J., Lawson, P., Baker, B., et al. (2009) On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys., 9, 5519–5537.
Ji, W., and Wang, P. K. (1998) On the ventilation coefficients of falling ice crystals at low–intermediate Reynolds numbers. J. Atmos. Sci., 56, 829–836.
Johnson, D. E., Wang, P. K., and Straka, J. M. (1995) A study of microphysical processes in the 2 August 1981 CCOPE supercell storm. Atmos. Res., 33, 93–123.
Jost, W. (1960) Diffusion in Solids, Liquids, Gases, 3rd printing. New York, NY: Academic Press.
Junge, C. E. (1955) The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J. Meteorol., 12, 13–25.
Junge, C. E. (1963) Air Chemistry and Radioactivity. New York, NY: Academic Press.
Junge, C. E., Chagnon, C. W., and Manson, J. E. (1961) Stratospheric aerosols. J. Meteorol., 18, 81–107.
Kajikawa, M. (1972) Measurement of falling velocity of individual snow crystals. J. Meteorol. Soc. Japan, 50, 577–583.
Kajikawa, M. (1982) Observation of the falling motion of early snow flakes. Part I. Relationship between the free-fall pattern and the number and shape of component snow crystals. J. Meteorol. Soc. Japan, 60, 797–803.
Keith, W. D., and Saunders, C. P. R. (1989) The collection efficiency of a cylindrical target for ice crystals. Atmos. Res., 23, 83–95.
Kessler, E. (1969) On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteorological Monograph, Vol. 10, No. 32. Boston, MA: American Meteorological Society, pp. 1–84.
Kittel, C. (1996) Introduction to Solid State Physics, 7th edn. New York, NY: Wiley.
Klemp, J. B., and Wilhelmson, R. B. (1978) The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.
Klett, J. D., and Davis, M. H. (1973) Theoretical collision efficiencies of cloud droplets at small Reynolds numbers. J. Atmos. Sci., 30, 107–117.
Knight, C. A. (1979) Observations of the morphology of the melting snow. J. Atmos. Sci., 36, 1123–1130.
Kogan, Y. L., Kogan, Z. N., and Mechem, D. B. (2009) Fidelity of analytic drop size distributions in drizzling stratiform clouds based on large eddy simulations. J. Atmos. Sci., 66, 2335–2348.
Kovetz, A., and Olund, B. (1969) The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26, 1060–1065.
Krehbiel, P. R., Thomas, R. J., Rison, W., et al. (2000) GPS-based mapping system reveals lightning inside storms. EOS, Trans. Am. Geophys. Union, 81, 21–25.
Kubicek, A., and Wang, P. K. (2012) A numerical study of the flow fields around a typical conical graupel falling at various inclination angles. Atmos. Res., 118, 15–26.
Küpper, C., Thuburn, J., Craig, G. C., and Birner, T. (2004) Mass and water transport into the tropical stratosphere: a cloud-resolving simulation. J. Geophys. Res., 109, D10111.
Lamb, D., and Verlinde, J. (2011) Physics and Chemistry of Clouds. Cambridge, UK: Cambridge University Press.
Lang, T. J., Miller, L. J., Weisman, M., et al. (2004) The severe thunderstorm electrification and precipitation study. Bull. Am. Meteorol. Soc., 85, 1107–1125.
Langmuir, I. (1948) The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Meteorol., 5, 175–192.
Latham, J. (1981) The electrification of thunderstorms. Q. J. R. Meteorol. Soc., 107, 277–298.
Latham, J., and Mason, B. J. (1961) Generation of electric charge associated with the formation of soft hail in thunderstorms. Proc. R. Soc. A, 260, 537–549.
Latham, J., and Saunders, C. P. R. (1970) Experimental measurements of the collection efficiencies of ice crystals in electric fields. Q. J. R. Meteorol. Soc., 96, 257–265.
Laws, J. O., and Parsons, D. A. (1943) The relation of raindrop size to intensity. Trans. Am. Geophys. Union, 24, 452–460.
Le Clair, B. P., Hamielec, A. E., Pruppacher, H. R., and Hall, W. D. (1972) A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity in air. J. Atmos. Sci., 29, 728–740.
