Skip to main content Accessibility help
×
  • Cited by 70
Publisher:
Cambridge University Press
Online publication date:
March 2013
Print publication year:
2013
Online ISBN:
9780511794285

Book description

This key new textbook provides a state-of-the-art view of the physics of cloud and precipitation formation, covering the most important topics in the field: the microphysics, thermodynamics and cloud-scale dynamics. Highlights include: the condensation process explained with new insights from chemical physics studies; the impact of the particle curvature (the Kelvin equation) and solute effect (the Köhler equation); homogeneous and heterogeneous nucleation from recent molecular dynamic simulations; and the hydrodynamics of falling hydrometeors and their impact on collision growth. 3D cloud-model simulations demonstrate the dynamics and microphysics of deep convective clouds and cirrus formation, and each chapter contains problems enabling students to review and implement their new learning. Packed with detailed mathematical derivations and cutting-edge stereographic illustrations, this is an ideal text for graduate and advanced undergraduate courses, and also serves as a reference for academic researchers and professionals working in atmospheric science, meteorology, climatology, remote sensing and environmental science.

Reviews

‘Finally a comprehensive textbook, filling an empty slot between mainly descriptive and encyclopaedic cloud physics books. It is carefully written, covering all relevant aspects, and starts from first principles in a pedagogic way: invaluable for cloud physics teachers and graduate students.’

Andrea Flossmann - Université Blaise Pascal de Clermont Ferrand

‘Without hesitation I am endorsing this book. It will be a great addition to atmospheric science.’

Hans R. Pruppacher - author of Microphysics of Clouds and Precipitation

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Ackerman, S. A., and Stephens, G. L. (1987) The absorption of solar radiation by cloud droplets: an application of anomalous diffraction theory. J. Atmos. Sci., 44 CrossRef | Google Scholar, 1574–1588.
Anderson, J. K., Droegemier, K., and Wilhelmson, R. B. (1985) Simulation of the thunderstorm subcloud environment. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN. Boston, MA Google Scholar: American Meteorological Society, pp. 147–150.
Andsager, K., Beard, K. V., and Laird, N. F. (1999) Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56 CrossRef | Google Scholar, 2673–2683.
Auer, A. H., and Marwitz, J. D. (1972) Hail in the vicinity of organized updrafts. J. Appl. Meteorol., 11 CrossRef | Google Scholar, 748–752.
Auer, A. H., and Veal, D. L. (1970) The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27 CrossRef | Google Scholar, 919–926.
Baboolal, L. A., Pruppacher, H. R., and Topalian, J. H. (1981) A sensitivity study of a theoretical model of SO2 scavenging by water drops in air. J. Atmos. Sci., 38 CrossRef | Google Scholar, 856–870.
Bailey, M., and Hallett, J. (2004) Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61 CrossRef | Google Scholar, 514–544.
Bailey, M., and Hallett, J. (2009) A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66 CrossRef | Google Scholar, 2888–2899.
Baker, M. B., Christian, H. J., and Latham, J. (1995) A computational study of the relationships linking lightning frequency and other thundercloud parameters. Q. J. R. Meteorol. Soc., 121 CrossRef | Google Scholar, 1525–1548.
Beard, K. V. (1976) Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33 CrossRef | Google Scholar, 851–864.
Beard, K. V., and Chuang, C. H. (1987) A new model for the equilibrium shapes of raindrops. J. Atmos. Sci., 44 CrossRef | Google Scholar, 1509–1524.
Beard, K. V., and Kubesh, R. J. (1991) Laboratory measurements of small raindrop distortion. Part 2: Oscillation frequencies and modes. J. Atmos. Sci., 48 CrossRef | Google Scholar, 2245–2264.
Beard, K. V., and Ochs, H. T. (1983) Measured collection efficiencies for cloud drops. J. Atmos. Sci., 40 CrossRef | Google Scholar, 146–153.
Beard, K. V., and Ochs, III H. T. (1993) Warm-rain initiation: an overview of microphysical mechanisms. J. Appl. Meteorol., 32 CrossRef | Google Scholar, 608–625.
Beard, K. V., and Ochs, H. T. (1995) Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites. J. Atmos. Sci., 52 CrossRef | Google Scholar, 3977–3996.
Beard, K. V., and Pruppacher, H. R. (1969) A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J. Atmos. Sci., 26 CrossRef | Google Scholar, 1066–1072.
Beard, K. V., and Pruppacher, H. R. (1971) A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci., 28 CrossRef | Google Scholar, 1455–1464.
Beard, K. V., Johnson, D. B., and Baumgardner, D. (1986) Aircraft observations of large raindrops in warm, shallow convective clouds. Geophys. Res. Lett., 13 CrossRef | Google Scholar, 991–994.
Beard, K. V., Ochs, H. T., and Kubesh, R. J. (1989a) Natural oscillations of small raindrops. Nature, 342 CrossRef | Google Scholar, 408–410.
Beard, K. V., Feng, J. Q., and Chuang, C. (1989b) A simple perturbation model for the electrostatic shape of falling drops. J. Atmos. Sci., 46 CrossRef | Google Scholar, 2404–2418.
Beard, K. V., Kubesh, R. J., and Ochs, H. T. (1991) Laboratory measurements of small raindrop distortion. Part 1: Axis ratio and fall behavior. J. Atmos. Sci., 48 CrossRef | Google Scholar, 698–710.
Beard, K. V., Bringi, V. N., and Thurai, M. (2010) A new understanding of raindrop shape. Atmos. Res., 97 CrossRef | Google Scholar, 396–415.
Berry, E. X. (1968) Modification of the warm rain process. Proc. First Natl. Conf. Weather Modification, State University of New York, Albany. Boston, MA Google Scholar: American Meteorological Society, pp. 81–88.
Berry, E. X., and Reinhardt, R. L. (1974) An analysis of cloud drop growth by collection. Part II. Single initial distributions. J. Atmos. Sci., 31 CrossRef | Google Scholar, 2127–2135.
Bigg, E. K., and Hopwood, S. C. (1963) Ice nuclei in the Antarctic. J. Atmos. Sci., 20 CrossRef | Google Scholar, 185–188.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960) Transport Phenomena. New York, NY Google Scholar: Wiley.
Blanchard, D. C. (1969) The oceanic production rate of cloud nuclei. J. Rech. Atmos., 4 Google Scholar, 1–6.
von Blohn, N., Diehl, K., Mitra, S. K., and Borrmann, S. (2009) Riming of graupel: wind tunnel investigations of collection kernels and growth regimes. J. Atmos. Sci., 66 CrossRef | Google Scholar, 2359–2366.
Blyth, A. M., Cooper, W. A., and Jensen, J. B. (1988) A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45 CrossRef | Google Scholar, 3944–3964.
Borovikov, A. M., Gaivoronskii, I. I., Zak, E. G., et al. (1963) Cloud Physics. Jerusalem, Israel Google Scholar: Israel Program of Scientific Translations.
Borrmann, S., Jaenicke, R., and Neumann, P. (1993) On spatial distributions and inter-droplet distances measured in stratus clouds with in-line holography. Atmos. Res., 29 CrossRef | Google Scholar, 229–245.
Bowen, E. G. (1950) The formation of rain by coalescence. Austral. J. Sci. Res., 3 Google Scholar, 193–213.
Braham, R. R. (1974) Cloud physics of urban weather modification: a preliminary report. Bull. Am. Meteorol. Soc., 55 Google Scholar, 100–105.
Braham, R. (1990) Snow particle size spectra in lake effect snows. J. Appl. Meteorol., 29 CrossRef | Google Scholar, 200–207.
Brandes, E. A., Zhang, G., and Sun, J. (2006) On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics. J. Appl. Meteorol. Climatol., 45 CrossRef | Google Scholar, 259–268.
Bringi, V. N., and Chandrasekar, V. (2001) Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge, UK CrossRef | Google Scholar: Cambridge University Press.
