Published online by Cambridge University Press: 05 November 2013
Need for a phenomenological understanding
The one-dimensional analysis and the correlations for frictional pressure drop and void fraction (presented in Chapter 1) have been widely used as a starting point for engineering designs. However, these correlations have the handicap that the structure of the phase boundaries is ignored. As a consequence, they often give results which are only a rough approximation and overlook phenomena which could be of first-order importance in understanding the behavior of a system.
It is now recognized that the central issue in developing a scientific approach to gas–liquid flows is the understanding of how the phases are distributed and of how the behavior of a multiphase system is related to this structure (Hanratty et al., 2003). Of particular interest is the finding that macroscopic behavior is dependent on small-scale interactions. An example of this dependence is that the presence of small amounts of high molecular weight polymers can change an annular flow into a stratified flow by damping interfacial waves (Al-Sarkhi & Hanratty, 2001a).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.