Lee, R. E., Lee, M. R., and Strong-Gunderson, J. M. (1993) Insect cold-hardiness and ice nucleating active microorganisms including their potential use for biological control. J. Insect Physiol., 39, 1–12.
Levizzani, V. and Setvák, M. (1996) Multispectral, high resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361–369.
Lew, J. K., Montague, D. C., Pruppacher, H. R., and Rasmussen, R. M. (1986a) A wind tunnel investigation on the riming of snowflakes. Part I: Porous disks and large stellars. J. Atmos. Sci., 43, 2392–2409.
Lew, J. K., Montague, D. C., Pruppacher, H. R., and Rasmussen, R. M. (1986b) A wind tunnel investigation on the riming of snowflakes. Part II: Natural and synthetic aggregates. J. Atmos. Sci., 43, 2410–2417.
Libbrecht, K. G. (2005) The physics of snow crystals. Rep. Prog. Phys., 68, 855–895.
Lin, H. M., Wang, P. K., and Schlesinger, R. E. (2005) Three-dimensional nonhydrostatic simulations of summer thunderstorms in the humid subtropics versus High Plains. Atmos. Res., 78, 103–145.
Liou, K. N. (1992) Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling. New York, NY: Oxford University Press.
List, R. J. (1963) Smithsonian Meteorological Tables, 6th edn. Washington, DC: Smithsonian Institution.
List, R. (1965) The mechanism of hailstone formation. In Proceedings of the International Conference on Cloud Physics, Tokyo and Sapporo, pp. 481–491.
List, R., and McFarquhar, G. M. (1990) The role of breakup and coalescence in the three-peak equilibrium distribution of raindrops. J. Atmos. Sci., 47, 2274–2292.
List, R., Lesins, G. B., Garcia-Garcia, F., and McDonald, D. B. (1987) Pressurized icing tunnel for graupel, hail and secondary raindrop production. J. Atmos. Sci., 44, 455–463.
List, R., Nissen, R., and Fung, C. (2009a) Effects of pressure on collision, coalescence, and breakup of raindrops. Part I: Experiments at 50 kPa. J. Atmos. Sci., 66, 2190–2203.
List, R., Fung, C., and Nissen, R. (2009b) Effects of pressure on collision, coalescence, and breakup of raindrops. Part II: Parameterization and spectra evolution at 50 and 100 kPa. J. Atmos. Sci., 66, 2204–2215.
Liu, C., Williams, E. R., Zipser, E. J., and Burns, G. (2010) Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit. J. Atmos. Sci., 67, 309–323.
Liu, H. C., Wang, P. K., and Schlesinger, R. E. (2003a) A numerical study of cirrus clouds. Part I: Model description. J. Atmos. Sci., 60, 1075–1084.
Liu, H. C., Wang, P. K., and Schlesinger, R. E. (2003b) A numerical study of cirrus clouds. Part II: Effects of ambient temperature and stability on cirrus evolution. J. Atmos. Sci., 60, 1097–1119.
Locatelli, J. D., and Hobbs, P. V. (1974) Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185–2197.
Lohmann, U., Rotstayn, L., Storelvmo, T., et al. (2010) Total aerosol effect: radiative forcing or radiative flux perturbation?Atmos. Chem. Phys., 10, 3235–3246.
Lorrain, P., and Corson, D. R. (1970) Electromagnetic Fields and Waves, 2nd edn. San Francisco, CA: W. H. Freeman.
Low, T. B., and List, R. (1982a) Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 1591–1606.
Low, T. B., and List, R. (1982b) Collision, coalescence and breakup of raindrops. Part II: Parameterizations of fragment size distributions. J. Atmos. Sci., 39, 1607–1619.
Ludlam, F. H. (1958) The hail problem. Nubia, 1, 12–96.
Ludlam, F. H., and Scorer, R. S. (1957) Cloud Study: A Pictorial Guide. London, UK: John Murray.
Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U. (2010) Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, D14201.
MacGorman, D. R., and Rust, W. D. (1998) The Electrical Nature of Storms. New York, NY: Oxford University Press.
MacGorman, D. R., Rust, W. D., Ziegler, C. L., et al. (2008) TELEX the Thunderstorm Electrification and Lightning Experiment. Bull. Am. Meteorol. Soc., 89, 997–1013.