Brook, M. (1958) Studies of charge separation during ice–ice contact. Recent Advances in Thunderstorm Electricity. New York, NY Google Scholar: Pergamon, pp. 383–390.
Brown, P. S. (1988) The effects of filament, sheet, and disk breakup upon the drop spectrum. J. Atmos. Sci., 45 CrossRef | Google Scholar, 712–718.
Bruntjes, R. T., Heymsfield, A. J., and Krauss, T. W. (1987) An examination of double-plate ice crystals and the initiation of precipitation in continental cumulus clouds. J. Atmos. Sci., 44 CrossRef | Google Scholar, 1331–1349.
Byers, H. R., and Braham, Jr. R. R. (1949) The Thunderstorm: Final Report of the Thunderstorm Project. Washington, DC Google Scholar: US Government Printing Office.
Cameron, A. G. W. (1981) In Essays in Nuclear Astrophysics, ed. Barnas, C. A., Clayton, D. D., and Schramm, D. N.. Cambridge, UK Google Scholar: Cambridge University Press.
Carrier, G. F. (1953 Google Scholar) On Slow Viscous Flow, Final Report, Office of Naval Research, Contract No. 653–00/1.
Castro, A., Marcos, J. L., Dessens, J., Sanchez, J. L., and Fraile, R. (2004) Concentration of ice nuclei in continental and maritime air masses in Leon (Spain). Atmos. Res. Google Scholar, 47–48, 155–167.
Chagnon, C. W., and Junge, C. E. (1961) The vertical distribution of submicron particles in the stratosphere. J. Meteorol., 18 CrossRef | Google Scholar, 746–752.
Chen, C. J., and Wang, P. K. (2009) Diffusion growth of solid and hollow hexagonal ice columns. Nuovo Cimento, 124 Google Scholar, 87–97.
Chen, J. P. (1994) Theory of deliquescence and modified Köhler curves. J. Atmos. Sci., 51 CrossRef | Google Scholar, 3505–3516.
Cheng, L., and English, M. (1983) A relationship between hailstone concentration and size. J. Atmos. Sci., 40 CrossRef | Google Scholar, 204–213.
Chin, E. H. C., and Neiburger, M. (1972) A numerical simulation of the gravitational coagulation process for cloud droplets. J. Atmos. Sci., 29 CrossRef | Google Scholar, 718–727.
Chiruta, M., and Wang, P. K. (2003) On the capacitance of bullet rosette crystals. J. Atmos. Sci., 60 CrossRef | Google Scholar, 836–846.
Chiruta, M., and Wang, P. K. (2005) The capacitance of solid and hollow hexagonal ice columns. Geophys. Res. Lett., 32 CrossRef | Google Scholar, L05803.
Chiu, C. S., and Klett, J. D. (1976) Convective electrification of clouds. J. Geophys. Res., 81 CrossRef | Google Scholar, 1111–1124.
Chuang, C. C., and Beard, K. V. (1990) A numerical model for the equilibrium shape of electrified raindrops. J. Atmos. Sci., 47 CrossRef | Google Scholar, 1374–1389.
Clough, S. A., Beers, Y., Klein, G. P., and Rothman, L. S. (1973) Dipole moment of water from Stark measurements of H2O, HDO, and D2O. J. Chem. Phys., 59 CrossRef | Google Scholar, 2254–2259.
Cober, S. G., and List, R. (1993) Measurements of the heat and mass transfer parameters characterizing conical graupel growth. J. Atmos. Sci., 50 CrossRef | Google Scholar, 1591–1609.
Connolly, P. J., Emersic, C., and Field, P. R. (2012) A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12 CrossRef | Google Scholar, 2055–2076.
Cotton, W. R., and Anthes, R. A. (1989) Storm and Cloud Dynamics. San Diego, CA Google Scholar: Academic Press.
Crutzen, P. J. (1976) The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett., 3 CrossRef | Google Scholar(2), 73–76.
Curtius, J., Weigel, R., Vössing, H. -J., et al. (2005) Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements. Atmos. Chem. Phys., 5 CrossRef | Google Scholar, 3053–3069.
Czys, R. R. (1994) Preliminary laboratory results on the coalescence of small precipitation-size drops falling freely in a refrigerated environment. J. Atmos. Sci., 51 CrossRef | Google Scholar, 3209–3218.
Czys, R. R., and Ochs, H. T. (1988) The influence of charge on the coalescence of water drops in free fall. J. Atmos. Sci., 45 CrossRef | Google Scholar, 3161–3168.
Damiani, R., Vali, G., and Haimov, S. (2006) The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63 CrossRef | Google Scholar, 1432–1450.
Davies, C. N. (1945) Definitive equations for the fluid resistance of spheres. Proc. Phys. Soc., 57 CrossRef | Google Scholar, 259–270.
Dinger, J. E., and Gunn, R. (1946) Electrical effects associated with a change of state of water. Terr. Magn. Atmos. Electr., 51 CrossRef | Google Scholar, 477–494.
Döppenschmidt, A., and Butt, H. -J. (2000) Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy. Langmuir, 16 CrossRef | Google Scholar, 6709–6714.
Dosch, H., Lied, A., and Bilgram, J. H. (1995) Glancing-angle X-ray scattering studies of the premelting of ice surfaces. Surf. Sci., 327 CrossRef | Google Scholar, 145–164.
Doswell, C. A. (Ed.) (2001) Severe Convective Storms. Boston, MA CrossRef | Google Scholar: American Meteorological Society.
Drake, J. C., and Mason, B. J. (1966) The melting of small ice spheres and cones. Q. J. R. Meteorol. Soc., 92 CrossRef | Google Scholar, 500–509.
Dufour, L., and Defay, R. (1963) Thermodynamics of Clouds. New York, NY Google Scholar: Academic Press.
Dusek, U., Frank, G. P., Hildebrandt, L., et al. (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312 CrossRef | Google Scholar | PubMed, 1375–1378.
Einstein, A. (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik, 17 CrossRef | Google Scholar, 549–560.
Feingold, G., and Levin, Z. (1986) The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Clim. Appl. Meteorol., 25 CrossRef | Google Scholar, 1346–1363.
Few, A. A., Dessler, A. J., Latham, D. J., and Brook, M. (1967) A dominant 200-Hertz peak in the acoustic spectrum of thunder. J. Geophys. Res., 72 CrossRef | Google Scholar, 6149–6154.
Fiebig, M., Lunder, C. R., and Stohl, A. (2009) Tracing biomass burning aerosol from South America to Troll Research Station, Antarctica. Geophys. Res. Lett., 36 CrossRef | Google Scholar, L14815.
Field, P. R., and Heymsfield, A. J. (2003) Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60 CrossRef | Google Scholar, 544–560.
Fletcher, N. H. (1962) The Physics of Rainclouds. Cambridge, UK Google Scholar: Cambridge University Press.
Flossmann, A. I. (1998) Interaction of aerosol particles and clouds. J. Atmos. Sci., 55 CrossRef | Google Scholar, 879–887.
Flossmann, A. I., and Wobrock, W. (2010) A review of our understanding of the aerosol–cloud interaction from the perspective of a bin resolved cloud scale modeling. Atmos. Res., 97 CrossRef | Google Scholar, 478–497.
Forster, P. M., and Shine, K. P. (2002) Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29 CrossRef | Google Scholar(6), 1086.
Fujita, T. T. (1982) Principle of stereographic height computations and their application to stratospheric cirrus over severe thunderstorms. J. Meteorol. Soc. Japan, 60 CrossRef | Google Scholar, 355–368.
Fujita, T. T. (1985) The Downburst – Microburst and Macroburst. Satellite and Mesometeorology Research Project (SMRP), Research Paper 210, Department of Geophysical Sciences, University of Chicago Google Scholar, NTIS PB-148880, February.
Fukuta, N. (1963) Ice nucleation by metaldehyde. Nature, 199 CrossRef | Google Scholar, 475–476.
Fukuta, N., and Mason, B. J. (1963) Epitaxial growth of ice on organic crystals. J. Phys. Chem. Solids, 24 CrossRef | Google Scholar, 715–718.
