Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T18:28:32.833Z Has data issue: false hasContentIssue false

29 - Bacteria and Electricity

from Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Considers bacterial electrophysiology highlighting actions potentials, electrical communication and electrical conductivity.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 325 - 342
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Benarroch, J. M.; Asally, M., The microbiologists guide to membrane potential dynamics. Trends in Microbiology 2020, 28 (4), 304314.CrossRefGoogle ScholarPubMed
Beyend, H.; Bubaute, J. Biofilms in Bioelectrochemical Systems: From Lab Practice to Data Interpretation. Wiley, 2015.Google Scholar
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms: A combined experimental and agent-based fire-diffuse-fire study. Physical Review E 2019, 100, 052401.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17, 036001.CrossRefGoogle ScholarPubMed
Grimner, S.; Martinsen, O. G. Bioimpedance and Bioelectricity, 3rd ed. Academic Press: 2015.Google Scholar
Leung, K. M. et al., Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behaviour. Nanoletters 2013, 13(6), 24072411.CrossRefGoogle Scholar

References

Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Sudel, G. M., Ion channels enable electrical communication in bacterial communities. Nature 2015, 527 (7576), 5963.CrossRefGoogle ScholarPubMed
Kralj, J. M.; Hochbaum, D. R.; Douglass, A. D.; Cohen, A. E., Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 2011, 333 (6040), 345348.CrossRefGoogle ScholarPubMed
Akabuogu, E. U.; Martorelli, V.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Emergence of ion-channel mediated electrical oscillations in Escherichia coli biofilms. eLife 2023, to appear.Google Scholar
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17 (3), 036001.CrossRefGoogle ScholarPubMed
MacKinnon, R., Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angewandte Chemie International ed. in English 2004, 43 (33), 42654277.CrossRefGoogle ScholarPubMed
Madigan, M. T.; Bender, K. S.; Buckley, D. H.; Sattley, W. M.; Stahl, D. A., Brock Biology of Microorganisms, 15th ed. Pearson: 2018.Google Scholar
Kim, B. H.; Gadd, G. M., Prokaryotic Metabolism and Physiology, 2nd ed. CUP: 2019.CrossRefGoogle Scholar
Logan, B. E., Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology 2009, 7 (5), 375381.CrossRefGoogle ScholarPubMed
Weiss, G. L.; Kieninger, A.-K.; Maldener, I.; Forchhammer, K.; Pilhofer, M., Structure and function of a bacterial gap junction analog. Cell 2019, 178 (2), 374384.CrossRefGoogle ScholarPubMed
Kopronski, P.; Kubalski, A., Bacterial ion channels and their eukaryotic homologues. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 2001, 23 (12), 11481158.CrossRefGoogle Scholar
Martinac, B.; Saimi, Y.; Kung, C., Ion channels in microbes. Physiological Reviews 2008, 88 (4), 14491490.CrossRefGoogle ScholarPubMed
Kirchoff, C.; Cypianka, H., Propidium ion enters viable cells with high membrane potential during live-dead staining. Journal of Microbiological Methods 2017, 142, 7982.CrossRefGoogle Scholar
Reeves, E. P.; et al., Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 2002, 416 (6878), 291297.CrossRefGoogle ScholarPubMed
Sukharev, S., Purification of the small mechanosensitive channel of Escherichia coli (MscS): The subunit structure, conduction, and gating characteristics in liposomes. Biophysical Journal 2002, 83 (1), 290298.CrossRefGoogle ScholarPubMed
Sotomayor, M.; Vasquez, V.; Perozo, E.; Schulten, K., Ion conduction through MscS as determined by electrophysiology and simulation. Biophysical Journal 2007, 92 (3), 886902.CrossRefGoogle ScholarPubMed
