Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T06:42:01.119Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 March 2013

Pao K. Wang
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, S. A., and Stephens, G. L. (1987) The absorption of solar radiation by cloud droplets: an application of anomalous diffraction theory. J. Atmos. Sci., 44, 1574–1588.2.0.CO;2>CrossRefGoogle Scholar
Anderson, J. K., Droegemier, K., and Wilhelmson, R. B. (1985) Simulation of the thunderstorm subcloud environment. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN. Boston, MA: American Meteorological Society, pp. 147–150.Google Scholar
Andsager, K., Beard, K. V., and Laird, N. F. (1999) Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56, 2673–2683.2.0.CO;2>CrossRefGoogle Scholar
Auer, A. H., and Marwitz, J. D. (1972) Hail in the vicinity of organized updrafts. J. Appl. Meteorol., 11, 748–752.2.0.CO;2>CrossRefGoogle Scholar
Auer, A. H., and Veal, D. L. (1970) The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919–926.2.0.CO;2>CrossRefGoogle Scholar
Baboolal, L. A., Pruppacher, H. R., and Topalian, J. H. (1981) A sensitivity study of a theoretical model of SO2 scavenging by water drops in air. J. Atmos. Sci., 38, 856–870.2.0.CO;2>CrossRefGoogle Scholar
Bailey, M., and Hallett, J. (2004) Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514–544.2.0.CO;2>CrossRefGoogle Scholar
Bailey, M., and Hallett, J. (2009) A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888–2899.CrossRefGoogle Scholar
Baker, M. B., Christian, H. J., and Latham, J. (1995) A computational study of the relationships linking lightning frequency and other thundercloud parameters. Q. J. R. Meteorol. Soc., 121, 1525–1548.CrossRefGoogle Scholar
Beard, K. V. (1976) Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851–864.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Chuang, C. H. (1987) A new model for the equilibrium shapes of raindrops. J. Atmos. Sci., 44, 1509–1524.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Kubesh, R. J. (1991) Laboratory measurements of small raindrop distortion. Part 2: Oscillation frequencies and modes. J. Atmos. Sci., 48, 2245–2264.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Ochs, H. T. (1983) Measured collection efficiencies for cloud drops. J. Atmos. Sci., 40, 146–153.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Ochs, III H. T. (1993) Warm-rain initiation: an overview of microphysical mechanisms. J. Appl. Meteorol., 32, 608–625.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Ochs, H. T. (1995) Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites. J. Atmos. Sci., 52, 3977–3996.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Pruppacher, H. R. (1969) A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J. Atmos. Sci., 26, 1066–1072.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Pruppacher, H. R. (1971) A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci., 28, 1455–1464.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., Johnson, D. B., and Baumgardner, D. (1986) Aircraft observations of large raindrops in warm, shallow convective clouds. Geophys. Res. Lett., 13, 991–994.CrossRefGoogle Scholar
Beard, K. V., Ochs, H. T., and Kubesh, R. J. (1989a) Natural oscillations of small raindrops. Nature, 342, 408–410.CrossRefGoogle Scholar
Beard, K. V., Feng, J. Q., and Chuang, C. (1989b) A simple perturbation model for the electrostatic shape of falling drops. J. Atmos. Sci., 46, 2404–2418.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., Kubesh, R. J., and Ochs, H. T. (1991) Laboratory measurements of small raindrop distortion. Part 1: Axis ratio and fall behavior. J. Atmos. Sci., 48, 698–710.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., Bringi, V. N., and Thurai, M. (2010) A new understanding of raindrop shape. Atmos. Res., 97, 396–415.CrossRefGoogle Scholar
Berry, E. X. (1968) Modification of the warm rain process. Proc. First Natl. Conf. Weather Modification, State University of New York, Albany. Boston, MA: American Meteorological Society, pp. 81–88.Google Scholar
Berry, E. X., and Reinhardt, R. L. (1974) An analysis of cloud drop growth by collection. Part II. Single initial distributions. J. Atmos. Sci., 31, 2127–2135.2.0.CO;2>CrossRefGoogle Scholar
Bigg, E. K., and Hopwood, S. C. (1963) Ice nuclei in the Antarctic. J. Atmos. Sci., 20, 185–188.2.0.CO;2>CrossRefGoogle Scholar
Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960) Transport Phenomena. New York, NY: Wiley.Google Scholar
Blanchard, D. C. (1969) The oceanic production rate of cloud nuclei. J. Rech. Atmos., 4, 1–6.Google Scholar
von Blohn, N., Diehl, K., Mitra, S. K., and Borrmann, S. (2009) Riming of graupel: wind tunnel investigations of collection kernels and growth regimes. J. Atmos. Sci., 66, 2359–2366.CrossRefGoogle Scholar
Blyth, A. M., Cooper, W. A., and Jensen, J. B. (1988) A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 3944–3964.2.0.CO;2>CrossRefGoogle Scholar
Borovikov, A. M., Gaivoronskii, I. I., Zak, E. G., et al. (1963) Cloud Physics. Jerusalem, Israel: Israel Program of Scientific Translations.Google Scholar
Borrmann, S., Jaenicke, R., and Neumann, P. (1993) On spatial distributions and inter-droplet distances measured in stratus clouds with in-line holography. Atmos. Res., 29, 229–245.CrossRefGoogle Scholar
Bowen, E. G. (1950) The formation of rain by coalescence. Austral. J. Sci. Res., 3, 193–213.Google Scholar
Braham, R. R. (1974) Cloud physics of urban weather modification: a preliminary report. Bull. Am. Meteorol. Soc., 55, 100–105.Google Scholar
Braham, R. (1990) Snow particle size spectra in lake effect snows. J. Appl. Meteorol., 29, 200–207.2.0.CO;2>CrossRefGoogle Scholar
Brandes, E. A., Zhang, G., and Sun, J. (2006) On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics. J. Appl. Meteorol. Climatol., 45, 259–268.CrossRefGoogle Scholar
Bringi, V. N., and Chandrasekar, V. (2001) Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Brook, M. (1958) Studies of charge separation during ice–ice contact. Recent Advances in Thunderstorm Electricity. New York, NY: Pergamon, pp. 383–390.Google Scholar
Brown, P. S. (1988) The effects of filament, sheet, and disk breakup upon the drop spectrum. J. Atmos. Sci., 45, 712–718.2.0.CO;2>CrossRefGoogle Scholar
Bruntjes, R. T., Heymsfield, A. J., and Krauss, T. W. (1987) An examination of double-plate ice crystals and the initiation of precipitation in continental cumulus clouds. J. Atmos. Sci., 44, 1331–1349.2.0.CO;2>CrossRefGoogle Scholar
Byers, H. R., and Braham, Jr. R. R. (1949) The Thunderstorm: Final Report of the Thunderstorm Project. Washington, DC: US Government Printing Office.Google Scholar
Cameron, A. G. W. (1981) In Essays in Nuclear Astrophysics, ed. Barnas, C. A., Clayton, D. D., and Schramm, D. N.. Cambridge, UK: Cambridge University Press.Google Scholar
Carrier, G. F. (1953) On Slow Viscous Flow, Final Report, Office of Naval Research, Contract No. 653–00/1.