Macklin, W. C. (1961) Accretion in mixed clouds. Q. J. R. Meteorol. Soc., 87, 413–424.
Macklin, W. C. (1963) Heat transfer from hailstones. Q. J. R. Meteorol. Soc., 89, 360–369.
Magono, C., and Lee, C. W. (1966) Meteorological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., Ser. 7, 2, 321–335.
Makkonen, L. (2012) Misinterpretation of the Shuttleworth equation. Scr. Mater., 66, 627–629.
Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J., and Salzmann, C. G. (2012) Structure of ice crystallized from supercooled water. Proc. Natl. Acad. Sci., 109, 1041–1045.
Mansell, E. R., Ziegler, C. L., and Bruning, E. C. (2010) Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171–194.
Markson, R. (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull. Am. Meteorol. Soc., 88(2), 223–241.
Marshall, J. S., and Palmer, W. M. K. (1948) The distribution of raindrops with size. J. Meteorol., 5, 165–166.
Martin, J. J., Wang, P. K., Pruppacher, H. R., and Pitter, R. L. (1981) A numerical study of the effect of electric charges on the efficiency with which planar ice crystals collect supercooled water drops. J. Atmos. Sci., 38, 2462–2469.
Martin, R. S., Mather, T. A., Pyle, D. M., et al. (2008) Composition-resolved size distributions of volcanic aerosols in the Mt. Etna plumes. J. Geophys. Res., 113, D17211.
Mason, B. J. (1956) On the melting of hailstones. Q. J. R. Meteorol. Soc., 82, 209–216.
Mason, B. J. (1971) The Physics of Clouds. Oxford, UK: Clarendon Press.
Matsumoto, M., Saito, S., and Ohmine, I. (2002) Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature, 416, 409–413.
Matsuo, T., and Sasyo, Y. (1981) Empirical formula for the melting rate of snowflakes. J. Meteorol. Soc. Japan, 59, 1–9.
McDonald, J. E. (1963) Use of the electrostatic analogy in studies of ice crystal growth. Z. Angew. Math. Phys., 14, 610–620.
McFarquhar, G. M., Um, J., Freer, M., et al. (2007) Importance of small ice crystals to cirrus properties: observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803.
Meszaros, A., and Vissy, K. (1974) Concentration, size distribution and chemical nature of atmospheric aerosol particles in remote oceanic areas. J. Aerosol Sci., 5, 101–109.
Milbrandt, J. A., and Yau, M. K. (2005) A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.
Miller, N. L., and Wang, P. K. (1989) A theoretical determination of the efficiency with which aerosol particles are collected by falling columnar ice crystals. J. Atmos. Sci., 46, 1656–1663.
Mitchell, D. L. (2000) Parameterization of the Mie extinction and absorption coefficients for water clouds. J. Atmos. Sci., 57, 1311–1326.
Mitchell, D. L., Huggins, A., and Grubisic, V. (2006) A new snow growth model with application to radar precipitation estimates. Atmos. Res., 82, 2–18.
Mitchell, D. L., Chai, S. K., Liu, Y., Heymsfield, A. J., and Dong, Y. (1996) Modeling cirrus clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci., 53, 2952–2966.
Mitra, S. K., Vohl, O., Ahr, M., and Pruppacher, H. R. (1990) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584–591.
Murakami, M., and Matsuo, T. (1990) Development of the hydrometeor videosonde. J. Atmos. Ocean. Technol., 7, 613–620.
Murphy, D. M. (2003) Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophys. Res. Lett., 30, 2230.
Murphy, D. M., and Koop, T. (2005) Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc., 131, 1539–1565.
Newton, C. W., and Newton, H. R. (1959) Dynamical interactions between large convective clouds and environment with vertical shear. J. Meteorol., 16, 483–496.
Ochs, H. T. (1978) Moment-conserving techniques for warm cloud microphysical computations. Part II. Model testing and results. J. Atmos. Sci., 35, 1959–1973.
Ochs, H. T., Czys, R. R., and Beard, K. V. (1986) Laboratory measurements of coalescence efficiencies for small precipitation drops. J. Atmos. Sci., 43, 225–232.