Furukawa, Y., Yamamoto, M., and Kuroda, T. (1987) Ellipsometric study of the transition layer on the surface of an ice crystal. J. Crystal Growth, 82 CrossRef | Google Scholar, 665–677.
Gillespie, D. T. (1975) An exact method for numerically simulating the stochastic coalescence process in a cloud. J. Atmos. Sci., 32 CrossRef | Google Scholar, 1977–1989.
Gish, O. H. (1944) Evaluation and interpretation of the columnar resistance of the atmosphere. Terr. Magn. Atmos. Electr., 49 CrossRef | Google Scholar, 159–168.
Goddard, J. W. F., and Cherry, S. M. (1984) The ability of dual-polarization radar (copular linear) to predict rainfall rate and microwave attenuation. Radio Sci., 19 CrossRef | Google Scholar, 201–208.
Greenfield, S. (1957) Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteorol., 14 CrossRef | Google Scholar, 115–125.
Gunn, K. L. S., and Marshall, J. S. (1958) The distribution with size of snowflakes. J. Meteorol., 15 CrossRef | Google Scholar, 452–461.
Gunn, R., and Kinzer, G. D. (1949) The terminal velocity of fall for water droplets in stagnant air. J. Meteorol., 4 CrossRef | Google Scholar, 243–248.
Hall, W. D., and Pruppacher, H. R. (1976) The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33 CrossRef | Google Scholar, 1995–2006.
Hallett, J., and Mossop, S. C. (1974) Production of secondary ice particles during the riming process. Nature, 249 CrossRef | Google Scholar, 26–28.
Hallgren, R., and Hosler, C. L. (1960) Preliminary results in the aggregation of ice crystals. In Physics of Precipitation, ed. Weickmann, H.. AGU Geophysical Monograph, No. 5, AGU Publ. No. 746. Baltimore, MD Google Scholar: Waverly Press, pp. 257–263.
Hashino, T., Chiruta, M., and Wang, P. K. (2010) A numerical study on the riming process in the transition from a pristine crystal to a graupel particle. In The 13th Conference on Cloud Physics, Portland, OR, 28 June–2 July 2010. Boston, MA Google Scholar: American Meteorological Society, Paper 1.86.
Hegg, D. A., Radke, L. F., and Hobbs, P. V. (1990) Particle production associated with marine clouds. J. Geophys. Res., 95 CrossRef | Google Scholar, 13917–13926.
Heymsfield, A. J. (1972) Ice crystal terminal velocities. J. Atmos. Sci., 29 CrossRef | Google Scholar, 1348–1357.
Heymsfield, A. J. (1975) Cirrus uncinus generating cells and the evolution of cirriform clouds. Part III: Numerical computations of the growth of the ice phase. J. Atmos. Sci., 32 CrossRef | Google Scholar, 820–830.
Heymsfield, A. J., Johnson, P. N., and Dye, J. E. (1978) Observations of moist adiabatic ascent in Northeast Colorado cumulus congestus clouds. J. Atmos. Sci., 35 CrossRef | Google Scholar, 1689–1703.
Heymsfield, A. J., Bansemer, A., Field, P. R., et al. (2002) Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59 CrossRef | Google Scholar, 3457–3491.
Highwood, E. J., and Hoskins, B. J. (1998) The tropical tropopause. Q. J. R. Meteorol. Soc., 124 CrossRef | Google Scholar, 1579–1604.
Hill, M. J. M. (1894) On a spherical vortex. Phil. Trans. R. Soc. Lond. A, 185 CrossRef | Google Scholar, 213–245.
Hinds, W. C. (1982) Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York, NY Google Scholar: Wiley-Interscience.
Hobbs, P. V. (1974) Ice Physics. Oxford, UK Google Scholar: Clarendon Press.
Hobbs, P. V., and Rangno, A. L. (1990) Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47 CrossRef | Google Scholar, 2710–2722.
Hobbs, P. V., Radke, L. F., and Shumway, S. E. (1970) Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington State. J. Atmos. Sci., 27 CrossRef | Google Scholar, 81–89.
Hobbs, P. V., Chang, S., and Locatelli, J. D. (1974) The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79 CrossRef | Google Scholar, 2199–2206.
Hobbs, P. V., Bowdle, D. A., and Radke, L. F. (1985) Particles in the lower troposphere over the High Plains of the United States. Part I: Size distributions, elemental compositions, and morphologies. J. Clim. Appl. Meteorol., 24 CrossRef | Google Scholar, 1344–1356.
Hocking, L. M. (1959) The collision efficiency of small droplets. Q. J. R. Meteorol. Soc., 85 CrossRef | Google Scholar, 44–50.
Hocking, L. M., and Jonas, P. R. (1970) The collision efficiency of small drops. Q. J. R. Meteorol. Soc., 96 CrossRef | Google Scholar, 722–729.
Hoffmann, C., Funk, R., Sommer, M., and Li, Y. (2008) Temporal variations in PM10 and particle size distribution during Asian dust storms in Inner Mongolia. Atmos. Environ., 42 CrossRef | Google Scholar, 8422–8431.
Holton, J. R. (2004) An Introduction to Dynamic Meteorology, 4th edn. Burlington, MA Google Scholar: Academic Press.
Holton, J. R., Haynes, P. H., McIntyre, M. E., et al. (1995) Stratosphere–troposphere exchange. Rev. Geophys., 33 CrossRef | Google Scholar, 403–439.
Hosler, C. L., and Hallgren, R. E. (1960) The aggregation of small ice crystals. Disc. Faraday Soc., 30 CrossRef | Google Scholar, 200–207.
Houze, R. A. (1993) Cloud Dynamics. San Diego, CA Google Scholar: Academic Press.
Huang, C., Wikfeldt, K. T., Tokushima, T., et al. (2009) The inhomogeneous structure of water at ambient conditions. Proc. Natl. Acad. Sci., 106 CrossRef | Google Scholar, 15214–15218.
Iribarne, J. V., and Cho, H. R. (1980) Atmospheric Physics. Dordrecht, The Netherlands CrossRef | Google Scholar: Reidel.
Iribarne, J. V., and Godson, W. L. (1973) Atmospheric Thermodynamics. Dordrecht, The Netherlands Google Scholar: Reidel.
Iwai, K. (1983) Three-dimensional structure of plate-like snow crystals. J. Meteorol. Soc. Japan, 61 CrossRef | Google Scholar, 746–755.
Iwai, K. (1989) Three-dimensional structures of natural snow crystals by stereo-photomicrographs. Atmos. Res., 24 CrossRef | Google Scholar, 137–147.
Iwai, K. (1999) Three dimensional fine structures of bullet-type snow crystals and their growth conditions observed at Syowa Station, Antarctica [in Japanese]. Seppyo [Snow and Ice], 61 Google Scholar, 3–12.
Jaenicke, R. (1988) Properties of atmospheric aerosols. In Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 4, Meteorology, Ser. Vol. 4b, Physical and Chemical Properties of the Air. Berlin, Germany Google Scholar: Springer, Chap. 9.3.
Janhäll, S., Andreae, M. O., and Pöschl, U. (2010) Biomass burning aerosol emissions from vegetation fires: particle number and mass emission factors and size distributions. Atmos. Chem. Phys., 10 CrossRef | Google Scholar, 1427–1439.
Jayaratne, E. R., Saunders, C. P. R., and Hallett, J. (1983) Laboratory studies of the charging of soft-hail during ice crystal interactions. Q. J. R. Meteorol. Soc., 109 CrossRef | Google Scholar, 609–630.
Jayaweera, K. O. L. F., and Mason, B. J. (1965) The behavior of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech., 22 CrossRef | Google Scholar, 709–720.
Jensen, E. J., Lawson, P., Baker, B., et al. (2009) On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys., 9 CrossRef | Google Scholar, 5519–5537.
Ji, W., and Wang, P. K. (1998) On the ventilation coefficients of falling ice crystals at low–intermediate Reynolds numbers. J. Atmos. Sci., 56 CrossRef | Google Scholar, 829–836.