Markin, V. S.; Martinac, B., Mechanosensitive ion channels as reporters of bilayer expansion: A theoretical model. Biophysical Journal 1991, 60 (5), 11201127.CrossRefGoogle ScholarPubMed
Cohen, A. E.; Venkatachalam, V., Bringing bioelectricity to light. Annual Review of Biophysics 2014, 43, 211232.CrossRefGoogle ScholarPubMed
Bruni, G. N.; Weekley, R. A.; Dodd, B. J. T.; Kralj, J. M., Voltage-gated calcium flux mediates Escherichia coli mechanosensation. PNAS 2017, 114 (35), 94459450.CrossRefGoogle ScholarPubMed
Bruni, G. N.; Kralj, J. M., Membrane voltage dysregulation driven by metabolic dysfunction underlies bactericidal activity of aminoglycosides. eLife 2020, 9, e58706.CrossRefGoogle ScholarPubMed
Jin, X.; et al., Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance. Proceedings of the National Academy of Sciences of the United States of America 2023, 120 (3), e2208348120.Google ScholarPubMed
Masi, E.; Ciszak, M.; Santopolo, L.; Frascella, A.; Giovannetti, L.; Marchi, E.; Viti, C.; Mancuso, S., Electrical spiking in bacterial biofilms. Journal of the Royal Society, Interface 2015, 12 (102), 20141036.CrossRefGoogle ScholarPubMed
Bellin, D. L.; Sakhtah, H.; Zhang, Y.; Price-Whelan, A.; Dietrich, L. E. P.; Shepard, K. L., Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nature Communications 2016, 7, 10535.CrossRefGoogle ScholarPubMed
Tseng, T. Y., Electroporation of cell membranes. Biophysical Journal 1991, 60 (2), 297306.CrossRefGoogle Scholar
Stratford, J. P.; Edwards, C. L. A.; Ghanshyam, J.; Malyshev, D.; Delise, M. A.; Hayashi, Y.; Asally, M., Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity. PNAS 2019, 116 (19), 95529557.CrossRefGoogle ScholarPubMed
Marszalek, P.; Liu, D. S.; Tsong, T. Y., Schwan equation and transmembrane potential. Biophysical Journal 1990, 58 (4), 10531058.CrossRefGoogle ScholarPubMed
Weaver, J. C.; Chizmadzhev, Y. A., Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics 1996, 41 (2), 135160.CrossRefGoogle Scholar
Keener, J.; Sneyd, J., Mathematical Physiology. Springer: 2009.CrossRefGoogle Scholar
Gerstner, W., Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. CUP: 2014.CrossRefGoogle Scholar
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms. Physical Review E 2019, 100 (5–1), 052401.CrossRefGoogle ScholarPubMed
Hennes, M.; Bender, N.; Cronenberg, T.; Welker, A.; Maier, B., Collective polarization dynamics in bacterial colonies signify the occurrence of distinct subpopulations. PLOS Biology 2023, 21 (1), e3001960.CrossRefGoogle ScholarPubMed
Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT: 2010.Google Scholar
Stern, S.; Rotem, A.; Burnishev, Y.; Weinreb, E.; Moses, E., External excitation of neurons using electric and magnetic fields in one- and two-dimensional cells. Journal of Visualized Experiments 2017, 123, e54357.Google Scholar
Humphries, J.; Xiong, L.; Liu, J.; Prindle, A.; Yuan, F.; Arjes, H. A.; Tsimring, L.; Suel, G. M., Species-independent attraction to biofilms through electrical signalling. Cell 2017, 168 (1–2), 200209.CrossRefGoogle Scholar
Palsson, E.; Lee, K. J.; Goldstein, R. E.; Franke, J.; Kessin, R. H.; Cox, E. C., Selection for spiral waves in the social amoebae Dictyostelium. PNAS 1997, 94 (25), 1371913723.CrossRefGoogle ScholarPubMed
Martinez, R.; Liu, J.; Suel, G. M.; Garcia-Ojalvo, J., Bistable emergence of oscillations in growing Bacillus subtilis biofilms. PNAS 2018, 115 (36), E8333–E8340.Google Scholar
Liu, J.; et al., Coupling between distant biofilms and emergence of nutrient time-sharing. Science 2017, 356 (6338), 628642.CrossRefGoogle ScholarPubMed
Strogatz, S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, 2nd ed. Westview Press: 2014.Google Scholar
Grimnes, S. J.; Martinsen, O. G., Bioimpedance and Bioelectricity. Academic Press: 2014.Google Scholar