Ochs, H. T., Beard, K. V., Laird, N. F., Holdridge, D. J., and Schaufelberger, D. E. (1995) Effects of relative humidity on the coalescence of small precipitation drops in free fall. J. Atmos. Sci., 52, 3673–3680.
Ogura, Y., and Phillips, N. A. (1962) Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–179.
Ohtake, T. (1970) Factors affecting the size distribution of raindrops and snowflakes. J. Atmos. Sci., 27, 804–813.
Orville, H. D., and Kopp, F. J. (1977) Numerical simulation of the life history of a hailstorm. J. Atmos. Sci., 34, 1596–1618.
Orville, R. E. (1994) Cloud-to-ground lightning flash characteristics in the contiguous United States: 1989–1991. J. Geophys. Res., 99, 10833–10841.
Paluch, I. R. (1979) The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 2467–2478.
Park, R. W. (1970) Behavior of water drops colliding in humid nitrogen. Ph.D. thesis, University of Wisconsin-Madison.
Pedlosky, J. (2003) Waves in the Ocean and Atmosphere. Berlin, Germany: Springer.
Peppler, W. (1940) Unterkühlte Wasserwolken und Eiswolken [Supercooled water clouds and ice clouds]. Forschungs- und Erfahrungsberichte des Reichswetterdienstes B, No. 1, pp. 3–68.
Pessi, A. T., and Businger, S. (2009) Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833–848.
Pflaum, J. C., and Pruppacher, H. R. (1979) A wind tunnel investigation of the growth of graupel initiated from frozen drops. J. Atmos. Sci., 36, 680–689.
Pflaum, J. C., Martin, J. J., and Pruppacher, H. R. (1978) A wind tunnel investigation of the hydrodynamic behavior of growing, freely falling graupel. Q. J. R. Meteorol. Soc., 104, 179–187.
Pinsky, M. B., and Khain, A. P. (2004) Collisions of small drops in a turbulent flow. Part II: Effects of flow accelerations. J. Atmos. Sci., 61, 1926–1939.
Pinsky, M. B., Khain, A. P., and Shapiro, M. (1999) Collisions of small drops in a turbulent flow. Part I: Collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci., 56, 2585–2600.
Pitter, R. L., and Pruppacher, H. R. (1974) A numerical investigation of collision efficiencies of simple ice plates colliding with supercooled water drops. J. Atmos. Sci., 31, 551–559.
Pitter, R. L., Pruppacher, H. R., and Hamielec, A. E. (1973) A numerical study of viscous flow past a thin oblate spheroid at low and intermediate Reynolds numbers. J. Atmos. Sci., 30, 125–134.
Pitter, R. L., Pruppacher, H. R., and Hamielec, A. E. (1974) A numerical study of the effect of forced convection on mass transport from a thin oblate spheroid of ice in air. J. Atmos. Sci., 31, 1058–1066.
Podzimek, J. (1966) Experimental determination of the “capacity” of ice crystals. Stud. Geophys. Geodet., 10, 235–238.
Pöschl, U., Martin, S. T., Sinha, B., et al. (2010) Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 329, 1513–1515.
Prenni, A. J., Petters, M. D., Kreidenweis, S. M., et al. (2009) Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nature Geosci., 2, 402–405.
Prodi, F. (1976) Scavenging of aerosol particles by growing ice crystals. In International Conference on Cloud Physics, Boulder, CO, 26–30 July 1976. Preprints, pp. 70–75.
Pruppacher, H. R., and Beard, K. V. (1970) A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc., 96, 247–256.
Pruppacher, H. R., and Klett, J. D. (1997) Microphysics of Clouds and Precipitation. Dordrecht, The Netherlands: Kluwer.
Rakov, V. A., and Uman, M. A. (2003) Lightning: Physics and Effects. Cambridge, UK: Cambridge University Press.
Rasmussen, R. M., and Heymsfield, A. J. (1987) Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 2754–2763.
Rasmussen, R. M., and Pruppacher, H. R. (1982) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius < 500 µm. J. Atmos. Sci., 39, 152–158.
Rasmussen, R. M., Levizzani, V., and Pruppacher, H. R. (1984a) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. II: A theoretical study for frozen drops of radius < 500 µm. J. Atmos. Sci., 41, 374–380.