Castro, A., Marcos, J. L., Dessens, J., Sanchez, J. L., and Fraile, R. (2004) Concentration of ice nuclei in continental and maritime air masses in Leon (Spain). Atmos. Res., 47–48, 155–167.Google Scholar
Chagnon, C. W., and Junge, C. E. (1961) The vertical distribution of submicron particles in the stratosphere. J. Meteorol., 18, 746–752.2.0.CO;2>CrossRefGoogle Scholar
Chen, C. J., and Wang, P. K. (2009) Diffusion growth of solid and hollow hexagonal ice columns. Nuovo Cimento, 124, 87–97.Google Scholar
Chen, J. P. (1994) Theory of deliquescence and modified Köhler curves. J. Atmos. Sci., 51, 3505–3516.2.0.CO;2>CrossRefGoogle Scholar
Cheng, L., and English, M. (1983) A relationship between hailstone concentration and size. J. Atmos. Sci., 40, 204–213.2.0.CO;2>CrossRefGoogle Scholar
Chin, E. H. C., and Neiburger, M. (1972) A numerical simulation of the gravitational coagulation process for cloud droplets. J. Atmos. Sci., 29, 718–727.2.0.CO;2>CrossRefGoogle Scholar
Chiruta, M., and Wang, P. K. (2003) On the capacitance of bullet rosette crystals. J. Atmos. Sci., 60, 836–846.2.0.CO;2>CrossRefGoogle Scholar
Chiruta, M., and Wang, P. K. (2005) The capacitance of solid and hollow hexagonal ice columns. Geophys. Res. Lett., 32, L05803.CrossRefGoogle Scholar
Chiu, C. S., and Klett, J. D. (1976) Convective electrification of clouds. J. Geophys. Res., 81, 1111–1124.CrossRefGoogle Scholar
Chuang, C. C., and Beard, K. V. (1990) A numerical model for the equilibrium shape of electrified raindrops. J. Atmos. Sci., 47, 1374–1389.2.0.CO;2>CrossRefGoogle Scholar
Clough, S. A., Beers, Y., Klein, G. P., and Rothman, L. S. (1973) Dipole moment of water from Stark measurements of H2O, HDO, and D2O. J. Chem. Phys., 59, 2254–2259.CrossRefGoogle Scholar
Cober, S. G., and List, R. (1993) Measurements of the heat and mass transfer parameters characterizing conical graupel growth. J. Atmos. Sci., 50, 1591–1609.2.0.CO;2>CrossRefGoogle Scholar
Connolly, P. J., Emersic, C., and Field, P. R. (2012) A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 2055–2076.CrossRefGoogle Scholar
Cotton, W. R., and Anthes, R. A. (1989) Storm and Cloud Dynamics. San Diego, CA: Academic Press.Google Scholar
Crutzen, P. J. (1976) The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett., 3(2), 73–76.CrossRefGoogle Scholar
Curtius, J., Weigel, R., Vössing, H. -J., et al. (2005) Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements. Atmos. Chem. Phys., 5, 3053–3069.CrossRefGoogle Scholar
Czys, R. R. (1994) Preliminary laboratory results on the coalescence of small precipitation-size drops falling freely in a refrigerated environment. J. Atmos. Sci., 51, 3209–3218.2.0.CO;2>CrossRefGoogle Scholar
Czys, R. R., and Ochs, H. T. (1988) The influence of charge on the coalescence of water drops in free fall. J. Atmos. Sci., 45, 3161–3168.2.0.CO;2>CrossRefGoogle Scholar
Damiani, R., Vali, G., and Haimov, S. (2006) The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 1432–1450.CrossRefGoogle Scholar
Davies, C. N. (1945) Definitive equations for the fluid resistance of spheres. Proc. Phys. Soc., 57, 259–270.CrossRefGoogle Scholar
Dinger, J. E., and Gunn, R. (1946) Electrical effects associated with a change of state of water. Terr. Magn. Atmos. Electr., 51, 477–494.CrossRefGoogle Scholar
Döppenschmidt, A., and Butt, H. -J. (2000) Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy. Langmuir, 16, 6709–6714.CrossRefGoogle Scholar
Dosch, H., Lied, A., and Bilgram, J. H. (1995) Glancing-angle X-ray scattering studies of the premelting of ice surfaces. Surf. Sci., 327, 145–164.CrossRefGoogle Scholar
Doswell, C. A. (Ed.) (2001) Severe Convective Storms. Boston, MA: American Meteorological Society.CrossRef
Drake, J. C., and Mason, B. J. (1966) The melting of small ice spheres and cones. Q. J. R. Meteorol. Soc., 92, 500–509.CrossRefGoogle Scholar
Dufour, L., and Defay, R. (1963) Thermodynamics of Clouds. New York, NY: Academic Press.Google Scholar
Dusek, U., Frank, G. P., Hildebrandt, L., et al. (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 1375–1378.CrossRefGoogle ScholarPubMed
Einstein, A. (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik, 17, 549–560.CrossRefGoogle Scholar
Feingold, G., and Levin, Z. (1986) The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Clim. Appl. Meteorol., 25, 1346–1363.2.0.CO;2>CrossRefGoogle Scholar
Few, A. A., Dessler, A. J., Latham, D. J., and Brook, M. (1967) A dominant 200-Hertz peak in the acoustic spectrum of thunder. J. Geophys. Res., 72, 6149–6154.CrossRefGoogle Scholar
Fiebig, M., Lunder, C. R., and Stohl, A. (2009) Tracing biomass burning aerosol from South America to Troll Research Station, Antarctica. Geophys. Res. Lett., 36, L14815.CrossRefGoogle Scholar
Field, P. R., and Heymsfield, A. J. (2003) Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544–560.2.0.CO;2>CrossRefGoogle Scholar
Fletcher, N. H. (1962) The Physics of Rainclouds. Cambridge, UK: Cambridge University Press.Google Scholar
Flossmann, A. I. (1998) Interaction of aerosol particles and clouds. J. Atmos. Sci., 55, 879–887.2.0.CO;2>CrossRefGoogle Scholar
Flossmann, A. I., and Wobrock, W. (2010) A review of our understanding of the aerosol–cloud interaction from the perspective of a bin resolved cloud scale modeling. Atmos. Res., 97, 478–497.CrossRefGoogle Scholar
Forster, P. M., and Shine, K. P. (2002) Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29(6), 1086.CrossRefGoogle Scholar
Fujita, T. T. (1982) Principle of stereographic height computations and their application to stratospheric cirrus over severe thunderstorms. J. Meteorol. Soc. Japan, 60, 355–368.CrossRefGoogle Scholar
Fujita, T. T. (1985) The Downburst – Microburst and Macroburst. Satellite and Mesometeorology Research Project (SMRP), Research Paper 210, Department of Geophysical Sciences, University of Chicago, NTIS PB-148880, February.Google Scholar
Fukuta, N. (1963) Ice nucleation by metaldehyde. Nature, 199, 475–476.CrossRefGoogle Scholar
Fukuta, N., and Mason, B. J. (1963) Epitaxial growth of ice on organic crystals. J. Phys. Chem. Solids, 24, 715–718.CrossRefGoogle Scholar
Furukawa, Y., Yamamoto, M., and Kuroda, T. (1987) Ellipsometric study of the transition layer on the surface of an ice crystal. J. Crystal Growth, 82, 665–677.CrossRefGoogle Scholar
Gillespie, D. T. (1975) An exact method for numerically simulating the stochastic coalescence process in a cloud. J. Atmos. Sci., 32, 1977–1989.2.0.CO;2>CrossRefGoogle Scholar
Gish, O. H. (1944) Evaluation and interpretation of the columnar resistance of the atmosphere. Terr. Magn. Atmos. Electr., 49, 159–168.CrossRefGoogle Scholar
Goddard, J. W. F., and Cherry, S. M. (1984) The ability of dual-polarization radar (copular linear) to predict rainfall rate and microwave attenuation. Radio Sci., 19, 201–208.CrossRefGoogle Scholar
Greenfield, S. (1957) Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteorol., 14, 115–125.2.0.CO;2>CrossRefGoogle Scholar