Beyend, H.; Bubaute, J., Biofilms in Bioelectrochemical Systems: From Lab Practice to Data Interpretation. Wiley: 2015.Google Scholar
Wang, F.; et al., Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 2019, 177 (2), 361369.CrossRefGoogle ScholarPubMed
Beuth, L.; Pfeiffer, C. P.; Schroder, U., Copper-bottomed, electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity. Energy & Environmental Science 2020, 13 (9), 3102.CrossRefGoogle Scholar
Gorby, Y. A.; et al., Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 2006, 103 (30), 1135811363.CrossRefGoogle ScholarPubMed
Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R., Shewanella secretes flavins that mediate extracellular electron transfer. PNAS 2008, 105 (10), 39683973.CrossRefGoogle ScholarPubMed
Leung, K. M.; Wanger, G.; Guo, Q.; Gorby, Y.; Southam, G.; Lau, W. M.; Yang, J., Bacterial nanowires: Conductive as silicon, soft as polymer. Soft Matter 2011, 7 (14), 66176621.CrossRefGoogle Scholar
El-Naggar, M. Y.; Gorby, Y. A.; Xia, A.; Nealson, K. H., Molecular density of states in bacterial nanowires. Biophysical Journal Letters 2008, 95 (1), L10–L12.Google ScholarPubMed
Lovley, D. R., Electromicrobiology. Annual Review of Microbiology 2012, 66, 391409.CrossRefGoogle ScholarPubMed
Jiang, X.; et al., Probing single-to multi-cell level charge transport in Geobacter sulfurreducens DL-1. Nature Communications 2013, 4, 2751.CrossRefGoogle ScholarPubMed
Zhang, L.; Lu, J. R.; Waigh, T. A., Electronics of peptide- and protein-based materials. Advances in Colloid and Interface Science 2021, 287, 102319.CrossRefGoogle Scholar
Xiao, Y.; Zhang, E.; Zhang, J.; Dai, Y.; Yang, Z.; Christensen, H. E. M.; Ulstrup, J.; Zhao, F., Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Science Advances 2017, 3 (7), e1700623.CrossRefGoogle ScholarPubMed
Yates, M. D.; Strycharz-Glaven, S. M.; Golden, J. P.; Roy, J.; Tsoi, S.; Erickson, J. S.; El-Naggar, M. Y.; Barton, S. C.; Tender, L. M., Measuring conductivity of living Geobacter sulfurreducens biofilms. Nature Nanotechnology 2016, 11 (11), 910913.CrossRefGoogle ScholarPubMed
Yates, M. D.; Eddie, B. J.; Kotloski, N. J.; Lebedev, N.; Malanoski, A. P.; Lin, B.; Strycharz-Glaven, S. M.; Tender, L. M., Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community. Energy & Environmental Science 2016, 9 (11), 35443558.CrossRefGoogle Scholar
Pfeffer, C.; et al., Filamentous bacteria transport electrons over centimetre distance. Nature 2012, 491 (7423), 218221.CrossRefGoogle Scholar
Risgaard-Petersen, N.; et al., Cable bacteria in freshwater sediments. Applied and Environmental Microbiology 2015, 152, 122142.Google Scholar
Nielsen, L. P.; Risgaard-Petersen, N., Rethinking sediment biogeochemistry after the discovery of electric currents. Annual Review of Marine Science 2015, 7, 425442.CrossRefGoogle ScholarPubMed
Bjerg, J. T.; et al., Long-distance electron transport in individual living cable bacteria. PNAS 2018, 115 (22), 57865791.CrossRefGoogle ScholarPubMed
Bjerg, J. T.; Damgaard, L. R.; Holm, S. A.; Schramm, A.; Nielsen, L. P., Motility of electric cable bacteria. Applied and Environmental Microbiology 2016, 82 (13), 3816.CrossRefGoogle ScholarPubMed
Cornelissen, R.; et al., The cell envelope structure of cable bacteria. Frontiers in Microbiology 2018, 9, 3044.CrossRefGoogle ScholarPubMed
Boschker, H. T. S.; et al., Efficient long-range conduction in cable bacteria through nickel protein wire. Nature Communications 2021, 12 (1), 3996.CrossRefGoogle Scholar
Powell, L. C.; Abdulkarim, M.; Stokniene, J.; Yang, Q. E.; Walsh, T. R.; Hill, K. E.; Gumbleton, M.; Thomas, D. W., Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. npj Biofilms and Microbiomes 2021, 7 (1), 13.CrossRefGoogle ScholarPubMed