Johnson, D. E., Wang, P. K., and Straka, J. M. (1995) A study of microphysical processes in the 2 August 1981 CCOPE supercell storm. Atmos. Res., 33 CrossRef | Google Scholar, 93–123.
Jost, W. (1960) Diffusion in Solids, Liquids, Gases, 3rd printing. New York, NY Google Scholar: Academic Press.
Junge, C. E. (1955) The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J. Meteorol., 12 CrossRef | Google Scholar, 13–25.
Junge, C. E. (1963) Air Chemistry and Radioactivity. New York, NY Google Scholar: Academic Press.
Junge, C. E., Chagnon, C. W., and Manson, J. E. (1961) Stratospheric aerosols. J. Meteorol., 18 CrossRef | Google Scholar, 81–107.
Kajikawa, M. (1972) Measurement of falling velocity of individual snow crystals. J. Meteorol. Soc. Japan, 50 CrossRef | Google Scholar, 577–583.
Kajikawa, M. (1982) Observation of the falling motion of early snow flakes. Part I. Relationship between the free-fall pattern and the number and shape of component snow crystals. J. Meteorol. Soc. Japan, 60 CrossRef | Google Scholar, 797–803.
Keith, W. D., and Saunders, C. P. R. (1989) The collection efficiency of a cylindrical target for ice crystals. Atmos. Res., 23 CrossRef | Google Scholar, 83–95.
Kessler, E. (1969) On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteorological Monograph, Vol. 10, No. 32. Boston, MA CrossRef | Google Scholar: American Meteorological Society, pp. 1–84.
Kittel, C. (1996) Introduction to Solid State Physics, 7th edn. New York, NY Google Scholar: Wiley.
Klemp, J. B., and Wilhelmson, R. B. (1978) The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 CrossRef | Google Scholar, 1070–1096.
Klett, J. D., and Davis, M. H. (1973) Theoretical collision efficiencies of cloud droplets at small Reynolds numbers. J. Atmos. Sci., 30 CrossRef | Google Scholar, 107–117.
Knight, C. A. (1979) Observations of the morphology of the melting snow. J. Atmos. Sci., 36 Google Scholar, 1123–1130.
Kogan, Y. L., Kogan, Z. N., and Mechem, D. B. (2009) Fidelity of analytic drop size distributions in drizzling stratiform clouds based on large eddy simulations. J. Atmos. Sci., 66 CrossRef | Google Scholar, 2335–2348.
Kovetz, A., and Olund, B. (1969) The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26 CrossRef | Google Scholar, 1060–1065.
Krehbiel, P. R., Thomas, R. J., Rison, W., et al. (2000) GPS-based mapping system reveals lightning inside storms. EOS, Trans. Am. Geophys. Union, 81 CrossRef | Google Scholar, 21–25.
Kubicek, A., and Wang, P. K. (2012) A numerical study of the flow fields around a typical conical graupel falling at various inclination angles. Atmos. Res., 118 CrossRef | Google Scholar, 15–26.
Küpper, C., Thuburn, J., Craig, G. C., and Birner, T. (2004) Mass and water transport into the tropical stratosphere: a cloud-resolving simulation. J. Geophys. Res., 109 CrossRef | Google Scholar, D10111.
Lamb, D., and Verlinde, J. (2011) Physics and Chemistry of Clouds. Cambridge, UK CrossRef | Google Scholar: Cambridge University Press.
Lang, T. J., Miller, L. J., Weisman, M., et al. (2004) The severe thunderstorm electrification and precipitation study. Bull. Am. Meteorol. Soc., 85 CrossRef | Google Scholar, 1107–1125.
Langmuir, I. (1948) The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Meteorol., 5 CrossRef | Google Scholar, 175–192.
Latham, J. (1981) The electrification of thunderstorms. Q. J. R. Meteorol. Soc., 107 CrossRef | Google Scholar, 277–298.
Latham, J., and Mason, B. J. (1961) Generation of electric charge associated with the formation of soft hail in thunderstorms. Proc. R. Soc. A, 260 CrossRef | Google Scholar, 537–549.
Latham, J., and Saunders, C. P. R. (1970) Experimental measurements of the collection efficiencies of ice crystals in electric fields. Q. J. R. Meteorol. Soc., 96 CrossRef | Google Scholar, 257–265.
Laws, J. O., and Parsons, D. A. (1943) The relation of raindrop size to intensity. Trans. Am. Geophys. Union, 24 CrossRef | Google Scholar, 452–460.
Le Clair, B. P., Hamielec, A. E., Pruppacher, H. R., and Hall, W. D. (1972) A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity in air. J. Atmos. Sci., 29 CrossRef | Google Scholar, 728–740.
Lee, R. E., Lee, M. R., and Strong-Gunderson, J. M. (1993) Insect cold-hardiness and ice nucleating active microorganisms including their potential use for biological control. J. Insect Physiol., 39 CrossRef | Google Scholar, 1–12.
Levizzani, V. and Setvák, M. (1996) Multispectral, high resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53 CrossRef | Google Scholar, 361–369.
Lew, J. K., Montague, D. C., Pruppacher, H. R., and Rasmussen, R. M. (1986a) A wind tunnel investigation on the riming of snowflakes. Part I: Porous disks and large stellars. J. Atmos. Sci., 43 CrossRef | Google Scholar, 2392–2409.
Lew, J. K., Montague, D. C., Pruppacher, H. R., and Rasmussen, R. M. (1986b) A wind tunnel investigation on the riming of snowflakes. Part II: Natural and synthetic aggregates. J. Atmos. Sci., 43 CrossRef | Google Scholar, 2410–2417.
Libbrecht, K. G. (2005) The physics of snow crystals. Rep. Prog. Phys., 68 CrossRef | Google Scholar, 855–895.
Lin, H. M., Wang, P. K., and Schlesinger, R. E. (2005) Three-dimensional nonhydrostatic simulations of summer thunderstorms in the humid subtropics versus High Plains. Atmos. Res., 78 CrossRef | Google Scholar, 103–145.
Liou, K. N. (1992) Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling. New York, NY Google Scholar: Oxford University Press.
List, R. J. (1963) Smithsonian Meteorological Tables, 6th edn. Washington, DC Google Scholar: Smithsonian Institution.
List, R. (1965) The mechanism of hailstone formation. In Proceedings of the International Conference on Cloud Physics, Tokyo and Sapporo Google Scholar, pp. 481–491.
List, R., and McFarquhar, G. M. (1990) The role of breakup and coalescence in the three-peak equilibrium distribution of raindrops. J. Atmos. Sci., 47 CrossRef | Google Scholar, 2274–2292.
List, R., Lesins, G. B., Garcia-Garcia, F., and McDonald, D. B. (1987) Pressurized icing tunnel for graupel, hail and secondary raindrop production. J. Atmos. Sci., 44 Google Scholar, 455–463.
List, R., Nissen, R., and Fung, C. (2009a) Effects of pressure on collision, coalescence, and breakup of raindrops. Part I: Experiments at 50 kPa. J. Atmos. Sci., 66 CrossRef | Google Scholar, 2190–2203.
List, R., Fung, C., and Nissen, R. (2009b) Effects of pressure on collision, coalescence, and breakup of raindrops. Part II: Parameterization and spectra evolution at 50 and 100 kPa. J. Atmos. Sci., 66 CrossRef | Google Scholar, 2204–2215.
Liu, C., Williams, E. R., Zipser, E. J., and Burns, G. (2010) Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit. J. Atmos. Sci., 67 CrossRef | Google Scholar, 309–323.
Liu, H. C., Wang, P. K., and Schlesinger, R. E. (2003a) A numerical study of cirrus clouds. Part I: Model description. J. Atmos. Sci., 60 CrossRef | Google Scholar, 1075–1084.