Rasmussen, R. M., Levizzani, V., and Pruppacher, H. R. (1984b) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. III. Experiment and theory for spherical ice particles of radius > 500 µm. J. Atmos. Sci., 41, 381–388.
Rasmussen, R., Walcek, C., Pruppacher, H. R., et al. (1985) A wind tunnel investigation of the effect of an external vertical electric field on the shape of electrically uncharged rain drops. J. Atmos. Sci., 42, 1647–1652.
Reid, J. S., Eck, T. F., Christopher, S. A., et al. (2005) A review of biomass burning emissions. Part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys., 5, 827–849.
Reif, F. (1965) Fundamentals of Statistical and Thermal Physics. New York, NY: McGraw-Hill.
Reinking, R. (1979) The onset and steady growth of snow crystals by accretion of droplets. J. Atmos. Sci., 36, 870–881.
Reynolds, O. (1876) On the manner in which raindrops and hailstones are formed. Proc. Lit. Phil. Soc., Manchester, 16, 23–33.
Reynolds, S. E., Brook, M., and Gourley, M. F. (1957) Thunderstorm charge separation. J. Meteorol., 14, 426–436.
Richards, C. N., and Dawson, G. A. (1971) The hydrodynamic instability of water drops falling at terminal velocity in vertical electric fields. J. Geophys. Res., 76, 3445–3455.
Rogers, D. C. (1974) The Aggregation of Natural Ice Crystals. Research Report AR110, Department of Atmospheric Resources, University of Wyoming, Laramie, WY.
Rosenfeld, D., Lohmann, U., Raga, G. B., et al. (2008) Flood or drought: How do aerosols affect precipitation?Science, 321, 1309–1313.
Ryan, B. T. (1974) Growth of drops by coalescence: the effect of different collection kernels and of additional growth by condensation. J. Atmos. Sci., 31, 1942–1948.
Sambles, J. R., Skinner, L. M., and Listgarten, N. D. (1970) An electron microscope study of evaporating small particles: the Kelvin equation for liquid lead and the mean surface energy of solid silver. Proc. R. Soc. London, A, 318, 507–522.
Sazaki, G., Zepeda, S., Nakatsubo, S., Yokoyama, E., and Furukawa, Y. (2010) Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. Proc. Natl. Acad. Sci., 107, 19702–19707.
Sazaki, G., Zepeda, S., Nakatsubo, S., Yokomine, M., and Furukawa, Y. (2012) Quasi-liquid layers on ice crystal surfaces are made up of two different phases. Proc. Natl. Acad. Sci., 109, 1052–1055.
Schlamp, R. J., Grover, S. N., Pruppacher, H. R., and Hamielec, A. E. (1976) A numerical investigation of the electric charges and vertical external electric fields on the collision efficiency of cloud drops. J. Atmos. Sci., 33, 1747–1755.
Schlamp, R. J., Grover, S. N., Pruppacher, H. R., and Hamielec, A. E. (1979) A numerical investigation of the effect of electric charges and vertical external electric fields on the collision efficiency of cloud drops: Part II. J. Atmos. Sci., 36, 339–349.
Schlesinger, R. E. (1973) A numerical model of deep moist convection: Part I. Comparative experiments for variable ambient moisture and wind shear. J. Atmos. Sci., 30, 835–856.
Schlottke, J., Straub, W., Beheng, K., Gomma, H., and Weigand, B. (2010) Numerical investigation of collision-induced breakup of raindrops. Part I: Methodology and dependencies on collision energy and eccentricity. J. Atmos. Sci., 67, 557–575.
Schmidt, R. A. (1984) Measuring particle size and snowfall intensity in drifting snow. Cold Regions Sci. Technol., 9, 121–129.
Schuman, T. E. W. (1938) The theory of hailstone formation. Q. J. R. Meteorol. Soc., 64, 3–21.
Schumann, W. O. (1952) Über die Dämpfung der elecktromagnetischen Eigenschwingungen des Systems Erde–Lufte–Ionosphare. Z. Naturforsch. A, 7, 250–252.
Schwarz, S. E. (1986) Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds. In Chemistry of Multiphase Systems, ed. Jaeschke, W.. NATO ASI Series. Berlin, Germany: Springer, pp. 415–477.
