Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T20:17:32.410Z Has data issue: false hasContentIssue false

V - Exoplanets and exobiology

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adams, F. (2011). Magnetically controlled outflows from hot Jupiters. The Astrophysical Journal, 730, 27.CrossRefGoogle Scholar
Apai, D., Radigan, J., Buenzli, E.et al. (2013). HST spectral mapping of L/T transition brown dwarfs reveals cloud thickness variations. The Astrophysical Journal, 768, 121.CrossRefGoogle Scholar
Bailey, J., Ulanowski, Z., Lucas, P. W.et al. (2008). The effect of airborne dust on astronomical polarization measurements. Monthly Notices of the Royal Astronomical Society, 386, 10161022.CrossRefGoogle Scholar
Bailey, J., Lucas, P. W., and Hough, J. H. (2010). The linear polarization of nearby bright stars measured at the parts per million level. Monthly Notices of the Royal Astronomical Society, 405, 25702578.Google Scholar
Barman, T. S, Macintosh, B., Konopacky, Q. M., and Marois, C. (2011a). Clouds and chemistry in the atmosphere of extrasolar planet HR8799b. The Astrophysical Journal, 733, 65.CrossRefGoogle Scholar
Barman, T. S, Macintosh, B., Konopacky, Q. M., and Marois, C. (2011b). The young planet-mass object 2M1207b: A cool, cloudy, and methane-poor atmosphere. The Astrophysical Journal, 735, L39.CrossRefGoogle Scholar
Bazzon, A., Schmid, H. M., and Gisler, D. (2013). Measurement of the earthshine polarization in the B, V, R, and I bands as function of phase. Astronomy and Astrophysics, 556, A117.CrossRefGoogle Scholar
Berdyugina, S. V., Berdyugin, A. V., Fluri, D. M., and Piirola, V. (2008). First detection of polarized scattered light from an exoplanetary atmosphere. The Astrophysical Journal, 673, L83 (B08).CrossRefGoogle Scholar
Berdyugina, S. V., Berdyugin, A. V., Fluri, D. M., and Piirola, V. (2011a). Polarized reflected light from the exoplanet HD189733b: First multicolor observations and confirmation of detection. The Astrophysical Journal, 728, L6 (B11a).CrossRefGoogle Scholar
Berdyugina, S. V., Berdyugin, A. V., and Piirola, V. (2011b). Upsilon Andromedae b in polarized light: New constraints on the planet size, density and albedo. arXiv:1109.3116.Google Scholar
Beuzit, J.-L., Feldt, M., Dohlen, K.et al. (2008). SPHERE: A planet finder instrument for the VLT. In Ground-based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics, p. E41.Google Scholar
Bianda, M., Stenflo, J. O., and Solanki, S. K. (1999). Hanle effect observations with the Ca I 4227 Å line. Astronomy and Astrophysics, 350, 10601070.Google Scholar
Borucki, W. J., Koch, D. G., Lissauer, J. J.et al. (2003). The Kepler mission: A wide-field-of-view photometer designed to determine the frequency of Earth-size planets around solar-like stars. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 4854, 129.Google Scholar
Borucki, W. J., Koch, D., Basri, G.et al. (2010). Kepler planet-detection mission: Introduction and first results. Science, 327, 977980.CrossRefGoogle ScholarPubMed
Brown, J. C., McLean, I. S., and Emslie, A. G. (1978). Polarisation by Thomson scattering in optically thin stellar envelopes. II – Binary and multiple star envelopes and the determination of binary inclinations. Astronomy and Astrophysics, 68, 415427.Google Scholar
Budaj, J. (2013). Light-curve analysis of KIC 12557548b: An extrasolar planet with a comet-like tail. Astronomy and Astrophysics, 557, A72.CrossRefGoogle Scholar
Buenzli, E. and Schmid, H. M. (2009). A grid of polarization models for Rayleigh scattering planetary atmospheres. Astronomy and Astrophysics, 504, 259276.CrossRefGoogle Scholar