Liu, H. C., Wang, P. K., and Schlesinger, R. E. (2003b) A numerical study of cirrus clouds. Part II: Effects of ambient temperature and stability on cirrus evolution. J. Atmos. Sci., 60 CrossRef | Google Scholar, 1097–1119.
Locatelli, J. D., and Hobbs, P. V. (1974) Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 CrossRef | Google Scholar, 2185–2197.
Lohmann, U., Rotstayn, L., Storelvmo, T., et al. (2010) Total aerosol effect: radiative forcing or radiative flux perturbation?Atmos. Chem. Phys., 10 CrossRef | Google Scholar, 3235–3246.
Lorrain, P., and Corson, D. R. (1970) Electromagnetic Fields and Waves, 2nd edn. San Francisco, CA Google Scholar: W. H. Freeman.
Low, T. B., and List, R. (1982a) Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39 CrossRef | Google Scholar, 1591–1606.
Low, T. B., and List, R. (1982b) Collision, coalescence and breakup of raindrops. Part II: Parameterizations of fragment size distributions. J. Atmos. Sci., 39 CrossRef | Google Scholar, 1607–1619.
Ludlam, F. H. (1958) The hail problem. Nubia, 1 Google Scholar, 12–96.
Ludlam, F. H., and Scorer, R. S. (1957) Cloud Study: A Pictorial Guide. London, UK Google Scholar: John Murray.
Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U. (2010) Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115 CrossRef | Google Scholar, D14201.
MacGorman, D. R., and Rust, W. D. (1998) The Electrical Nature of Storms. New York, NY Google Scholar: Oxford University Press.
MacGorman, D. R., Rust, W. D., Ziegler, C. L., et al. (2008) TELEX the Thunderstorm Electrification and Lightning Experiment. Bull. Am. Meteorol. Soc., 89 CrossRef | Google Scholar, 997–1013.
Macklin, W. C. (1961) Accretion in mixed clouds. Q. J. R. Meteorol. Soc., 87 CrossRef | Google Scholar, 413–424.
Macklin, W. C. (1963) Heat transfer from hailstones. Q. J. R. Meteorol. Soc., 89 CrossRef | Google Scholar, 360–369.
Magono, C., and Lee, C. W. (1966) Meteorological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., Ser. 7 Google Scholar, 2, 321–335.
Makkonen, L. (2012) Misinterpretation of the Shuttleworth equation. Scr. Mater., 66 CrossRef | Google Scholar, 627–629.
Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J., and Salzmann, C. G. (2012) Structure of ice crystallized from supercooled water. Proc. Natl. Acad. Sci., 109 CrossRef | Google Scholar | PubMed, 1041–1045.
Mansell, E. R., Ziegler, C. L., and Bruning, E. C. (2010) Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67 CrossRef | Google Scholar, 171–194.
Markson, R. (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull. Am. Meteorol. Soc., 88 CrossRef | Google Scholar(2), 223–241.
Marshall, J. S., and Palmer, W. M. K. (1948) The distribution of raindrops with size. J. Meteorol., 5 CrossRef | Google Scholar, 165–166.
Martin, J. J., Wang, P. K., Pruppacher, H. R., and Pitter, R. L. (1981) A numerical study of the effect of electric charges on the efficiency with which planar ice crystals collect supercooled water drops. J. Atmos. Sci., 38 CrossRef | Google Scholar, 2462–2469.
Martin, R. S., Mather, T. A., Pyle, D. M., et al. (2008) Composition-resolved size distributions of volcanic aerosols in the Mt. Etna plumes. J. Geophys. Res., 113 CrossRef | Google Scholar, D17211.
Mason, B. J. (1956) On the melting of hailstones. Q. J. R. Meteorol. Soc., 82 CrossRef | Google Scholar, 209–216.
Mason, B. J. (1971) The Physics of Clouds. Oxford, UK Google Scholar: Clarendon Press.
Matsumoto, M., Saito, S., and Ohmine, I. (2002) Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature, 416 CrossRef | Google Scholar | PubMed, 409–413.
Matsuo, T., and Sasyo, Y. (1981) Empirical formula for the melting rate of snowflakes. J. Meteorol. Soc. Japan, 59 CrossRef | Google Scholar, 1–9.
McDonald, J. E. (1963) Use of the electrostatic analogy in studies of ice crystal growth. Z. Angew. Math. Phys., 14 CrossRef | Google Scholar, 610–620.
McFarquhar, G. M., Um, J., Freer, M., et al. (2007) Importance of small ice crystals to cirrus properties: observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34 CrossRef | Google Scholar, L13803.
Meszaros, A., and Vissy, K. (1974) Concentration, size distribution and chemical nature of atmospheric aerosol particles in remote oceanic areas. J. Aerosol Sci., 5 CrossRef | Google Scholar, 101–109.
Milbrandt, J. A., and Yau, M. K. (2005) A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 CrossRef | Google Scholar, 3065–3081.
Miller, N. L., and Wang, P. K. (1989) A theoretical determination of the efficiency with which aerosol particles are collected by falling columnar ice crystals. J. Atmos. Sci., 46 CrossRef | Google Scholar, 1656–1663.
Mitchell, D. L. (2000) Parameterization of the Mie extinction and absorption coefficients for water clouds. J. Atmos. Sci., 57 CrossRef | Google Scholar, 1311–1326.
Mitchell, D. L., Huggins, A., and Grubisic, V. (2006) A new snow growth model with application to radar precipitation estimates. Atmos. Res., 82 CrossRef | Google Scholar, 2–18.
Mitchell, D. L., Chai, S. K., Liu, Y., Heymsfield, A. J., and Dong, Y. (1996) Modeling cirrus clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci., 53 CrossRef | Google Scholar, 2952–2966.
Mitra, S. K., Vohl, O., Ahr, M., and Pruppacher, H. R. (1990) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47 CrossRef | Google Scholar, 584–591.
Murakami, M., and Matsuo, T. (1990) Development of the hydrometeor videosonde. J. Atmos. Ocean. Technol., 7 CrossRef | Google Scholar, 613–620.
Murphy, D. M. (2003) Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophys. Res. Lett., 30 CrossRef | Google Scholar, 2230.
Murphy, D. M., and Koop, T. (2005) Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc., 131 CrossRef | Google Scholar, 1539–1565.
Newton, C. W., and Newton, H. R. (1959) Dynamical interactions between large convective clouds and environment with vertical shear. J. Meteorol., 16 CrossRef | Google Scholar, 483–496.
Ochs, H. T. (1978) Moment-conserving techniques for warm cloud microphysical computations. Part II. Model testing and results. J. Atmos. Sci., 35 CrossRef | Google Scholar, 1959–1973.
Ochs, H. T., Czys, R. R., and Beard, K. V. (1986) Laboratory measurements of coalescence efficiencies for small precipitation drops. J. Atmos. Sci., 43 CrossRef | Google Scholar, 225–232.
Ochs, H. T., Beard, K. V., Laird, N. F., Holdridge, D. J., and Schaufelberger, D. E. (1995) Effects of relative humidity on the coalescence of small precipitation drops in free fall. J. Atmos. Sci., 52 CrossRef | Google Scholar, 3673–3680.
Ogura, Y., and Phillips, N. A. (1962) Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19 CrossRef | Google Scholar, 173–179.
Ohtake, T. (1970) Factors affecting the size distribution of raindrops and snowflakes. J. Atmos. Sci., 27 CrossRef | Google Scholar, 804–813.
Orville, H. D., and Kopp, F. J. (1977) Numerical simulation of the life history of a hailstorm. J. Atmos. Sci., 34 CrossRef | Google Scholar, 1596–1618.
Orville, R. E. (1994) Cloud-to-ground lightning flash characteristics in the contiguous United States: 1989–1991. J. Geophys. Res., 99 CrossRef | Google Scholar, 10833–10841.
Paluch, I. R. (1979) The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36 CrossRef | Google Scholar, 2467–2478.
Park, R. W. (1970 Google Scholar) Behavior of water drops colliding in humid nitrogen. Ph.D. thesis, University of Wisconsin-Madison.