Gunn, K. L. S., and Marshall, J. S. (1958) The distribution with size of snowflakes. J. Meteorol., 15, 452–461.2.0.CO;2>CrossRefGoogle Scholar
Gunn, R., and Kinzer, G. D. (1949) The terminal velocity of fall for water droplets in stagnant air. J. Meteorol., 4, 243–248.2.0.CO;2>CrossRefGoogle Scholar
Hall, W. D., and Pruppacher, H. R. (1976) The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 1995–2006.2.0.CO;2>CrossRefGoogle Scholar
Hallett, J., and Mossop, S. C. (1974) Production of secondary ice particles during the riming process. Nature, 249, 26–28.CrossRefGoogle Scholar
Hallgren, R., and Hosler, C. L. (1960) Preliminary results in the aggregation of ice crystals. In Physics of Precipitation, ed. Weickmann, H.. AGU Geophysical Monograph, No. 5, AGU Publ. No. 746. Baltimore, MD: Waverly Press, pp. 257–263.Google Scholar
Hashino, T., Chiruta, M., and Wang, P. K. (2010) A numerical study on the riming process in the transition from a pristine crystal to a graupel particle. In The 13th Conference on Cloud Physics, Portland, OR, 28 June–2 July 2010. Boston, MA: American Meteorological Society, Paper 1.86.Google Scholar
Hegg, D. A., Radke, L. F., and Hobbs, P. V. (1990) Particle production associated with marine clouds. J. Geophys. Res., 95, 13917–13926.CrossRefGoogle Scholar
Heymsfield, A. J. (1972) Ice crystal terminal velocities. J. Atmos. Sci., 29, 1348–1357.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. (1975) Cirrus uncinus generating cells and the evolution of cirriform clouds. Part III: Numerical computations of the growth of the ice phase. J. Atmos. Sci., 32, 820–830.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., Johnson, P. N., and Dye, J. E. (1978) Observations of moist adiabatic ascent in Northeast Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 1689–1703.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., Bansemer, A., Field, P. R., et al. (2002) Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 3457–3491.2.0.CO;2>CrossRefGoogle Scholar
Highwood, E. J., and Hoskins, B. J. (1998) The tropical tropopause. Q. J. R. Meteorol. Soc., 124, 1579–1604.CrossRefGoogle Scholar
Hill, M. J. M. (1894) On a spherical vortex. Phil. Trans. R. Soc. Lond. A, 185, 213–245.CrossRefGoogle Scholar
Hinds, W. C. (1982) Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York, NY: Wiley-Interscience.Google Scholar
Hobbs, P. V. (1974) Ice Physics. Oxford, UK: Clarendon Press.Google Scholar
Hobbs, P. V., and Rangno, A. L. (1990) Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47, 2710–2722.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V., Radke, L. F., and Shumway, S. E. (1970) Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington State. J. Atmos. Sci., 27, 81–89.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V., Chang, S., and Locatelli, J. D. (1974) The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 2199–2206.CrossRefGoogle Scholar
Hobbs, P. V., Bowdle, D. A., and Radke, L. F. (1985) Particles in the lower troposphere over the High Plains of the United States. Part I: Size distributions, elemental compositions, and morphologies. J. Clim. Appl. Meteorol., 24, 1344–1356.2.0.CO;2>CrossRefGoogle Scholar
Hocking, L. M. (1959) The collision efficiency of small droplets. Q. J. R. Meteorol. Soc., 85, 44–50.CrossRefGoogle Scholar
Hocking, L. M., and Jonas, P. R. (1970) The collision efficiency of small drops. Q. J. R. Meteorol. Soc., 96, 722–729.CrossRefGoogle Scholar
Hoffmann, C., Funk, R., Sommer, M., and Li, Y. (2008) Temporal variations in PM10 and particle size distribution during Asian dust storms in Inner Mongolia. Atmos. Environ., 42, 8422–8431.CrossRefGoogle Scholar
Holton, J. R. (2004) An Introduction to Dynamic Meteorology, 4th edn. Burlington, MA: Academic Press.Google Scholar
Holton, J. R., Haynes, P. H., McIntyre, M. E., et al. (1995) Stratosphere–troposphere exchange. Rev. Geophys., 33, 403–439.CrossRefGoogle Scholar
Hosler, C. L., and Hallgren, R. E. (1960) The aggregation of small ice crystals. Disc. Faraday Soc., 30, 200–207.CrossRefGoogle Scholar
Houze, R. A. (1993) Cloud Dynamics. San Diego, CA: Academic Press.Google Scholar
Huang, C., Wikfeldt, K. T., Tokushima, T., et al. (2009) The inhomogeneous structure of water at ambient conditions. Proc. Natl. Acad. Sci., 106, 15214–15218.CrossRefGoogle Scholar
Iribarne, J. V., and Cho, H. R. (1980) Atmospheric Physics. Dordrecht, The Netherlands: Reidel.CrossRefGoogle Scholar
Iribarne, J. V., and Godson, W. L. (1973) Atmospheric Thermodynamics. Dordrecht, The Netherlands: Reidel.Google Scholar
Iwai, K. (1983) Three-dimensional structure of plate-like snow crystals. J. Meteorol. Soc. Japan, 61, 746–755.CrossRefGoogle Scholar
Iwai, K. (1989) Three-dimensional structures of natural snow crystals by stereo-photomicrographs. Atmos. Res., 24, 137–147.CrossRefGoogle Scholar
Iwai, K. (1999) Three dimensional fine structures of bullet-type snow crystals and their growth conditions observed at Syowa Station, Antarctica [in Japanese]. Seppyo [Snow and Ice], 61, 3–12.Google Scholar
Jaenicke, R. (1988) Properties of atmospheric aerosols. In Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 4, Meteorology, Ser. Vol. 4b, Physical and Chemical Properties of the Air. Berlin, Germany: Springer, Chap. 9.3.Google Scholar
Janhäll, S., Andreae, M. O., and Pöschl, U. (2010) Biomass burning aerosol emissions from vegetation fires: particle number and mass emission factors and size distributions. Atmos. Chem. Phys., 10, 1427–1439.CrossRefGoogle Scholar
Jayaratne, E. R., Saunders, C. P. R., and Hallett, J. (1983) Laboratory studies of the charging of soft-hail during ice crystal interactions. Q. J. R. Meteorol. Soc., 109, 609–630.CrossRefGoogle Scholar
Jayaweera, K. O. L. F., and Mason, B. J. (1965) The behavior of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech., 22, 709–720.CrossRefGoogle Scholar
Jensen, E. J., Lawson, P., Baker, B., et al. (2009) On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys., 9, 5519–5537.CrossRefGoogle Scholar
Ji, W., and Wang, P. K. (1998) On the ventilation coefficients of falling ice crystals at low–intermediate Reynolds numbers. J. Atmos. Sci., 56, 829–836.2.0.CO;2>CrossRefGoogle Scholar
Johnson, D. E., Wang, P. K., and Straka, J. M. (1995) A study of microphysical processes in the 2 August 1981 CCOPE supercell storm. Atmos. Res., 33, 93–123.CrossRefGoogle Scholar
Jost, W. (1960) Diffusion in Solids, Liquids, Gases, 3rd printing. New York, NY: Academic Press.Google Scholar
Junge, C. E. (1955) The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J. Meteorol., 12, 13–25.2.0.CO;2>CrossRefGoogle Scholar
Junge, C. E. (1963) Air Chemistry and Radioactivity. New York, NY: Academic Press.Google Scholar
Junge, C. E., Chagnon, C. W., and Manson, J. E. (1961) Stratospheric aerosols. J. Meteorol., 18, 81–107.2.0.CO;2>CrossRefGoogle Scholar