Scorer, R. S. (1997) Dynamics of Meteorology and Climate. Chichester, UK: Wiley.
Scorer, R. S., and Ludlam, F. H. (1953) Bubble theory of penetrative convection. Q. J. R. Meteorol. Soc., 79, 94–103.
Seinfeld, J. H., and Pandis, S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn. New York, NY: Wiley-Interscience.
Sekhon, R. S., and Srivastava, R. C. (1970) Snow size spectra and radar reflectivity. J. Atmos. Sci., 27, 299–307.
Setvák, M., and Doswell, C. A. (1991) The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Weather Rev., 119, 841–847.
Shafrir, U., and Neiburger, M. (1963) Collision efficiencies of two spheres falling in a viscous medium. J. Geophys. Res., 68, 4141–4147.
Shuttleworth, R. (1950) The surface tension of solid. Proc. Phys. Soc. A, 63, 444–457.
Simpson, J. (1971) On cumulus entrainment and one-dimensional models. J. Atmos. Sci., 28, 449–455.
Skatskii, V. I. (1965) Some results from experimental study of the liquid water content in cumulus clouds. Izv. Atmos. Oceanic Phys., 1, 479–487.
Solomon, S., Qin, D., Manning, M., et al. (eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Solomon, S., Rosenlof, K., Portmann, R., et al. (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science Express, 28 January, pp. 1–6.
Squires, P. (1958a) The microstructure and colloidal stability of warm clouds. Part II. The causes of the variations in microstructure. Tellus, 10, 262–271.
Squires, P. (1958b) Penetrative downdraughts in cumuli. Tellus, 10, 381–389.
Srivastava, R. C. (1967) A study of the effect of precipitation on cumulus dynamics. J. Atmos. Sci., 24, 36–45.
Stommel, H. (1947) Entrainment of air into a cumulus cloud. J. Meteorol., 4, 91–94.
Straka, J. M. (1989) Hail growth in a highly glaciated central High Plains multi-cellular hailstorm. Ph.D. thesis, Department of Meteorology, University of Wisconsin, Madison, WI.
Straka, J. M. (2010) Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge, UK: Cambridge University Press.
Straub, W., Beheng, K. D., Seifert, A., Schlottke, J., and Weigand, B. (2010) Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci., 67, 576–588.
Sturniolo, O., Mugnai, A., and Prodi, F. (1995) A numerical sensitivity study on the backscattering at 35.8 GHz from precipitation-sized hydrometeors. Radio Sci., 30(4), 903–919.
Sun, F. L. (1993) On the bimodal size distribution of hydrometeors in clouds. M.Sc. thesis, Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI.
Szakáll, M., Diehl, K., Mitra, S. K., and Borrmann, S. (2009) A wind tunnel study on the shape, oscillation, and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm. J. Atmos. Sci., 66, 755–765.
Szakáll, M., Mitra, S. K., Diehl, K., and Borrmann, S. (2010) Shapes and oscillations of falling raindrops – a review. Atmos. Res., 97, 416–425.
Szyrmer, W., and Zawadzki, I. (1997) Biogenic and anthropogenic sources of ice-forming nuclei: a review. Bull. Am. Meteorol. Soc., 78, 209–228.
Takahashi, T. (1973) Measurement of electric charge of cloud droplets, drizzle, and raindrops. Rev. Geophys. Space Phys., 11, 903–924.
Takahashi, T. (1978) Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548.
Takahashi, T., and Miyawaki, K. (2002) Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 1018–1025.
Takahashi, T., Endoh, T., and Wakahama, G. (1991) Vapor diffusional growth of free-falling snow crystals between −3 and −23°C. J. Meteorol. Soc. Japan, 69, 15–30.
Takeda, T. (1971) Numerical simulation of a precipitating convective cloud: the formation of a “long-lasting” cloud. J. Atmos. Sci., 28, 350–376.
Takeuti, T., Nakano, M., Brook, M., Raymond, D. J., and Krehbiel, P. (1978) The anomalous winter thunderstorms of the Hokuriku coast. J. Geophys. Res., 83, 2385–2394.
Taneda, S. (1956) Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan, 11, 1101–1108.
Telford, J. W. (1955) A new aspect of coalescence theory. J. Meteorol., 12, 436–444.