Buenzli, E., Apai, D., Morley, C. V.et al. (2012). Vertical atmospheric structure in a variable brown dwarf: Pressure-dependent phase shifts in simultaneous Hubble Space Telescope-Spitzer light curves. The Astrophysical Journal, 760, L31.CrossRefGoogle Scholar
Burgasser, A. J., Sheppard, S. S., and Luhman, K. L. (2013). Resolved near-infrared spectroscopy of WISE J104915.57-531906.1AB: A flux-reversal binary at the L dwarf/T dwarf transition. The Astrophysical Journal, 772, 129.CrossRefGoogle Scholar
Carciofi, A. C. and Magalhães, A. M. (2005). The polarization signature of extrasolar planet transiting cool dwarfs. The Astrophysical Journal, 635, 570.CrossRefGoogle Scholar
Chandrasekhar, S. (1946a). On the radiative equilibrium of a stellar atmosphere. X. The Astrophysical Journal, 103, 351.CrossRefGoogle Scholar
Chandrasekhar, S. (1946b). On the radiative equilibrium of a stellar atmosphere. XI. The Astrophysical Journal, 104, 110.CrossRefGoogle Scholar
Charbonneau, D., Brown, T. M., Noyes, R. W., and Gilliland, R. L. (2002). Detection of an extrasolar planet atmosphere. The Astrophysical Journal, 568, 377.CrossRefGoogle Scholar
Coffeen, D. L. and Gehrels, T. (1969). Wavelength dependence of polarization. XV. Observations of Venus. The Astrophysical Journal, 74, 433.Google Scholar
Currie, T., Debes, J., Rodigas, T. J.et al. (2012). Direct imaging confirmation and characterization of a dust-enshrouded candidate exoplanet orbiting Fomalhaut. The Astrophysical Journal, 760, L32.CrossRefGoogle Scholar
DavisJr., L. and Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. The Astrophysical Journal, 114, 206.CrossRefGoogle Scholar
Dawson, R. I. and Fabrycky, D. C. (2010). Radial velocity planets de-aliased: A new, short period for Super-Earth 55 Cnc e. The Astrophysical Journal, 722, 937.CrossRefGoogle Scholar
Demory, B.-O., de Wit, J., Lewis, N.et al. (2013). Inference of inhomogeneous clouds in an exoplanet atmosphere. The Astrophysical Journal, 776, L25.CrossRefGoogle Scholar
Dollfus, A. (1957). Étude des planètes par la polarisation de leur lumière (in French). Suppléments aux Annales d’Astrophysique, 4, 3114.Google Scholar
Dyudina, U. A., Sackett, P. D., Bayliss, D. D. R.et al. (2005). Phase light curves for extrasolar Jupiters and Saturns. The Astrophysical Journal, 618, 973.CrossRefGoogle Scholar
Endl, M., Robertson, P., Cochran, W. D.et al. (2012). Revisiting ρ1 Cancri e: A new mass determination of the transiting Super-Earth. The Astrophysical Journal, 759, 19.CrossRefGoogle Scholar
Evans, T. M., Pont, F., Sing, D. K.et al. (2013). The deep blue color of HD 189733b: Albedo measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at visible wavelengths. The Astrophysical Journal, 772, L16.CrossRefGoogle Scholar
Faurobert, M., Arnaud, J., Vigneau, J.et al. (2001). Investigation of weak solar magnetic fields. New observational results for the SrI 460.7 nm linear polarization and radiative transfer modeling. Astronomy and Astrophysics, 378, 627634.CrossRefGoogle Scholar
Fluri, D. M. and Berdyugina, S. V. (2010). Orbital parameters of extrasolar planets derived from polarimetry. Astronomy and Astrophysics, 512, A59.CrossRefGoogle Scholar
Fluri, D. M. and Stenflo, J. O. (1999). Continuum polarization in the solar spectrum. Astronomy and Astrophysics, 341, 902911.Google Scholar
Fortney, J. J., Lodders, K., Marley, M. S., and Freedman, R. S. (2008a). A unified theory for the atmospheres of the hot and very hot Jupiters: Two classes of irradiated atmospheres. The Astrophysical Journal, 678, 1419.CrossRefGoogle Scholar
Fortney, J. J., Marley, M. S., Saumon, D., and Lodders, K. (2008b). Synthetic spectra and colors of young giant planet atmospheres: Effects of initial conditions and atmospheric metallicity. The Astrophysical Journal, 683, 1104.CrossRefGoogle Scholar