Kajikawa, M. (1972) Measurement of falling velocity of individual snow crystals. J. Meteorol. Soc. Japan, 50, 577–583.CrossRefGoogle Scholar
Kajikawa, M. (1982) Observation of the falling motion of early snow flakes. Part I. Relationship between the free-fall pattern and the number and shape of component snow crystals. J. Meteorol. Soc. Japan, 60, 797–803.CrossRefGoogle Scholar
Keith, W. D., and Saunders, C. P. R. (1989) The collection efficiency of a cylindrical target for ice crystals. Atmos. Res., 23, 83–95.CrossRefGoogle Scholar
Kessler, E. (1969) On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteorological Monograph, Vol. 10, No. 32. Boston, MA: American Meteorological Society, pp. 1–84.CrossRefGoogle Scholar
Kittel, C. (1996) Introduction to Solid State Physics, 7th edn. New York, NY: Wiley.Google Scholar
Klemp, J. B., and Wilhelmson, R. B. (1978) The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.2.0.CO;2>CrossRefGoogle Scholar
Klett, J. D., and Davis, M. H. (1973) Theoretical collision efficiencies of cloud droplets at small Reynolds numbers. J. Atmos. Sci., 30, 107–117.2.0.CO;2>CrossRefGoogle Scholar
Knight, C. A. (1979) Observations of the morphology of the melting snow. J. Atmos. Sci., 36, 1123–1130.Google Scholar
Kogan, Y. L., Kogan, Z. N., and Mechem, D. B. (2009) Fidelity of analytic drop size distributions in drizzling stratiform clouds based on large eddy simulations. J. Atmos. Sci., 66, 2335–2348.CrossRefGoogle Scholar
Kovetz, A., and Olund, B. (1969) The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26, 1060–1065.2.0.CO;2>CrossRefGoogle Scholar
Krehbiel, P. R., Thomas, R. J., Rison, W., et al. (2000) GPS-based mapping system reveals lightning inside storms. EOS, Trans. Am. Geophys. Union, 81, 21–25.CrossRefGoogle Scholar
Kubicek, A., and Wang, P. K. (2012) A numerical study of the flow fields around a typical conical graupel falling at various inclination angles. Atmos. Res., 118, 15–26.CrossRefGoogle Scholar
Küpper, C., Thuburn, J., Craig, G. C., and Birner, T. (2004) Mass and water transport into the tropical stratosphere: a cloud-resolving simulation. J. Geophys. Res., 109, D10111.CrossRefGoogle Scholar
Lamb, D., and Verlinde, J. (2011) Physics and Chemistry of Clouds. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Lang, T. J., Miller, L. J., Weisman, M., et al. (2004) The severe thunderstorm electrification and precipitation study. Bull. Am. Meteorol. Soc., 85, 1107–1125.CrossRefGoogle Scholar
Langmuir, I. (1948) The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Meteorol., 5, 175–192.2.0.CO;2>CrossRefGoogle Scholar
Latham, J. (1981) The electrification of thunderstorms. Q. J. R. Meteorol. Soc., 107, 277–298.CrossRefGoogle Scholar
Latham, J., and Mason, B. J. (1961) Generation of electric charge associated with the formation of soft hail in thunderstorms. Proc. R. Soc. A, 260, 537–549.CrossRefGoogle Scholar
Latham, J., and Saunders, C. P. R. (1970) Experimental measurements of the collection efficiencies of ice crystals in electric fields. Q. J. R. Meteorol. Soc., 96, 257–265.CrossRefGoogle Scholar
Laws, J. O., and Parsons, D. A. (1943) The relation of raindrop size to intensity. Trans. Am. Geophys. Union, 24, 452–460.CrossRefGoogle Scholar
Le Clair, B. P., Hamielec, A. E., Pruppacher, H. R., and Hall, W. D. (1972) A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity in air. J. Atmos. Sci., 29, 728–740.2.0.CO;2>CrossRefGoogle Scholar
Lee, R. E., Lee, M. R., and Strong-Gunderson, J. M. (1993) Insect cold-hardiness and ice nucleating active microorganisms including their potential use for biological control. J. Insect Physiol., 39, 1–12.CrossRefGoogle Scholar
Levizzani, V. and Setvák, M. (1996) Multispectral, high resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361–369.2.0.CO;2>CrossRefGoogle Scholar
Lew, J. K., Montague, D. C., Pruppacher, H. R., and Rasmussen, R. M. (1986a) A wind tunnel investigation on the riming of snowflakes. Part I: Porous disks and large stellars. J. Atmos. Sci., 43, 2392–2409.2.0.CO;2>CrossRefGoogle Scholar
Lew, J. K., Montague, D. C., Pruppacher, H. R., and Rasmussen, R. M. (1986b) A wind tunnel investigation on the riming of snowflakes. Part II: Natural and synthetic aggregates. J. Atmos. Sci., 43, 2410–2417.2.0.CO;2>CrossRefGoogle Scholar
Libbrecht, K. G. (2005) The physics of snow crystals. Rep. Prog. Phys., 68, 855–895.CrossRefGoogle Scholar
Lin, H. M., Wang, P. K., and Schlesinger, R. E. (2005) Three-dimensional nonhydrostatic simulations of summer thunderstorms in the humid subtropics versus High Plains. Atmos. Res., 78, 103–145.CrossRefGoogle Scholar
Liou, K. N. (1992) Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling. New York, NY: Oxford University Press.Google Scholar
List, R. J. (1963) Smithsonian Meteorological Tables, 6th edn. Washington, DC: Smithsonian Institution.Google Scholar
List, R. (1965) The mechanism of hailstone formation. In Proceedings of the International Conference on Cloud Physics, Tokyo and Sapporo, pp. 481–491.Google Scholar
List, R., and McFarquhar, G. M. (1990) The role of breakup and coalescence in the three-peak equilibrium distribution of raindrops. J. Atmos. Sci., 47, 2274–2292.2.0.CO;2>CrossRefGoogle Scholar
List, R., Lesins, G. B., Garcia-Garcia, F., and McDonald, D. B. (1987) Pressurized icing tunnel for graupel, hail and secondary raindrop production. J. Atmos. Sci., 44, 455–463.Google Scholar
List, R., Nissen, R., and Fung, C. (2009a) Effects of pressure on collision, coalescence, and breakup of raindrops. Part I: Experiments at 50 kPa. J. Atmos. Sci., 66, 2190–2203.CrossRefGoogle Scholar
List, R., Fung, C., and Nissen, R. (2009b) Effects of pressure on collision, coalescence, and breakup of raindrops. Part II: Parameterization and spectra evolution at 50 and 100 kPa. J. Atmos. Sci., 66, 2204–2215.CrossRefGoogle Scholar
Liu, C., Williams, E. R., Zipser, E. J., and Burns, G. (2010) Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit. J. Atmos. Sci., 67, 309–323.CrossRefGoogle Scholar
Liu, H. C., Wang, P. K., and Schlesinger, R. E. (2003a) A numerical study of cirrus clouds. Part I: Model description. J. Atmos. Sci., 60, 1075–1084.2.0.CO;2>CrossRefGoogle Scholar
Liu, H. C., Wang, P. K., and Schlesinger, R. E. (2003b) A numerical study of cirrus clouds. Part II: Effects of ambient temperature and stability on cirrus evolution. J. Atmos. Sci., 60, 1097–1119.2.0.CO;2>CrossRefGoogle Scholar
Locatelli, J. D., and Hobbs, P. V. (1974) Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185–2197.CrossRefGoogle Scholar
Lohmann, U., Rotstayn, L., Storelvmo, T., et al. (2010) Total aerosol effect: radiative forcing or radiative flux perturbation?Atmos. Chem. Phys., 10, 3235–3246.CrossRefGoogle Scholar
Lorrain, P., and Corson, D. R. (1970) Electromagnetic Fields and Waves, 2nd edn. San Francisco, CA: W. H. Freeman.Google Scholar