Pedlosky, J. (2003) Waves in the Ocean and Atmosphere. Berlin, Germany CrossRef | Google Scholar: Springer.
Peppler, W. (1940 Google Scholar) Unterkühlte Wasserwolken und Eiswolken [Supercooled water clouds and ice clouds]. Forschungs- und Erfahrungsberichte des Reichswetterdienstes B, No. 1, pp. 3–68.
Pessi, A. T., and Businger, S. (2009) Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48 CrossRef | Google Scholar, 833–848.
Pflaum, J. C., and Pruppacher, H. R. (1979) A wind tunnel investigation of the growth of graupel initiated from frozen drops. J. Atmos. Sci., 36 CrossRef | Google Scholar, 680–689.
Pflaum, J. C., Martin, J. J., and Pruppacher, H. R. (1978) A wind tunnel investigation of the hydrodynamic behavior of growing, freely falling graupel. Q. J. R. Meteorol. Soc., 104 CrossRef | Google Scholar, 179–187.
Pinsky, M. B., and Khain, A. P. (2004) Collisions of small drops in a turbulent flow. Part II: Effects of flow accelerations. J. Atmos. Sci., 61 CrossRef | Google Scholar, 1926–1939.
Pinsky, M. B., Khain, A. P., and Shapiro, M. (1999) Collisions of small drops in a turbulent flow. Part I: Collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci., 56 CrossRef | Google Scholar, 2585–2600.
Pitter, R. L., and Pruppacher, H. R. (1974) A numerical investigation of collision efficiencies of simple ice plates colliding with supercooled water drops. J. Atmos. Sci., 31 CrossRef | Google Scholar, 551–559.
Pitter, R. L., Pruppacher, H. R., and Hamielec, A. E. (1973) A numerical study of viscous flow past a thin oblate spheroid at low and intermediate Reynolds numbers. J. Atmos. Sci., 30 CrossRef | Google Scholar, 125–134.
Pitter, R. L., Pruppacher, H. R., and Hamielec, A. E. (1974) A numerical study of the effect of forced convection on mass transport from a thin oblate spheroid of ice in air. J. Atmos. Sci., 31 CrossRef | Google Scholar, 1058–1066.
Podzimek, J. (1966) Experimental determination of the “capacity” of ice crystals. Stud. Geophys. Geodet., 10 CrossRef | Google Scholar, 235–238.
Pöschl, U., Martin, S. T., Sinha, B., et al. (2010) Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 329 CrossRef | Google Scholar | PubMed, 1513–1515.
Prenni, A. J., Petters, M. D., Kreidenweis, S. M., et al. (2009) Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nature Geosci., 2 CrossRef | Google Scholar, 402–405.
Prodi, F. (1976) Scavenging of aerosol particles by growing ice crystals. In International Conference on Cloud Physics, Boulder, CO Google Scholar, 26–30 July 1976. Preprints, pp. 70–75.
Pruppacher, H. R., and Beard, K. V. (1970) A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc., 96 CrossRef | Google Scholar, 247–256.
Pruppacher, H. R., and Klett, J. D. (1997) Microphysics of Clouds and Precipitation. Dordrecht, The Netherlands Google Scholar: Kluwer.
Rakov, V. A., and Uman, M. A. (2003) Lightning: Physics and Effects. Cambridge, UK CrossRef | Google Scholar: Cambridge University Press.
Rasmussen, R. M., and Heymsfield, A. J. (1987) Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44 CrossRef | Google Scholar, 2754–2763.
Rasmussen, R. M., and Pruppacher, H. R. (1982) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius < 500 µm. J. Atmos. Sci., 39 CrossRef | Google Scholar, 152–158.
Rasmussen, R. M., Levizzani, V., and Pruppacher, H. R. (1984a) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. II: A theoretical study for frozen drops of radius < 500 µm. J. Atmos. Sci., 41 CrossRef | Google Scholar, 374–380.
Rasmussen, R. M., Levizzani, V., and Pruppacher, H. R. (1984b) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. III. Experiment and theory for spherical ice particles of radius > 500 µm. J. Atmos. Sci., 41 CrossRef | Google Scholar, 381–388.
Rasmussen, R., Walcek, C., Pruppacher, H. R., et al. (1985) A wind tunnel investigation of the effect of an external vertical electric field on the shape of electrically uncharged rain drops. J. Atmos. Sci., 42 CrossRef | Google Scholar, 1647–1652.
Reid, J. S., Eck, T. F., Christopher, S. A., et al. (2005) A review of biomass burning emissions. Part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys., 5 CrossRef | Google Scholar, 827–849.
Reif, F. (1965) Fundamentals of Statistical and Thermal Physics. New York, NY Google Scholar: McGraw-Hill.
Reinking, R. (1979) The onset and steady growth of snow crystals by accretion of droplets. J. Atmos. Sci., 36 CrossRef | Google Scholar, 870–881.
Reynolds, O. (1876) On the manner in which raindrops and hailstones are formed. Proc. Lit. Phil. Soc., Manchester, 16 Google Scholar, 23–33.
Reynolds, S. E., Brook, M., and Gourley, M. F. (1957) Thunderstorm charge separation. J. Meteorol., 14 CrossRef | Google Scholar, 426–436.
Richards, C. N., and Dawson, G. A. (1971) The hydrodynamic instability of water drops falling at terminal velocity in vertical electric fields. J. Geophys. Res., 76 CrossRef | Google Scholar, 3445–3455.
Rogers, D. C. (1974) The Aggregation of Natural Ice Crystals. Research Report AR110, Department of Atmospheric Resources, University of Wyoming, Laramie, WY Google Scholar.
Rosenfeld, D., Lohmann, U., Raga, G. B., et al. (2008) Flood or drought: How do aerosols affect precipitation?Science, 321 CrossRef | Google Scholar | PubMed, 1309–1313.
Ryan, B. T. (1974) Growth of drops by coalescence: the effect of different collection kernels and of additional growth by condensation. J. Atmos. Sci., 31 CrossRef | Google Scholar, 1942–1948.
Sambles, J. R., Skinner, L. M., and Listgarten, N. D. (1970) An electron microscope study of evaporating small particles: the Kelvin equation for liquid lead and the mean surface energy of solid silver. Proc. R. Soc. London, A, 318 CrossRef | Google Scholar, 507–522.
Sazaki, G., Zepeda, S., Nakatsubo, S., Yokoyama, E., and Furukawa, Y. (2010) Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. Proc. Natl. Acad. Sci., 107 CrossRef | Google Scholar | PubMed, 19702–19707.
Sazaki, G., Zepeda, S., Nakatsubo, S., Yokomine, M., and Furukawa, Y. (2012) Quasi-liquid layers on ice crystal surfaces are made up of two different phases. Proc. Natl. Acad. Sci., 109 CrossRef | Google Scholar | PubMed, 1052–1055.
Schlamp, R. J., Grover, S. N., Pruppacher, H. R., and Hamielec, A. E. (1976) A numerical investigation of the electric charges and vertical external electric fields on the collision efficiency of cloud drops. J. Atmos. Sci., 33 CrossRef | Google Scholar, 1747–1755.
Schlamp, R. J., Grover, S. N., Pruppacher, H. R., and Hamielec, A. E. (1979) A numerical investigation of the effect of electric charges and vertical external electric fields on the collision efficiency of cloud drops: Part II. J. Atmos. Sci., 36 CrossRef | Google Scholar, 339–349.
Schlesinger, R. E. (1973) A numerical model of deep moist convection: Part I. Comparative experiments for variable ambient moisture and wind shear. J. Atmos. Sci., 30 CrossRef | Google Scholar, 835–856.
Schlottke, J., Straub, W., Beheng, K., Gomma, H., and Weigand, B. (2010) Numerical investigation of collision-induced breakup of raindrops. Part I: Methodology and dependencies on collision energy and eccentricity. J. Atmos. Sci., 67 CrossRef | Google Scholar, 557–575.