Fosalba, P., Lazarian, A., Prunet, S., and Tauber, J. A. (2002). Statistical properties of galactic starlight polarization. The Astrophysical Journal, 564, 762.CrossRefGoogle Scholar
Fossati, L., Haswell, C. A., Froning, C. S.et al. (2010). Metals in the exosphere of the highly irradiated Planet WASP-12b. The Astrophysical Journal, 714, L222.CrossRefGoogle Scholar
Fressin, F., Torres, G., Charbonneau, D.et al. (2013). The false positive rate of Kepler and the occurrence of planets. The Astrophysical Journal, 766, 81.CrossRefGoogle Scholar
Galicher, R., Marois, C., Zuckerman, B., and Macintosh, B. (2013). Fomalhaut b: Independent analysis of the Hubble Space Telescope Public Archive Data. The Astrophysical Journal, 769, 42.CrossRefGoogle Scholar
Gibson, N. P., Aigrain, S., Barstow, J. K.et al. (2013). A Gemini ground-based transmission spectrum of WASP-29b: A featureless spectrum from 515 to 720 nm. Monthly Notices of the Royal Astronomical Society, 428, 36803692.CrossRefGoogle Scholar
Gillon, M., Triaud, A. H. M. J., Jehin, E.et al. (2013). Fast-evolving weather for the coolest of our two new substellar neighbours. Astronomy and Astrophysics, 555, L5.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Heng, K. and Demory, B.-O. (2013). Understanding trends associated with clouds in irradiated exoplanets. The Astrophysical Journal, 777, 100.CrossRefGoogle Scholar
Hilton, J. L. (1992). Explanatory Supplement to the Astronomical Almanac, series ed. Seidelmann, P. K.. Mill Valley CA: University Science Books, p. 383.Google Scholar
Hough, J. H., Lucas, P. W., Bailey, J. A.et al. (2006). PlanetPol: A very high sensitivity polarimeter. Publications of the Astronomical Society of the Pacific, 118, 13021318.CrossRefGoogle Scholar
Howard, A. W., Marcy, G. W., Bryson, S. T.et al. (2012). Planet occurrence within 0.25 au of solar-type stars from Kepler. The Astrophysical Journal Supplement, 201, 15.CrossRefGoogle Scholar
Kalas, P., Graham, J. R., Chiang, E.et al. (2008). Optical images of an exosolar planet 25 light-years from Earth. Science, 322, 13451348.CrossRefGoogle ScholarPubMed
Kalas, P., Graham, J. R., Fitzgerald, M. P., and Clampin, M. (2013). STIS coronagraphic imaging of Fomalhaut: Main Belt structure and the orbit of Fomalhaut b. The Astrophysical Journal, 775, 56.CrossRefGoogle Scholar
Kane, S. R. and Gelino, D. M. (2010). Photometric phase variations of long-period eccentric planets. The Astrophysical Journal, 724, 818.CrossRefGoogle Scholar
Karalidi, T., Stam, D. M., and Hovenier, J W. (2012). Looking for the rainbow on exoplanets covered by liquid and icy water clouds. Astronomy and Astrophysics, 548, A90.CrossRefGoogle Scholar
Kemp, J. C., Henson, G. D., Steiner, C. T., and Powell, E. R. (1987). The optical polarization of the sun measured at a sensitivity of parts in ten million. Nature, 326, 270273.CrossRefGoogle Scholar
Knutson, H. A., Charbonneau, D., and Allen, L. E. (2007). A map of the day-night contrast of the extrasolar planet HD 189733b. Nature, 447, 183186.CrossRefGoogle ScholarPubMed
Knutson, H. A., Lewis, N., Fortney, J. J.et al. (2012). 3.6 and 4.5 μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar Planet HD 189733b. The Astrophysical Journal, 754, 22 (K12).CrossRefGoogle Scholar
Kostogryz, N. M., Yakobchuk, T. M., Morozhenko, O. V.et al. (2011). Polarimetric study of transiting extrasolar planets. Monthly Notices of the Royal Astronomical Society, 415, 695700.CrossRefGoogle Scholar
Kreidberg, L., Bean, J. L., Désert, J. M.et al. (2014). Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature, 505, 6972.CrossRefGoogle Scholar