Low, T. B., and List, R. (1982a) Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 1591–1606.2.0.CO;2>CrossRefGoogle Scholar
Low, T. B., and List, R. (1982b) Collision, coalescence and breakup of raindrops. Part II: Parameterizations of fragment size distributions. J. Atmos. Sci., 39, 1607–1619.2.0.CO;2>CrossRefGoogle Scholar
Ludlam, F. H. (1958) The hail problem. Nubia, 1, 12–96.Google Scholar
Ludlam, F. H., and Scorer, R. S. (1957) Cloud Study: A Pictorial Guide. London, UK: John Murray.Google Scholar
Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U. (2010) Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, D14201.CrossRefGoogle Scholar
MacGorman, D. R., and Rust, W. D. (1998) The Electrical Nature of Storms. New York, NY: Oxford University Press.Google Scholar
MacGorman, D. R., Rust, W. D., Ziegler, C. L., et al. (2008) TELEX the Thunderstorm Electrification and Lightning Experiment. Bull. Am. Meteorol. Soc., 89, 997–1013.CrossRefGoogle Scholar
Macklin, W. C. (1961) Accretion in mixed clouds. Q. J. R. Meteorol. Soc., 87, 413–424.CrossRefGoogle Scholar
Macklin, W. C. (1963) Heat transfer from hailstones. Q. J. R. Meteorol. Soc., 89, 360–369.CrossRefGoogle Scholar
Magono, C., and Lee, C. W. (1966) Meteorological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., Ser. 7, 2, 321–335.Google Scholar
Makkonen, L. (2012) Misinterpretation of the Shuttleworth equation. Scr. Mater., 66, 627–629.CrossRefGoogle Scholar
Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J., and Salzmann, C. G. (2012) Structure of ice crystallized from supercooled water. Proc. Natl. Acad. Sci., 109, 1041–1045.CrossRefGoogle ScholarPubMed
Mansell, E. R., Ziegler, C. L., and Bruning, E. C. (2010) Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171–194.CrossRefGoogle Scholar
Markson, R. (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull. Am. Meteorol. Soc., 88(2), 223–241.CrossRefGoogle Scholar
Marshall, J. S., and Palmer, W. M. K. (1948) The distribution of raindrops with size. J. Meteorol., 5, 165–166.2.0.CO;2>CrossRefGoogle Scholar
Martin, J. J., Wang, P. K., Pruppacher, H. R., and Pitter, R. L. (1981) A numerical study of the effect of electric charges on the efficiency with which planar ice crystals collect supercooled water drops. J. Atmos. Sci., 38, 2462–2469.2.0.CO;2>CrossRefGoogle Scholar
Martin, R. S., Mather, T. A., Pyle, D. M., et al. (2008) Composition-resolved size distributions of volcanic aerosols in the Mt. Etna plumes. J. Geophys. Res., 113, D17211.CrossRefGoogle Scholar
Mason, B. J. (1956) On the melting of hailstones. Q. J. R. Meteorol. Soc., 82, 209–216.CrossRefGoogle Scholar
Mason, B. J. (1971) The Physics of Clouds. Oxford, UK: Clarendon Press.Google Scholar
Matsumoto, M., Saito, S., and Ohmine, I. (2002) Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature, 416, 409–413.CrossRefGoogle ScholarPubMed
Matsuo, T., and Sasyo, Y. (1981) Empirical formula for the melting rate of snowflakes. J. Meteorol. Soc. Japan, 59, 1–9.CrossRefGoogle Scholar
McDonald, J. E. (1963) Use of the electrostatic analogy in studies of ice crystal growth. Z. Angew. Math. Phys., 14, 610–620.CrossRefGoogle Scholar
McFarquhar, G. M., Um, J., Freer, M., et al. (2007) Importance of small ice crystals to cirrus properties: observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803.CrossRefGoogle Scholar
Meszaros, A., and Vissy, K. (1974) Concentration, size distribution and chemical nature of atmospheric aerosol particles in remote oceanic areas. J. Aerosol Sci., 5, 101–109.CrossRefGoogle Scholar
Milbrandt, J. A., and Yau, M. K. (2005) A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.CrossRefGoogle Scholar
Miller, N. L., and Wang, P. K. (1989) A theoretical determination of the efficiency with which aerosol particles are collected by falling columnar ice crystals. J. Atmos. Sci., 46, 1656–1663.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, D. L. (2000) Parameterization of the Mie extinction and absorption coefficients for water clouds. J. Atmos. Sci., 57, 1311–1326.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, D. L., Huggins, A., and Grubisic, V. (2006) A new snow growth model with application to radar precipitation estimates. Atmos. Res., 82, 2–18.CrossRefGoogle Scholar
Mitchell, D. L., Chai, S. K., Liu, Y., Heymsfield, A. J., and Dong, Y. (1996) Modeling cirrus clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci., 53, 2952–2966.2.0.CO;2>CrossRefGoogle Scholar
Mitra, S. K., Vohl, O., Ahr, M., and Pruppacher, H. R. (1990) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584–591.2.0.CO;2>CrossRefGoogle Scholar
Murakami, M., and Matsuo, T. (1990) Development of the hydrometeor videosonde. J. Atmos. Ocean. Technol., 7, 613–620.2.0.CO;2>CrossRefGoogle Scholar
Murphy, D. M. (2003) Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophys. Res. Lett., 30, 2230.CrossRefGoogle Scholar
Murphy, D. M., and Koop, T. (2005) Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc., 131, 1539–1565.CrossRefGoogle Scholar
Newton, C. W., and Newton, H. R. (1959) Dynamical interactions between large convective clouds and environment with vertical shear. J. Meteorol., 16, 483–496.2.0.CO;2>CrossRefGoogle Scholar
Ochs, H. T. (1978) Moment-conserving techniques for warm cloud microphysical computations. Part II. Model testing and results. J. Atmos. Sci., 35, 1959–1973.2.0.CO;2>CrossRefGoogle Scholar
Ochs, H. T., Czys, R. R., and Beard, K. V. (1986) Laboratory measurements of coalescence efficiencies for small precipitation drops. J. Atmos. Sci., 43, 225–232.2.0.CO;2>CrossRefGoogle Scholar
Ochs, H. T., Beard, K. V., Laird, N. F., Holdridge, D. J., and Schaufelberger, D. E. (1995) Effects of relative humidity on the coalescence of small precipitation drops in free fall. J. Atmos. Sci., 52, 3673–3680.2.0.CO;2>CrossRefGoogle Scholar
Ogura, Y., and Phillips, N. A. (1962) Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–179.2.0.CO;2>CrossRefGoogle Scholar
Ohtake, T. (1970) Factors affecting the size distribution of raindrops and snowflakes. J. Atmos. Sci., 27, 804–813.2.0.CO;2>CrossRefGoogle Scholar
Orville, H. D., and Kopp, F. J. (1977) Numerical simulation of the life history of a hailstorm. J. Atmos. Sci., 34, 1596–1618.2.0.CO;2>CrossRefGoogle Scholar
Orville, R. E. (1994) Cloud-to-ground lightning flash characteristics in the contiguous United States: 1989–1991. J. Geophys. Res., 99, 10833–10841.CrossRefGoogle Scholar
Paluch, I. R. (1979) The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 2467–2478.2.0.CO;2>CrossRefGoogle Scholar
Park, R. W. (1970) Behavior of water drops colliding in humid nitrogen. Ph.D. thesis, University of Wisconsin-Madison.
Pedlosky, J. (2003) Waves in the Ocean and Atmosphere. Berlin, Germany: Springer.CrossRefGoogle Scholar
Peppler, W. (1940) Unterkühlte Wasserwolken und Eiswolken [Supercooled water clouds and ice clouds]. Forschungs- und Erfahrungsberichte des Reichswetterdienstes B, No. 1, pp. 3–68.