Schmidt, R. A. (1984) Measuring particle size and snowfall intensity in drifting snow. Cold Regions Sci. Technol., 9 CrossRef | Google Scholar, 121–129.
Schuman, T. E. W. (1938) The theory of hailstone formation. Q. J. R. Meteorol. Soc., 64 CrossRef | Google Scholar, 3–21.
Schumann, W. O. (1952) Über die Dämpfung der elecktromagnetischen Eigenschwingungen des Systems Erde–Lufte–Ionosphare. Z. Naturforsch. A, 7 Google Scholar, 250–252.
Schwarz, S. E. (1986) Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds. In Chemistry of Multiphase Systems, ed. Jaeschke, W.. NATO ASI Series. Berlin, Germany CrossRef | Google Scholar: Springer, pp. 415–477.
Scorer, R. S. (1997) Dynamics of Meteorology and Climate. Chichester, UK Google Scholar: Wiley.
Scorer, R. S., and Ludlam, F. H. (1953) Bubble theory of penetrative convection. Q. J. R. Meteorol. Soc., 79 CrossRef | Google Scholar, 94–103.
Seinfeld, J. H., and Pandis, S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn. New York, NY Google Scholar: Wiley-Interscience.
Sekhon, R. S., and Srivastava, R. C. (1970) Snow size spectra and radar reflectivity. J. Atmos. Sci., 27 CrossRef | Google Scholar, 299–307.
Setvák, M., and Doswell, C. A. (1991) The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Weather Rev., 119 CrossRef | Google Scholar, 841–847.
Shafrir, U., and Neiburger, M. (1963) Collision efficiencies of two spheres falling in a viscous medium. J. Geophys. Res., 68 CrossRef | Google Scholar, 4141–4147.
Shuttleworth, R. (1950) The surface tension of solid. Proc. Phys. Soc. A, 63 CrossRef | Google Scholar, 444–457.
Simpson, J. (1971) On cumulus entrainment and one-dimensional models. J. Atmos. Sci., 28 CrossRef | Google Scholar, 449–455.
Skatskii, V. I. (1965) Some results from experimental study of the liquid water content in cumulus clouds. Izv. Atmos. Oceanic Phys., 1 Google Scholar, 479–487.
Solomon, S., Qin, D., Manning, M., et al. (eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK Google Scholar: Cambridge University Press.
Solomon, S., Rosenlof, K., Portmann, R., et al. (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science Express Google Scholar | PubMed, 28 January, pp. 1–6.
Squires, P. (1958a) The microstructure and colloidal stability of warm clouds. Part II. The causes of the variations in microstructure. Tellus, 10 Google Scholar, 262–271.
Squires, P. (1958b) Penetrative downdraughts in cumuli. Tellus, 10 CrossRef | Google Scholar, 381–389.
Srivastava, R. C. (1967) A study of the effect of precipitation on cumulus dynamics. J. Atmos. Sci., 24 CrossRef | Google Scholar, 36–45.
Stommel, H. (1947) Entrainment of air into a cumulus cloud. J. Meteorol., 4 CrossRef | Google Scholar, 91–94.
Straka, J. M. (1989 Google Scholar) Hail growth in a highly glaciated central High Plains multi-cellular hailstorm. Ph.D. thesis, Department of Meteorology, University of Wisconsin, Madison, WI.
Straka, J. M. (2010) Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge, UK Google Scholar: Cambridge University Press.
Straub, W., Beheng, K. D., Seifert, A., Schlottke, J., and Weigand, B. (2010) Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci., 67 CrossRef | Google Scholar, 576–588.
Sturniolo, O., Mugnai, A., and Prodi, F. (1995) A numerical sensitivity study on the backscattering at 35.8 GHz from precipitation-sized hydrometeors. Radio Sci., 30 CrossRef | Google Scholar(4), 903–919.
Sun, F. L. (1993 Google Scholar) On the bimodal size distribution of hydrometeors in clouds. M.Sc. thesis, Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI.
Szakáll, M., Diehl, K., Mitra, S. K., and Borrmann, S. (2009) A wind tunnel study on the shape, oscillation, and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm. J. Atmos. Sci., 66 CrossRef | Google Scholar, 755–765.
Szakáll, M., Mitra, S. K., Diehl, K., and Borrmann, S. (2010) Shapes and oscillations of falling raindrops – a review. Atmos. Res., 97 CrossRef | Google Scholar, 416–425.
Szyrmer, W., and Zawadzki, I. (1997) Biogenic and anthropogenic sources of ice-forming nuclei: a review. Bull. Am. Meteorol. Soc., 78 CrossRef | Google Scholar, 209–228.
Takahashi, T. (1973) Measurement of electric charge of cloud droplets, drizzle, and raindrops. Rev. Geophys. Space Phys., 11 CrossRef | Google Scholar, 903–924.
Takahashi, T. (1978) Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 CrossRef | Google Scholar, 1536–1548.
Takahashi, T., and Miyawaki, K. (2002) Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59 CrossRef | Google Scholar, 1018–1025.
Takahashi, T., Endoh, T., and Wakahama, G. (1991) Vapor diffusional growth of free-falling snow crystals between −3 and −23°C. J. Meteorol. Soc. Japan, 69 CrossRef | Google Scholar, 15–30.
Takeda, T. (1971) Numerical simulation of a precipitating convective cloud: the formation of a “long-lasting” cloud. J. Atmos. Sci., 28 CrossRef | Google Scholar, 350–376.
Takeuti, T., Nakano, M., Brook, M., Raymond, D. J., and Krehbiel, P. (1978) The anomalous winter thunderstorms of the Hokuriku coast. J. Geophys. Res., 83 CrossRef | Google Scholar, 2385–2394.
Taneda, S. (1956) Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan, 11 Google Scholar, 1101–1108.
Telford, J. W. (1955) A new aspect of coalescence theory. J. Meteorol., 12 CrossRef | Google Scholar, 436–444.
Thorpe, A. D., and Mason, B. J. (1966) The evaporation of ice spheres and ice crystals. Br. J. Appl. Phys., 17 CrossRef | Google Scholar, 541–548.
Thurai, M., Huang, G. J., Bringi, V. N., Randeu, W. L., and Schönhuber, M. (2007) Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Ocean. Technol., 24 CrossRef | Google Scholar, 1019–1032.
Thurai, M., Bringi, V. N., Szakáll, M., et al. (2009) Drop shapes and axis ratio distributions: comparison between 2D video disdrometer and wind-tunnel measurements. J. Atmos. Ocean. Technol., 26 CrossRef | Google Scholar, 1427–1432.
Tinsley, B. A., Burns, G. B., and Zhou, L. (2007) The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv. Space Res., 40 CrossRef | Google Scholar, 1126–1139.
Tokay, A., and Beard, K. V. (1996) A field study of raindrop oscillations. Part I: Observation of size spectra and evaluation of oscillation causes. J. Appl. Meteorol., 35 CrossRef | Google Scholar, 1671–1687.
Trentmann, J., Luderer, G., Winterrath, T., et al. (2006) Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): reference simulation. Atmos. Chem. Phys., 6 CrossRef | Google Scholar, 5247–5260.
Turner, D. D. (2005) Arctic mixed-phase cloud properties from AERI lidar observations: algorithm and results from SHEBA. J. Appl. Meteorol., 44 CrossRef | Google Scholar, 427–443.
Turner, J. S. (1969) Buoyant plumes and thermals. Annu. Rev. Fluid Mech., 1 CrossRef | Google Scholar, 29–44.
Twomey, S. (1964) Statistical effects in the evolution of a distribution of cloud droplets by coalescence. J. Atmos. Sci., 21 CrossRef | Google Scholar, 553–557.
Twomey, S., and Wojciechowski, T. A. (1969) Observations of the geographical variation of cloud nuclei. J. Atmos. Sci., 26 CrossRef | Google Scholar, 684–688.
Ulbrich, C. W. (1983) Natural variations in the analytical form of raindrop size distribution. J. Clim. Appl. Meteorol., 22 CrossRef | Google Scholar, 1764–1775.