Kulow, J. R., France, K., Linsky, J.et al. (2014). Lyα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ436b. The Astrophysical Journal, 786, 132.CrossRefGoogle Scholar
Lagrange, A.-M., Gratadour, D., Chauvin, G.et al. (2009). A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L′-band imaging. Astronomy and Astrophysics, 493, L21L25.CrossRefGoogle Scholar
Lagrange, A.-M., Bonnefoy, M., Chauvin, G.et al. (2010). A giant planet imaged in the disk of the young star β Pictoris. Science, 329, 5759.CrossRefGoogle Scholar
Lecavelier Des Etangs, A., Pont, F., Vidal-Madjar, A., and Sing, D. (2008). Rayleigh scattering in the transit spectrum of HD 189733b. Astronomy and Astrophysics, 481, L83L86.CrossRefGoogle Scholar
Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A.et al. (2010). Evaporation of the planet HD 189733b observed in H I Lyman-α. Astronomy and Astrophysics, 514, A72.CrossRefGoogle Scholar
Line, M. R., Knutson, H., Deming, D., Wilkins, A., and Desert, J.-M. (2013). A near-infrared transmission spectrum for the warm Saturn HAT-P-12b. The Astrophysical Journal, 778, 183.CrossRefGoogle Scholar
Lucas, P. W., Hough, J. H., Bailey, J. A.et al. (2009). Planetpol polarimetry of the exoplanet systems 55Cnc and τ Boo. Monthly Notices of the Royal Astronomical Society, 393, 229244 (L09).CrossRefGoogle Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l'Observatoire de Paris, section de Meudon, 8, 1161 (available in English as NASA TT F-187, 1964).Google Scholar
Macintosh, B., Graham, J., Palmer, D.et al. (2006). The Gemini Planet Imager. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6272, E18.Google Scholar
Macintosh, B., Graham, J. R., Ingraham, P.et al. (2014). First light of the Gemini Planet Imager. Proceedings of the National Academy of Sciences of the United States of America, 111, 1266112666.CrossRefGoogle ScholarPubMed
Marley, M. S. and Sengupta, S. (2011). Probing the physical properties of directly imaged gas giant exoplanets through polarization. Monthly Notices of the Royal Astronomical Society, 417, 28742881.CrossRefGoogle Scholar
Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P., and Lissauer, J. J. (2007). On the luminosity of young Jupiters. The Astrophysical Journal, 655, 541.CrossRefGoogle Scholar
Marois, C., Macintosh, B., Barman, T.et al. (2008). Direct imaging of multiple planets orbiting the star HR 8799. Science, 322, 13481352.CrossRefGoogle ScholarPubMed
Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., and Barman, T. (2010). Images of a fourth planet orbiting HR 8799. Nature, 468, 10801083.CrossRefGoogle ScholarPubMed
Mathewson, D. S. and Ford, V. L. (1970). Polarization observations of 1800 stars. Memoirs of the Royal Astronomical Society, 74, 139182.Google Scholar
Mayor, M. and Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378, 355359.CrossRefGoogle Scholar
McArthur, B. E., Endl, M., Cochran, W. D.et al. (2004). Detection of a Neptune-mass planet in the ρ1 Cancri System using the Hobby-Eberly Telescope. The Astrophysical Journal, 614, L81.CrossRefGoogle Scholar
Ménard, F., Delfosse, X., and Monin, J.-L. (2002). Optical linear polarimetry of ultra cool dwarfs. Astronomy and Astrophysics, 396, L35L38.CrossRefGoogle Scholar
Miles-Páez, P. A., Pallé, E., and Zapatero Osorio, M. R. (2014). Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine. Astronomy and Astrophysics, 562, L5.CrossRefGoogle Scholar
Milli, J., Mouillet, D., Mawet, D.et al. (2013). Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL. Astronomy and Astrophysics, 556, A64.CrossRefGoogle Scholar