Pessi, A. T., and Businger, S. (2009) Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833–848.CrossRefGoogle Scholar
Pflaum, J. C., and Pruppacher, H. R. (1979) A wind tunnel investigation of the growth of graupel initiated from frozen drops. J. Atmos. Sci., 36, 680–689.2.0.CO;2>CrossRefGoogle Scholar
Pflaum, J. C., Martin, J. J., and Pruppacher, H. R. (1978) A wind tunnel investigation of the hydrodynamic behavior of growing, freely falling graupel. Q. J. R. Meteorol. Soc., 104, 179–187.CrossRefGoogle Scholar
Pinsky, M. B., and Khain, A. P. (2004) Collisions of small drops in a turbulent flow. Part II: Effects of flow accelerations. J. Atmos. Sci., 61, 1926–1939.2.0.CO;2>CrossRefGoogle Scholar
Pinsky, M. B., Khain, A. P., and Shapiro, M. (1999) Collisions of small drops in a turbulent flow. Part I: Collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci., 56, 2585–2600.2.0.CO;2>CrossRefGoogle Scholar
Pitter, R. L., and Pruppacher, H. R. (1974) A numerical investigation of collision efficiencies of simple ice plates colliding with supercooled water drops. J. Atmos. Sci., 31, 551–559.2.0.CO;2>CrossRefGoogle Scholar
Pitter, R. L., Pruppacher, H. R., and Hamielec, A. E. (1973) A numerical study of viscous flow past a thin oblate spheroid at low and intermediate Reynolds numbers. J. Atmos. Sci., 30, 125–134.2.0.CO;2>CrossRefGoogle Scholar
Pitter, R. L., Pruppacher, H. R., and Hamielec, A. E. (1974) A numerical study of the effect of forced convection on mass transport from a thin oblate spheroid of ice in air. J. Atmos. Sci., 31, 1058–1066.2.0.CO;2>CrossRefGoogle Scholar
Podzimek, J. (1966) Experimental determination of the “capacity” of ice crystals. Stud. Geophys. Geodet., 10, 235–238.CrossRefGoogle Scholar
Pöschl, U., Martin, S. T., Sinha, B., et al. (2010) Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 329, 1513–1515.CrossRefGoogle ScholarPubMed
Prenni, A. J., Petters, M. D., Kreidenweis, S. M., et al. (2009) Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nature Geosci., 2, 402–405.CrossRefGoogle Scholar
Prodi, F. (1976) Scavenging of aerosol particles by growing ice crystals. In International Conference on Cloud Physics, Boulder, CO, 26–30 July 1976. Preprints, pp. 70–75.Google Scholar
Pruppacher, H. R., and Beard, K. V. (1970) A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc., 96, 247–256.CrossRefGoogle Scholar
Pruppacher, H. R., and Klett, J. D. (1997) Microphysics of Clouds and Precipitation. Dordrecht, The Netherlands: Kluwer.Google Scholar
Rakov, V. A., and Uman, M. A. (2003) Lightning: Physics and Effects. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Rasmussen, R. M., and Heymsfield, A. J. (1987) Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 2754–2763.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. M., and Pruppacher, H. R. (1982) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius < 500 µm. J. Atmos. Sci., 39, 152–158.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. M., Levizzani, V., and Pruppacher, H. R. (1984a) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. II: A theoretical study for frozen drops of radius < 500 µm. J. Atmos. Sci., 41, 374–380.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. M., Levizzani, V., and Pruppacher, H. R. (1984b) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. III. Experiment and theory for spherical ice particles of radius > 500 µm. J. Atmos. Sci., 41, 381–388.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R., Walcek, C., Pruppacher, H. R., et al. (1985) A wind tunnel investigation of the effect of an external vertical electric field on the shape of electrically uncharged rain drops. J. Atmos. Sci., 42, 1647–1652.2.0.CO;2>CrossRefGoogle Scholar
Reid, J. S., Eck, T. F., Christopher, S. A., et al. (2005) A review of biomass burning emissions. Part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys., 5, 827–849.CrossRefGoogle Scholar
Reif, F. (1965) Fundamentals of Statistical and Thermal Physics. New York, NY: McGraw-Hill.Google Scholar
Reinking, R. (1979) The onset and steady growth of snow crystals by accretion of droplets. J. Atmos. Sci., 36, 870–881.2.0.CO;2>CrossRefGoogle Scholar
Reynolds, O. (1876) On the manner in which raindrops and hailstones are formed. Proc. Lit. Phil. Soc., Manchester, 16, 23–33.Google Scholar
Reynolds, S. E., Brook, M., and Gourley, M. F. (1957) Thunderstorm charge separation. J. Meteorol., 14, 426–436.2.0.CO;2>CrossRefGoogle Scholar
Richards, C. N., and Dawson, G. A. (1971) The hydrodynamic instability of water drops falling at terminal velocity in vertical electric fields. J. Geophys. Res., 76, 3445–3455.CrossRefGoogle Scholar
Rogers, D. C. (1974) The Aggregation of Natural Ice Crystals. Research Report AR110, Department of Atmospheric Resources, University of Wyoming, Laramie, WY.Google Scholar
Rosenfeld, D., Lohmann, U., Raga, G. B., et al. (2008) Flood or drought: How do aerosols affect precipitation?Science, 321, 1309–1313.CrossRefGoogle ScholarPubMed
Ryan, B. T. (1974) Growth of drops by coalescence: the effect of different collection kernels and of additional growth by condensation. J. Atmos. Sci., 31, 1942–1948.2.0.CO;2>CrossRefGoogle Scholar
Sambles, J. R., Skinner, L. M., and Listgarten, N. D. (1970) An electron microscope study of evaporating small particles: the Kelvin equation for liquid lead and the mean surface energy of solid silver. Proc. R. Soc. London, A, 318, 507–522.CrossRefGoogle Scholar
Sazaki, G., Zepeda, S., Nakatsubo, S., Yokoyama, E., and Furukawa, Y. (2010) Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. Proc. Natl. Acad. Sci., 107, 19702–19707.CrossRefGoogle ScholarPubMed
Sazaki, G., Zepeda, S., Nakatsubo, S., Yokomine, M., and Furukawa, Y. (2012) Quasi-liquid layers on ice crystal surfaces are made up of two different phases. Proc. Natl. Acad. Sci., 109, 1052–1055.CrossRefGoogle ScholarPubMed
Schlamp, R. J., Grover, S. N., Pruppacher, H. R., and Hamielec, A. E. (1976) A numerical investigation of the electric charges and vertical external electric fields on the collision efficiency of cloud drops. J. Atmos. Sci., 33, 1747–1755.2.0.CO;2>CrossRefGoogle Scholar
Schlamp, R. J., Grover, S. N., Pruppacher, H. R., and Hamielec, A. E. (1979) A numerical investigation of the effect of electric charges and vertical external electric fields on the collision efficiency of cloud drops: Part II. J. Atmos. Sci., 36, 339–349.2.0.CO;2>CrossRefGoogle Scholar
Schlesinger, R. E. (1973) A numerical model of deep moist convection: Part I. Comparative experiments for variable ambient moisture and wind shear. J. Atmos. Sci., 30, 835–856.2.0.CO;2>CrossRefGoogle Scholar
Schlottke, J., Straub, W., Beheng, K., Gomma, H., and Weigand, B. (2010) Numerical investigation of collision-induced breakup of raindrops. Part I: Methodology and dependencies on collision energy and eccentricity. J. Atmos. Sci., 67, 557–575.CrossRefGoogle Scholar
Schmidt, R. A. (1984) Measuring particle size and snowfall intensity in drifting snow. Cold Regions Sci. Technol., 9, 121–129.CrossRefGoogle Scholar
Schuman, T. E. W. (1938) The theory of hailstone formation. Q. J. R. Meteorol. Soc., 64, 3–21.CrossRefGoogle Scholar