Um, J., and McFarquhar, G. M. (2009) Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteorol. Climatol., 46 CrossRef | Google Scholar, 757–775.
Uman, M. A. (1969) Lightning. New York, NY Google Scholar: McGraw-Hill.
Uman, M. A. (1987) The Lightning Discharge. Orlando, FL Google Scholar: Academic Press.
Valdez, M. P., and Young, K. C. (1985) Number fluxes in equilibrium raindrop populations: a Markov chain analysis. J. Atmos. Sci., 42 CrossRef | Google Scholar, 1024–1036.
Volmer, M. (1939) Kinetik der Phasenbildung. Dresden, Germany Google Scholar: Verlag Th. Steinkopff.
Vonnegut, B., and Moore, C. B. (1958) Giant electrical storms. In Recent Advances in Atmospheric Electricity, ed. Smith, L. G.. New York, NY Google Scholar: Pergamon, pp. 399–410.
Vrbka, L., and Jungwirth, P. (2006) Homogeneous freezing of water starts in the subsurface. J. Phys. Chem. B, 110 CrossRef | Google Scholar | PubMed, 18126–18129.
Walcek, C. J., and Pruppacher, H. R. (1984) On the scavenging of SO2 by cloud and raindrops: I. A theoretical study of SO2 absorption and desorption for water drops in air. J. Atmos. Chem., 1 CrossRef | Google Scholar, 269–289.
Waldvogel, A. (1974) The N0 jump of raindrop spectra. J. Atmos. Sci., 31 CrossRef | Google Scholar, 1067–1078.
Walker, J. C. G. (1977) Evolution of the Atmosphere. New York, NY Google Scholar: Macmillan.
Wang, P. K. (1982) Mathematical description of the shape of conical hydrometeors. J. Atmos. Sci., 39 CrossRef | Google Scholar, 2615–2622.
Wang, P. K. (1983) On the definition of collision efficiency of atmospheric particles. J. Atmos. Sci., 40 CrossRef | Google Scholar, 1051–1052.
Wang, P. K. (1997) Characterization of ice particles in clouds by simple mathematical expressions based on successive modification of simple shapes. J. Atmos. Sci., 54 CrossRef | Google Scholar, 2035–2041.
Wang, P. K. (1999) Three-dimensional representations of hexagonal ice crystals and hail particles of elliptical cross-sections. J. Atmos. Sci., 56 CrossRef | Google Scholar, 1089–1093.
Wang, P. K. (2002) Ice Microdynamics. San Diego, CA Google Scholar: Academic Press.
Wang, P. K. (2003) Acid rain and precipitation chemistry. In Encyclopedia of Water Science. New York, NY Google Scholar: Marcel Dekker.
Wang, P. K. (2004) A cloud model interpretation of jumping cirrus above storm top. Geophys. Res. Lett., 31 CrossRef | Google Scholar, L18106.
Wang, P. K., and Denzer, S. M. (1983) Mathematical description of the shape of plane hexagonal snow crystals. J. Atmos. Sci., 40 CrossRef | Google Scholar, 1024–1028.
Wang, P. K., and Ji, W. (1997) Simulation of three-dimensional unsteady flow past ice crystals. J. Atmos. Sci., 54 CrossRef | Google Scholar, 2261–2274.
Wang, P. K., and Ji, W. (2000) Collision efficiencies of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: a numerical study. J. Atmos. Sci., 57 CrossRef | Google Scholar, 1001–1009.
Wang, P. K., and Pruppacher, H. R. (1977) Acceleration to terminal velocity of cloud and rain drops. J. Appl. Meteorol., 16 CrossRef | Google Scholar, 275–280.
Wang, P. K., Grover, S. N., and Pruppacher, H. R. (1978) On the effect of electric charges on the scavenging of aerosol particles by cloud and small rain drops. J. Atmos. Sci., 35 CrossRef | Google Scholar, 1735–1743.
Wang, P. K., Rasmussen, R., Yang, C. C., Pruppacher, H. R. and Viswanathan, C. R. (1980) Heterogeneous nucleation of water and ice on a p–n junction. In Symposium on Nucleation, 180th National American Chemical Society Meeting, Las Vegas Google Scholar, 26–28 August 1980. Abstracts.
Wang, P. K., Greenwald, T. J., and Wang, J. (1987) A three parameter representation of the shape and size distributions of hailstones – a case study. J. Atmos. Sci., 44 CrossRef | Google Scholar, 1062–1070.
Wang, P. K., Setvák, M., Lyons, W., Schmid, W., and Lin, H. (2009) Further evidence of deep convective vertical transport of water vapor through the tropopause. Atmos. Res., 94 CrossRef | Google Scholar, 400–408.
Wang, P. K., Su, S. -H., Setvák, M., Lin, H. -M., and Rabin, R. (2010) Ship wave signature at the cloud top of deep convective storms. Atmos. Res., 97 CrossRef | Google Scholar, 294–302.
Wang, P. K., Su, S. -H., Charvát, Z., Štástka, J., and Lin, H. -M. (2011) Cross tropopause transport of water by mid-latitude deep convective storms: a review. Terr. Atmos. Ocean. Sci., 22 CrossRef | Google Scholar, 447–462.
Wang, Z., Sassen, K., Whiteman, D. N., and Demoz, B. B. (2004) Studying altocumulus with ice virga using ground-based active and passive remote sensors. J. Appl. Meteor., 43 CrossRef | Google Scholar, 449–460.
Warneck, P. (1988) Chemistry of the Natural Atmosphere. San Diego, CA Google Scholar: Academic Press.
Warner, J. (1969) The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. J. Atmos. Sci., 26 CrossRef | Google Scholar, 1272–1282.
Warner, J. (1970) On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci., 27 CrossRef | Google Scholar, 1035–1040.
Westbrook, C. D., Hogan, R. J., and Illingworth, A. J. (2008) The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65 CrossRef | Google Scholar, 206–219.
Whitby, K. T. (1978) The physical characteristics of sulfur aerosols. Atmos. Environ., 12 CrossRef | Google Scholar, 135–159.
Wilhelmson, R. (1974) The life cycle of a thunderstorm in three dimensions. J. Atmos. Sci., 31 CrossRef | Google Scholar, 1629–1651.
Wilkins, R. D., and Auer, Jr A. H.. (1970) Riming properties of hexagonal ice crystals. Preprints, Conf. on Cloud Physics, Fort Collins, CO, American Meteorological Society Google Scholar, pp. 81–82.
Williams, E. R. (2005) Lightning and climate: a review. Atmos. Res., 76 CrossRef | Google Scholar, 272–287.
Williams, E. R., Weber, M., and Orville, R. (1989) The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94 CrossRef | Google Scholar, 13213–13220.
Willis, P. T. (1984) Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41 CrossRef | Google Scholar, 1648–1661.
Willis, P. T., and Tuttleman, P. (1989) Drop-size distributions associated with intense rainfall. J. Appl. Meteorol., 28 CrossRef | Google Scholar, 3–15.
Willmarth, W. W., Hawk, N. E., and Harvey, R. L. (1964) Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids, 7 CrossRef | Google Scholar, 197–208.
Wilson, C. T. R. (1903) Atmospheric electricity. Nature, 68 CrossRef | Google Scholar, 101–104.
Wilson, C. T. R. (1920) Investigations on lightning discharges and on the electric field of thunderstorms. Phil. Trans. R. Soc. London A, 221 CrossRef | Google Scholar, 73–115.
Wilson, C. T. R. (1929) Some thundercloud problems. J. Franklin Inst., 208 CrossRef | Google Scholar, 1–12.
Wurden, G., and Whiteson, D. (1996) High-speed plasma imaging: a lightning bolt. IEEE Trans. Plasma Sci., 24 CrossRef | Google Scholar, 83–84.
Zawadzki, I., Szyrmer, W., Bell, C., and Fabry, F. (2005) Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62 CrossRef | Google Scholar, 3705–3723.

Metrics

Altmetric attention score

Usage data cannot currently be displayed.