Owen, J. E. and Adams, F. C. (2014). Magnetically controlled mass loss from extrasolar planets in close orbits. Monthly Notices of the Royal Astronomical Society, 444, 37613779.CrossRefGoogle Scholar
Perryman, M. (2011). The Exoplanet Handbook. Cambridge University Press.CrossRefGoogle Scholar
Petigura, E. A., Marcy, G. W., and Howard, A. W. (2013). A plateau in the planet population below twice the size of Earth. The Astrophysical Journal, 770, 69.CrossRefGoogle Scholar
Piirola, V. (1973). A double image chopping polarimeter. Astronomy and Astrophysics, 27, 383388.Google Scholar
Piirola, V., Berdyugin, A., Mikkola, S., and Coyne, G. V. (2005). Polarimetric study of the massive interacting binary W Serpentis: Discovery of high-latitude scattering spot/jet. The Astrophysical Journal, 632, 576.CrossRefGoogle Scholar
Pont, F., Gilliland, R. L., Moutou, C.et al. (2007). Hubble Space Telescope time-series photometry of the planetary transit of HD 189733: no moon, no rings, starspots. Astronomy and Astrophysics, 476, 13471355.CrossRefGoogle Scholar
Queloz, D., Eggenberger, A., Mayor, M.et al. (2000). Detection of a spectroscopic transit by the planet orbiting the star HD209458. Astronomy and Astrophysics, 359, L13L17.Google Scholar
Radigan, J., Jayawardhana, R., Lafrenière, D.et al. (2012). Large-amplitude variations of an L/T Transition brown dwarf: Multi-wavelength observations of patchy, high-contrast cloud features. The Astrophysical Journal, 750, 105.CrossRefGoogle Scholar
Rappaport, S., Levine, A., Chiang, E.et al. (2012). Possible disintegrating short-period Super-Mercury orbiting KIC 12557548. The Astrophysical Journal, 752, 1.CrossRefGoogle Scholar
Rappaport, S., Barclay, T., DeVore, J.et al. (2014). KOI-2700b–A planet candidate with dusty effluents on a 22 hr orbit. The Astrophysical Journal, 784, 40.CrossRefGoogle Scholar
Rouan, D., Deeg, H. J., Demangeon, O.et al. (2011). The orbital phases and secondary transits of Kepler-10b. A physical interpretation based on the lava-ocean planet model. The Astrophysical Journal, 741, L30.CrossRefGoogle Scholar
Rowe, J. F., Bryson, S. T., Marcy, G. W.et al. (2014). Validation of Kepler’s multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. The Astrophysical Journal, 784, 45.CrossRefGoogle Scholar
Russell, H. N. (1916). On the albedo of the planets and their satellites. The Astrophysical Journal, 43, 173.CrossRefGoogle Scholar
Seager, S., Whitney, B. A., and Sasselov, D. D. (2000). Photometric light curves and polarization of close-in extrasolar giant planets. The Astrophysical Journal, 540, 504.CrossRefGoogle Scholar
Sengupta, S. and Marley, M. S. (2010). Observed polarization of brown dwarfs suggests low surface gravity. The Astrophysical Journal, 722, L142L146.CrossRefGoogle Scholar
Shkuratov, Y., Kreslavsky, M., Kaydash, V.et al. (2005). Hubble Space Telescope imaging polarimetry of Mars during the 2003 opposition. Icarus, 176, 111.CrossRefGoogle Scholar
Smith, P. H. and Tomasko, M. G. (1984). Photometry and polarimetry of Jupiter at large phase angles. II – Polarimetry of the south tropical zone, south equatorial belt, and the polar regions from the Pioneer 10 and 11 missions. Icarus, 58, 3573.CrossRefGoogle Scholar
Sromovsky, L. A. (2005). Accurate and approximate calculations of Raman scattering in the atmosphere of Neptune. Icarus, 173, 254283.CrossRefGoogle Scholar
Stam, D. M. (2008). Spectropolarimetric signatures of Earth-like extrasolar planets. Astronomy and Astrophysics, 482, 9891007.CrossRefGoogle Scholar
Stam, D. M., Hovenier, J. W., and Waters, L. B. F. M. (2004). Using polarimetry to detect and characterize Jupiter-like extrasolar planets. Astronomy and Astrophysics, 428, 663672.CrossRefGoogle Scholar