Schumann, W. O. (1952) Über die Dämpfung der elecktromagnetischen Eigenschwingungen des Systems Erde–Lufte–Ionosphare. Z. Naturforsch. A, 7, 250–252.Google Scholar
Schwarz, S. E. (1986) Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds. In Chemistry of Multiphase Systems, ed. Jaeschke, W.. NATO ASI Series. Berlin, Germany: Springer, pp. 415–477.CrossRefGoogle Scholar
Scorer, R. S. (1997) Dynamics of Meteorology and Climate. Chichester, UK: Wiley.Google Scholar
Scorer, R. S., and Ludlam, F. H. (1953) Bubble theory of penetrative convection. Q. J. R. Meteorol. Soc., 79, 94–103.CrossRefGoogle Scholar
Seinfeld, J. H., and Pandis, S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn. New York, NY: Wiley-Interscience.Google Scholar
Sekhon, R. S., and Srivastava, R. C. (1970) Snow size spectra and radar reflectivity. J. Atmos. Sci., 27, 299–307.2.0.CO;2>CrossRefGoogle Scholar
Setvák, M., and Doswell, C. A. (1991) The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Weather Rev., 119, 841–847.2.0.CO;2>CrossRefGoogle Scholar
Shafrir, U., and Neiburger, M. (1963) Collision efficiencies of two spheres falling in a viscous medium. J. Geophys. Res., 68, 4141–4147.CrossRefGoogle Scholar
Shuttleworth, R. (1950) The surface tension of solid. Proc. Phys. Soc. A, 63, 444–457.CrossRefGoogle Scholar
Simpson, J. (1971) On cumulus entrainment and one-dimensional models. J. Atmos. Sci., 28, 449–455.2.0.CO;2>CrossRefGoogle Scholar
Skatskii, V. I. (1965) Some results from experimental study of the liquid water content in cumulus clouds. Izv. Atmos. Oceanic Phys., 1, 479–487.Google Scholar
Solomon, S., Qin, D., Manning, M., et al. (eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Solomon, S., Rosenlof, K., Portmann, R., et al. (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science Express, 28 January, pp. 1–6.Google ScholarPubMed
Squires, P. (1958a) The microstructure and colloidal stability of warm clouds. Part II. The causes of the variations in microstructure. Tellus, 10, 262–271.Google Scholar
Squires, P. (1958b) Penetrative downdraughts in cumuli. Tellus, 10, 381–389.CrossRefGoogle Scholar
Srivastava, R. C. (1967) A study of the effect of precipitation on cumulus dynamics. J. Atmos. Sci., 24, 36–45.2.0.CO;2>CrossRefGoogle Scholar
Stommel, H. (1947) Entrainment of air into a cumulus cloud. J. Meteorol., 4, 91–94.2.0.CO;2>CrossRefGoogle Scholar
Straka, J. M. (1989) Hail growth in a highly glaciated central High Plains multi-cellular hailstorm. Ph.D. thesis, Department of Meteorology, University of Wisconsin, Madison, WI.
Straka, J. M. (2010) Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge, UK: Cambridge University Press.Google Scholar
Straub, W., Beheng, K. D., Seifert, A., Schlottke, J., and Weigand, B. (2010) Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci., 67, 576–588.CrossRefGoogle Scholar
Sturniolo, O., Mugnai, A., and Prodi, F. (1995) A numerical sensitivity study on the backscattering at 35.8 GHz from precipitation-sized hydrometeors. Radio Sci., 30(4), 903–919.CrossRefGoogle Scholar
Sun, F. L. (1993) On the bimodal size distribution of hydrometeors in clouds. M.Sc. thesis, Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI.
Szakáll, M., Diehl, K., Mitra, S. K., and Borrmann, S. (2009) A wind tunnel study on the shape, oscillation, and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm. J. Atmos. Sci., 66, 755–765.CrossRefGoogle Scholar
Szakáll, M., Mitra, S. K., Diehl, K., and Borrmann, S. (2010) Shapes and oscillations of falling raindrops – a review. Atmos. Res., 97, 416–425.CrossRefGoogle Scholar
Szyrmer, W., and Zawadzki, I. (1997) Biogenic and anthropogenic sources of ice-forming nuclei: a review. Bull. Am. Meteorol. Soc., 78, 209–228.2.0.CO;2>CrossRefGoogle Scholar
Takahashi, T. (1973) Measurement of electric charge of cloud droplets, drizzle, and raindrops. Rev. Geophys. Space Phys., 11, 903–924.CrossRefGoogle Scholar
Takahashi, T. (1978) Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548.2.0.CO;2>CrossRefGoogle Scholar
Takahashi, T., and Miyawaki, K. (2002) Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 1018–1025.2.0.CO;2>CrossRefGoogle Scholar
Takahashi, T., Endoh, T., and Wakahama, G. (1991) Vapor diffusional growth of free-falling snow crystals between −3 and −23°C. J. Meteorol. Soc. Japan, 69, 15–30.CrossRefGoogle Scholar
Takeda, T. (1971) Numerical simulation of a precipitating convective cloud: the formation of a “long-lasting” cloud. J. Atmos. Sci., 28, 350–376.2.0.CO;2>CrossRefGoogle Scholar
Takeuti, T., Nakano, M., Brook, M., Raymond, D. J., and Krehbiel, P. (1978) The anomalous winter thunderstorms of the Hokuriku coast. J. Geophys. Res., 83, 2385–2394.CrossRefGoogle Scholar
Taneda, S. (1956) Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan, 11, 1101–1108.Google Scholar
Telford, J. W. (1955) A new aspect of coalescence theory. J. Meteorol., 12, 436–444.2.0.CO;2>CrossRefGoogle Scholar
Thorpe, A. D., and Mason, B. J. (1966) The evaporation of ice spheres and ice crystals. Br. J. Appl. Phys., 17, 541–548.CrossRefGoogle Scholar
Thurai, M., Huang, G. J., Bringi, V. N., Randeu, W. L., and Schönhuber, M. (2007) Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Ocean. Technol., 24, 1019–1032.CrossRefGoogle Scholar
Thurai, M., Bringi, V. N., Szakáll, M., et al. (2009) Drop shapes and axis ratio distributions: comparison between 2D video disdrometer and wind-tunnel measurements. J. Atmos. Ocean. Technol., 26, 1427–1432.CrossRefGoogle Scholar
Tinsley, B. A., Burns, G. B., and Zhou, L. (2007) The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv. Space Res., 40, 1126–1139.CrossRefGoogle Scholar
Tokay, A., and Beard, K. V. (1996) A field study of raindrop oscillations. Part I: Observation of size spectra and evaluation of oscillation causes. J. Appl. Meteorol., 35, 1671–1687.2.0.CO;2>CrossRefGoogle Scholar
Trentmann, J., Luderer, G., Winterrath, T., et al. (2006) Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): reference simulation. Atmos. Chem. Phys., 6, 5247–5260.CrossRefGoogle Scholar
Turner, D. D. (2005) Arctic mixed-phase cloud properties from AERI lidar observations: algorithm and results from SHEBA. J. Appl. Meteorol., 44, 427–443.CrossRefGoogle Scholar
Turner, J. S. (1969) Buoyant plumes and thermals. Annu. Rev. Fluid Mech., 1, 29–44.CrossRefGoogle Scholar
Twomey, S. (1964) Statistical effects in the evolution of a distribution of cloud droplets by coalescence. J. Atmos. Sci., 21, 553–557.2.0.CO;2>CrossRefGoogle Scholar
Twomey, S., and Wojciechowski, T. A. (1969) Observations of the geographical variation of cloud nuclei. J. Atmos. Sci., 26, 684–688.2.0.CO;2>CrossRefGoogle Scholar
Ulbrich, C. W. (1983) Natural variations in the analytical form of raindrop size distribution. J. Clim. Appl. Meteorol., 22, 1764–1775.2.0.CO;2>CrossRefGoogle Scholar
Um, J., and McFarquhar, G. M. (2009) Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteorol. Climatol., 46, 757–775.CrossRefGoogle Scholar
Uman, M. A. (1969) Lightning. New York, NY: McGraw-Hill.Google Scholar
Uman, M. A. (1987) The Lightning Discharge. Orlando, FL: Academic Press.Google Scholar
Valdez, M. P., and Young, K. C. (1985) Number fluxes in equilibrium raindrop populations: a Markov chain analysis. J. Atmos. Sci., 42, 1024–1036.2.0.CO;2>CrossRefGoogle Scholar