Thorpe, A. D., and Mason, B. J. (1966) The evaporation of ice spheres and ice crystals. Br. J. Appl. Phys., 17, 541–548.
Thurai, M., Huang, G. J., Bringi, V. N., Randeu, W. L., and Schönhuber, M. (2007) Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Ocean. Technol., 24, 1019–1032.
Thurai, M., Bringi, V. N., Szakáll, M., et al. (2009) Drop shapes and axis ratio distributions: comparison between 2D video disdrometer and wind-tunnel measurements. J. Atmos. Ocean. Technol., 26, 1427–1432.
Tinsley, B. A., Burns, G. B., and Zhou, L. (2007) The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv. Space Res., 40, 1126–1139.
Tokay, A., and Beard, K. V. (1996) A field study of raindrop oscillations. Part I: Observation of size spectra and evaluation of oscillation causes. J. Appl. Meteorol., 35, 1671–1687.
Trentmann, J., Luderer, G., Winterrath, T., et al. (2006) Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): reference simulation. Atmos. Chem. Phys., 6, 5247–5260.
Turner, D. D. (2005) Arctic mixed-phase cloud properties from AERI lidar observations: algorithm and results from SHEBA. J. Appl. Meteorol., 44, 427–443.
Turner, J. S. (1969) Buoyant plumes and thermals. Annu. Rev. Fluid Mech., 1, 29–44.
Twomey, S. (1964) Statistical effects in the evolution of a distribution of cloud droplets by coalescence. J. Atmos. Sci., 21, 553–557.
Twomey, S., and Wojciechowski, T. A. (1969) Observations of the geographical variation of cloud nuclei. J. Atmos. Sci., 26, 684–688.
Ulbrich, C. W. (1983) Natural variations in the analytical form of raindrop size distribution. J. Clim. Appl. Meteorol., 22, 1764–1775.
Um, J., and McFarquhar, G. M. (2009) Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteorol. Climatol., 46, 757–775.
Uman, M. A. (1969) Lightning. New York, NY: McGraw-Hill.
Uman, M. A. (1987) The Lightning Discharge. Orlando, FL: Academic Press.
Valdez, M. P., and Young, K. C. (1985) Number fluxes in equilibrium raindrop populations: a Markov chain analysis. J. Atmos. Sci., 42, 1024–1036.
Volmer, M. (1939) Kinetik der Phasenbildung. Dresden, Germany: Verlag Th. Steinkopff.
Vonnegut, B., and Moore, C. B. (1958) Giant electrical storms. In Recent Advances in Atmospheric Electricity, ed. Smith, L. G.. New York, NY: Pergamon, pp. 399–410.
Vrbka, L., and Jungwirth, P. (2006) Homogeneous freezing of water starts in the subsurface. J. Phys. Chem. B, 110, 18126–18129.
Walcek, C. J., and Pruppacher, H. R. (1984) On the scavenging of SO2 by cloud and raindrops: I. A theoretical study of SO2 absorption and desorption for water drops in air. J. Atmos. Chem., 1, 269–289.
Waldvogel, A. (1974) The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067–1078.
Walker, J. C. G. (1977) Evolution of the Atmosphere. New York, NY: Macmillan.
Wang, P. K. (1982) Mathematical description of the shape of conical hydrometeors. J. Atmos. Sci., 39, 2615–2622.
Wang, P. K. (1983) On the definition of collision efficiency of atmospheric particles. J. Atmos. Sci., 40, 1051–1052.
Wang, P. K. (1997) Characterization of ice particles in clouds by simple mathematical expressions based on successive modification of simple shapes. J. Atmos. Sci., 54, 2035–2041.
Wang, P. K. (1999) Three-dimensional representations of hexagonal ice crystals and hail particles of elliptical cross-sections. J. Atmos. Sci., 56, 1089–1093.
Wang, P. K. (2002) Ice Microdynamics. San Diego, CA: Academic Press.
Wang, P. K. (2003) Acid rain and precipitation chemistry. In Encyclopedia of Water Science. New York, NY: Marcel Dekker.
Wang, P. K. (2004) A cloud model interpretation of jumping cirrus above storm top. Geophys. Res. Lett., 31, L18106.