Sterzik, M. F., Bagnulo, S., and Palle, E. (2012). Biosignatures as revealed by spectropolarimetry of Earthshine. Nature, 483, 6466.CrossRefGoogle ScholarPubMed
Sudarsky, D., Burrows, A., Hubeny, I., and Li, A. (2005). Phase functions and light curves of wide-separation extrasolar giant planets. The Astrophysical Journal, 627, 520.CrossRefGoogle Scholar
Takahashi, J., Itoh, Y., Akitaya, H.et al. (2013). Phase variation of earthshine polarization spectra. Publications of the Astronomical Society of Japan, 65, 38.CrossRefGoogle Scholar
Tata, R., Martín, E. L., Sengupta, S.et al. (2009). Optical linear polarization in ultra cool dwarfs. A tool to probe dust in the ultra cool dwarf atmospheres. Astronomy and Astrophysics, 508, 14231427.CrossRefGoogle Scholar
Tomasko, M. G. and Doose, L. R. (1984). Polarimetry and photometry of Saturn from Pioneer 11 observations and constraints on the distribution and properties of cloud and aerosol particles. Icarus, 58, 134.CrossRefGoogle Scholar
Tomasko, M. G. and Smith, P. H. (1982). Photometry and polarimetry of Titan – Pioneer 11 observations and their implications for aerosol properties. Icarus, 51, 6595.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Dafoe, L. E. and See, C. (2009). Limits on the size of aerosols from measurements of linear polarization in Titan’s atmosphere. Icarus, 204, 271283.CrossRefGoogle Scholar
Torres, G., Winn, J. N., and Holman, M. J. (2008). Improved parameters for extrasolar transiting planets. The Astrophysical Journal, 677, 1324.CrossRefGoogle Scholar
Umov, N. (1905). Chromatische depolarisation durch Lichtzerstreuung. Physikalische Zeitschrift, 6, 674676.Google Scholar
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M.et al. (2003). An extended upper atmosphere around the extrasolar planet HD209458b. Nature, 422, 143146.CrossRefGoogle ScholarPubMed
West, R. A., Lane, A. I., Hart, H.et al. (1983). Voyager 2 photopolarimeter observations of Titan. Journal of Geophysical Research, 88, 86999708.CrossRefGoogle Scholar
Wiktorowicz, S. J. (2009). Nondetection of polarized, scattered light from the HD 189733b hot Jupiter. The Astrophysical Journal, 696, 1116 (W09).CrossRefGoogle Scholar
Wiktorowicz, S. J. and Laughlin, G. P. (2014). Toward the detection of exoplanet transits with polarimetry. The Astrophysical Journal, 795, 12.CrossRefGoogle Scholar
Williams, D. M. and Gaidos, E. (2008). Detecting the glint of starlight on the oceans of distant planets. Icarus, 195, 927937.CrossRefGoogle Scholar
Wilson, P. A., Colón, K. D., Sing, D. K.et al. (2014). A search for methane in the atmosphere of GJ 1214b via GTC narrow-band transmission spectrophotometry. Monthly Notices of the Royal Astronomical Society, 438, 23952405.CrossRefGoogle Scholar
Wolstencroft, R. D. and Breon, F.-M. (2005). Polarization of planet Earth and model Earth-like planets. In Adamson, A., Aspin, C., Davis, C., and Fujiyoshi, , eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco CA: Astronomical Society of the Pacific Press, p. 211.Google Scholar
Wolszczan, A. and Frail, D. A. (1992). A planetary system around the millisecond pulsar PSR1257 + 12. Nature, 355, 145147.CrossRefGoogle Scholar
Wu, Y. and Murray, N. (2003). Planet migration and binary companions: The case of HD 80606b. The Astrophysical Journal, 589, 605.CrossRefGoogle Scholar
Zapatero Osorio, M. R., Caballero, J. A., and Béjar, V. J. S. (2005). Optical linear polarization of late M and L type dwarfs. The Astrophysical Journal, 621, 445460.CrossRefGoogle Scholar
Zugger, M. E., Kasting, J. F., Williams, D. M., Kane, T. J., and Philbrick, C. R. (2010). Light scattering from exoplanet oceans and atmospheres. The Astrophysical Journal, 723, 1168.CrossRefGoogle Scholar