Volmer, M. (1939) Kinetik der Phasenbildung. Dresden, Germany: Verlag Th. Steinkopff.Google Scholar
Vonnegut, B., and Moore, C. B. (1958) Giant electrical storms. In Recent Advances in Atmospheric Electricity, ed. Smith, L. G.. New York, NY: Pergamon, pp. 399–410.Google Scholar
Vrbka, L., and Jungwirth, P. (2006) Homogeneous freezing of water starts in the subsurface. J. Phys. Chem. B, 110, 18126–18129.CrossRefGoogle ScholarPubMed
Walcek, C. J., and Pruppacher, H. R. (1984) On the scavenging of SO2 by cloud and raindrops: I. A theoretical study of SO2 absorption and desorption for water drops in air. J. Atmos. Chem., 1, 269–289.CrossRefGoogle Scholar
Waldvogel, A. (1974) The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067–1078.2.0.CO;2>CrossRefGoogle Scholar
Walker, J. C. G. (1977) Evolution of the Atmosphere. New York, NY: Macmillan.Google Scholar
Wang, P. K. (1982) Mathematical description of the shape of conical hydrometeors. J. Atmos. Sci., 39, 2615–2622.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K. (1983) On the definition of collision efficiency of atmospheric particles. J. Atmos. Sci., 40, 1051–1052.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K. (1997) Characterization of ice particles in clouds by simple mathematical expressions based on successive modification of simple shapes. J. Atmos. Sci., 54, 2035–2041.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K. (1999) Three-dimensional representations of hexagonal ice crystals and hail particles of elliptical cross-sections. J. Atmos. Sci., 56, 1089–1093.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K. (2002) Ice Microdynamics. San Diego, CA: Academic Press.Google Scholar
Wang, P. K. (2003) Acid rain and precipitation chemistry. In Encyclopedia of Water Science. New York, NY: Marcel Dekker.Google Scholar
Wang, P. K. (2004) A cloud model interpretation of jumping cirrus above storm top. Geophys. Res. Lett., 31, L18106.CrossRefGoogle Scholar
Wang, P. K., and Denzer, S. M. (1983) Mathematical description of the shape of plane hexagonal snow crystals. J. Atmos. Sci., 40, 1024–1028.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K., and Ji, W. (1997) Simulation of three-dimensional unsteady flow past ice crystals. J. Atmos. Sci., 54, 2261–2274.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K., and Ji, W. (2000) Collision efficiencies of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: a numerical study. J. Atmos. Sci., 57, 1001–1009.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K., and Pruppacher, H. R. (1977) Acceleration to terminal velocity of cloud and rain drops. J. Appl. Meteorol., 16, 275–280.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K., Grover, S. N., and Pruppacher, H. R. (1978) On the effect of electric charges on the scavenging of aerosol particles by cloud and small rain drops. J. Atmos. Sci., 35, 1735–1743.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K., Rasmussen, R., Yang, C. C., Pruppacher, H. R. and Viswanathan, C. R. (1980) Heterogeneous nucleation of water and ice on a p–n junction. In Symposium on Nucleation, 180th National American Chemical Society Meeting, Las Vegas, 26–28 August 1980. Abstracts.Google Scholar
Wang, P. K., Greenwald, T. J., and Wang, J. (1987) A three parameter representation of the shape and size distributions of hailstones – a case study. J. Atmos. Sci., 44, 1062–1070.2.0.CO;2>CrossRefGoogle Scholar
Wang, P. K., Setvák, M., Lyons, W., Schmid, W., and Lin, H. (2009) Further evidence of deep convective vertical transport of water vapor through the tropopause. Atmos. Res., 94, 400–408.CrossRefGoogle Scholar
Wang, P. K., Su, S. -H., Setvák, M., Lin, H. -M., and Rabin, R. (2010) Ship wave signature at the cloud top of deep convective storms. Atmos. Res., 97, 294–302.CrossRefGoogle Scholar
Wang, P. K., Su, S. -H., Charvát, Z., Štástka, J., and Lin, H. -M. (2011) Cross tropopause transport of water by mid-latitude deep convective storms: a review. Terr. Atmos. Ocean. Sci., 22, 447–462.CrossRefGoogle Scholar
Wang, Z., Sassen, K., Whiteman, D. N., and Demoz, B. B. (2004) Studying altocumulus with ice virga using ground-based active and passive remote sensors. J. Appl. Meteor., 43, 449–460.2.0.CO;2>CrossRefGoogle Scholar
Warneck, P. (1988) Chemistry of the Natural Atmosphere. San Diego, CA: Academic Press.Google Scholar
Warner, J. (1969) The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. J. Atmos. Sci., 26, 1272–1282.2.0.CO;2>CrossRefGoogle Scholar
Warner, J. (1970) On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci., 27, 1035–1040.2.0.CO;2>CrossRefGoogle Scholar
Westbrook, C. D., Hogan, R. J., and Illingworth, A. J. (2008) The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65, 206–219.CrossRefGoogle Scholar
Whitby, K. T. (1978) The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135–159.CrossRefGoogle Scholar
Wilhelmson, R. (1974) The life cycle of a thunderstorm in three dimensions. J. Atmos. Sci., 31, 1629–1651.2.0.CO;2>CrossRefGoogle Scholar
Wilkins, R. D., and Auer, Jr A. H.. (1970) Riming properties of hexagonal ice crystals. Preprints, Conf. on Cloud Physics, Fort Collins, CO, American Meteorological Society, pp. 81–82.Google Scholar
Williams, E. R. (2005) Lightning and climate: a review. Atmos. Res., 76, 272–287.CrossRefGoogle Scholar
Williams, E. R., Weber, M., and Orville, R. (1989) The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94, 13213–13220.CrossRefGoogle Scholar
Willis, P. T. (1984) Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 1648–1661.2.0.CO;2>CrossRefGoogle Scholar
Willis, P. T., and Tuttleman, P. (1989) Drop-size distributions associated with intense rainfall. J. Appl. Meteorol., 28, 3–15.2.0.CO;2>CrossRefGoogle Scholar
Willmarth, W. W., Hawk, N. E., and Harvey, R. L. (1964) Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids, 7, 197–208.CrossRefGoogle Scholar
Wilson, C. T. R. (1903) Atmospheric electricity. Nature, 68, 101–104.CrossRefGoogle Scholar
Wilson, C. T. R. (1920) Investigations on lightning discharges and on the electric field of thunderstorms. Phil. Trans. R. Soc. London A, 221, 73–115.CrossRefGoogle Scholar
Wilson, C. T. R. (1929) Some thundercloud problems. J. Franklin Inst., 208, 1–12.CrossRefGoogle Scholar
Wurden, G., and Whiteson, D. (1996) High-speed plasma imaging: a lightning bolt. IEEE Trans. Plasma Sci., 24, 83–84.CrossRefGoogle Scholar
Zawadzki, I., Szyrmer, W., Bell, C., and Fabry, F. (2005) Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 3705–3723.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Pao K. Wang, University of Wisconsin, Madison
  • Book: Physics and Dynamics of Clouds and Precipitation
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511794285.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Pao K. Wang, University of Wisconsin, Madison
  • Book: Physics and Dynamics of Clouds and Precipitation
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511794285.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Pao K. Wang, University of Wisconsin, Madison
  • Book: Physics and Dynamics of Clouds and Precipitation
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511794285.017
Available formats
×