Wang, Q.; JonesIII, A. A. D.; Gralnick, J. A.; Lin, L.; Buie, C. R., Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarisability and electrochemical activity. Science Advances 2019, 5 (1), eaat5664.Google ScholarPubMed
Newman, D. K.; Kolter, R., A role of excreted quinones in extracellular electron transfer. Nature 2000, 405 (6782), 9497.CrossRefGoogle Scholar
Shrestha, P. M.; Rotaru, A. E., Plugging in or going wireless: Strategies for interspecies electron transfer. Frontiers in Microbiology 2014, 5 (237), 237.CrossRefGoogle ScholarPubMed
Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R., Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002, 295 (5554), 483485.CrossRefGoogle ScholarPubMed
Sultana, S. T.; Babauta, J. T.; Beyenal, H., Electrochemical biofilm control: A review. Biofouling 2015, 31 (9–10), 745758.CrossRefGoogle ScholarPubMed
Roy, S.; et al., Disposable patterned electroceutical dressing is safe for treatment of open clinical chronic wounds. Advances in Wound Care 2019, 8 (4), 149159.CrossRefGoogle ScholarPubMed
Kim, Y. W.; et al., Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. npj Biofilms and Microbiomes 2015, 1, 15016.CrossRefGoogle ScholarPubMed
Schmidt-Malan, S. M.; Karau, M. J.; Cede, J.; Greenwood-Quaintance, K. E.; Brinckman, C. L.; Mandrekar, J. N.; Patel, R., Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrobial Agents and Chemotherapy 2015, 59 (8), 46104615.CrossRefGoogle ScholarPubMed
Fung, D. C.; Berg, H. C., Powering the flagellar motor of E. coli with an external voltage source. Nature 1995, 375 (6534), 809812.CrossRefGoogle ScholarPubMed
Mancini, L.; Tian, T.; Guillaume, T.; Pu, Y.; Li, Y.; Lo, C. J.; Bai, F.; Pilizota, T., A general workflow for characterization of Nernstian dyes and their effects on bacterial physiology. Biophysical Journal 2020, 118 (1), 414.CrossRefGoogle ScholarPubMed
Blair, K. M.; Turner, L.; Winkelman, J. T.; Berg, H. C.; Kearns, D. B., A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 2008, 320 (5883), 16361638.CrossRefGoogle ScholarPubMed
Gall, I.; Herzberg, M.; Oren, Y., The effect of electric field on bacterial attachment to conductive surfaces. Soft Matter 2013, 9 (8), 24432452.CrossRefGoogle Scholar
Buzid, A.; et al., Molecular signature of Pseudomonas aeruginosa with simultaneous nanomolar detection of quorum sensing signally molecules at a boron-doped diamond electrode. Scientific Reports 2016, 6, 30001.CrossRefGoogle Scholar
Goluch, E. D., Microbial identification using electrochemical detection of metabolites. Trends in Biotechnology 2017, 35 (12), 11251128.CrossRefGoogle ScholarPubMed
Bao, M. M.; Igwe, I. E.; Chen, K.; Zhang, T. H., Modulated collective motions and condensation of bacteria. Chinese Physics Letters 2022, 39 (10), 108702.CrossRefGoogle Scholar
Chen, C.; Smye, S. W.; Robinson, M. P.; Evans, J. A., Membrane electroporation theories: A review. Medical and Biological Engineering and Computing 2006, 44 (1–2), 514.CrossRefGoogle ScholarPubMed
Akabuogu, E. U.; Zhang, L.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Electrical impedance spectroscopy with bacterial biofilms: Neuronal-like behaviour. ACS Nanoletters 2024, 24 (7), 22342241.CrossRefGoogle Scholar
Bou, A.; Bisquert, J., Impedance spectroscopy dynamics of biological neural elements: From memristors to neurons and synapses. The Journal of Physical Chemistry B 2021, 125, 99349949.CrossRefGoogle ScholarPubMed
Cole, K. S., Rectification and inductance in the squid giant axon. The Journal of General Physiology 1941, 25 (1), 2951.CrossRefGoogle ScholarPubMed
Cole, K. S., Membranes, Ions and Impulses. University of California Press: 1968.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×