Wang, P. K., and Denzer, S. M. (1983) Mathematical description of the shape of plane hexagonal snow crystals. J. Atmos. Sci., 40, 1024–1028.
Wang, P. K., and Ji, W. (1997) Simulation of three-dimensional unsteady flow past ice crystals. J. Atmos. Sci., 54, 2261–2274.
Wang, P. K., and Ji, W. (2000) Collision efficiencies of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: a numerical study. J. Atmos. Sci., 57, 1001–1009.
Wang, P. K., and Pruppacher, H. R. (1977) Acceleration to terminal velocity of cloud and rain drops. J. Appl. Meteorol., 16, 275–280.
Wang, P. K., Grover, S. N., and Pruppacher, H. R. (1978) On the effect of electric charges on the scavenging of aerosol particles by cloud and small rain drops. J. Atmos. Sci., 35, 1735–1743.
Wang, P. K., Rasmussen, R., Yang, C. C., Pruppacher, H. R. and Viswanathan, C. R. (1980) Heterogeneous nucleation of water and ice on a p–n junction. In Symposium on Nucleation, 180th National American Chemical Society Meeting, Las Vegas, 26–28 August 1980. Abstracts.
Wang, P. K., Greenwald, T. J., and Wang, J. (1987) A three parameter representation of the shape and size distributions of hailstones – a case study. J. Atmos. Sci., 44, 1062–1070.
Wang, P. K., Setvák, M., Lyons, W., Schmid, W., and Lin, H. (2009) Further evidence of deep convective vertical transport of water vapor through the tropopause. Atmos. Res., 94, 400–408.
Wang, P. K., Su, S. -H., Setvák, M., Lin, H. -M., and Rabin, R. (2010) Ship wave signature at the cloud top of deep convective storms. Atmos. Res., 97, 294–302.
Wang, P. K., Su, S. -H., Charvát, Z., Štástka, J., and Lin, H. -M. (2011) Cross tropopause transport of water by mid-latitude deep convective storms: a review. Terr. Atmos. Ocean. Sci., 22, 447–462.
Wang, Z., Sassen, K., Whiteman, D. N., and Demoz, B. B. (2004) Studying altocumulus with ice virga using ground-based active and passive remote sensors. J. Appl. Meteor., 43, 449–460.
Warneck, P. (1988) Chemistry of the Natural Atmosphere. San Diego, CA: Academic Press.
Warner, J. (1969) The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. J. Atmos. Sci., 26, 1272–1282.
Warner, J. (1970) On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci., 27, 1035–1040.
Westbrook, C. D., Hogan, R. J., and Illingworth, A. J. (2008) The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65, 206–219.
Whitby, K. T. (1978) The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135–159.
Wilhelmson, R. (1974) The life cycle of a thunderstorm in three dimensions. J. Atmos. Sci., 31, 1629–1651.
Wilkins, R. D., and Auer, Jr A. H.. (1970) Riming properties of hexagonal ice crystals. Preprints, Conf. on Cloud Physics, Fort Collins, CO, American Meteorological Society, pp. 81–82.
Williams, E. R. (2005) Lightning and climate: a review. Atmos. Res., 76, 272–287.
Williams, E. R., Weber, M., and Orville, R. (1989) The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94, 13213–13220.
Willis, P. T. (1984) Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 1648–1661.
Willis, P. T., and Tuttleman, P. (1989) Drop-size distributions associated with intense rainfall. J. Appl. Meteorol., 28, 3–15.
Willmarth, W. W., Hawk, N. E., and Harvey, R. L. (1964) Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids, 7, 197–208.
Wilson, C. T. R. (1903) Atmospheric electricity. Nature, 68, 101–104.
Wilson, C. T. R. (1920) Investigations on lightning discharges and on the electric field of thunderstorms. Phil. Trans. R. Soc. London A, 221, 73–115.
Wilson, C. T. R. (1929) Some thundercloud problems. J. Franklin Inst., 208, 1–12.
Wurden, G., and Whiteson, D. (1996) High-speed plasma imaging: a lightning bolt. IEEE Trans. Plasma Sci., 24, 83–84.
Zawadzki, I., Szyrmer, W., Bell, C., and Fabry, F. (2005) Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 3705–3723.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.