References

Bailey, J. (2007). Rainbows, polarization and the search for habitable planets. Astrobiology, 7(2), 320332.CrossRefGoogle ScholarPubMed
Bailey, J., Chrysostomou, A., Hough, J. H.et al. (1998). Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science, 281(5377), 672674.CrossRefGoogle ScholarPubMed
Bandermann, L. W., Kemp, J. C., and Wolstencroft, R. D. (1972). Circular polarization of light scattered from rough surfaces. Monthly Notices of the Royal Astronomical Society, 158, 291304.CrossRefGoogle Scholar
Barron, L. D. (2008). Chirality and life. Space Science Reviews, 135, 187201.CrossRefGoogle Scholar
Biot, J. B. (1815). Bulletin of the Société Philomathique de Paris. 190.Google Scholar
Blackmond, D. G. (2004). Asymmetric autocatalysis and its implications for the origin of homochirality. Proceedings of the National Academy of Sciences, 101(16), 57325736.CrossRefGoogle ScholarPubMed
Blankenship, R. E. (2002). Molecular Mechanisms of Photosynthesis. Oxford: Blackwell Science Ltd.CrossRefGoogle Scholar
Bohren, C. F. (1974). Light scattering by optically active sphere. Chemical Physics Letters, 29, 458462.CrossRefGoogle Scholar
Bohren, C. F. (1975). Scattering of electromagnetic waves by an optically active spherical shell. The Journal of Chemical Physics, 62, 15661571.CrossRefGoogle Scholar
Bohren, C. F. (1978). Scattering of electromagnetic waves by an optically active cylinder. Journal of Colloid and Interface Science, 66, 105109.CrossRefGoogle Scholar
Buschermöhle, M., Whittet, D. C. B., Chrysostomou, A.et al. (2005). An extended search for circularly polarized infrared radiation from the OMC-1 region of Orion. Astrophysical Journal, 624, 821826.CrossRefGoogle Scholar
Cahn, R. S., Ingold, C. K., and Prelog, V. (1956). The specification of asymmetric configuration in organic chemistry. Experientia, 12, 8194.CrossRefGoogle Scholar
Chrysostomou, A., Menard, F., Gledhill, T. M.et al. (1997). Polarimetry of young stellar objects – II. Circular polarization of GSS30. Monthly Notices of the Royal Astronomical Society, 285, 750758.CrossRefGoogle Scholar
Chrysostomou, A., Gledhill, T. M., Menard, F.et al. (2000). Polarimetry of young stellar objects – III. Circular polarimetry of OMC-1. Monthly Notices of the Royal Astronomical Society, 312, 103115.CrossRefGoogle Scholar
Chyba, C. F., Thomas, P. J., Brookshaw, L., and Sagan, C. (1990). Cometary delivery of organic molecules to the early Earth. Science, 249(4967), 366373.CrossRefGoogle Scholar
Clayton, G. C., Whitney, B. A., Wolff, M. J., Smith, P., and Gordon, K. D. (2005). Circular polarization mapping of protostellar environments: Searching for aligned grains. In Adamson, A., Aspin, C., Davis, C. J., and Fujiyoshi, T., eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco CA: ASP, pp. 122127.Google Scholar
Cline, D. B. (2005). On the physical origin of the homochirality of life. European Review, 13, 4959.CrossRefGoogle Scholar
Cooray, M. F. R. and Ciric, I. R. (1993). Wave scattering by a chiral spheroid. Journal of the Optical Society of America A, 10, 11971203.CrossRefGoogle Scholar
Cotton, A. (1895a). Absorption inégale des rayons circulaires droit et gauche dans certain corps actifs. Comptes Rendus Chimie, 120, 989991.Google Scholar
Cotton, A. (1985b). Dispersion rotatoire anomale des corps absorbants. Comptes Rendus Chimie, 120, 10441046.Google Scholar
Cronin, J. R. and Chang, S. (1993). Organic matter in meteorites: Molecular and isotopic analysis of the Murchison meteorite. In The Chemistry of Life’s Origins. Kluwer Academic Publishers, pp. 209258.CrossRefGoogle Scholar
Cronin, J. R. and Pizzarello, S. (1997). Enantiomeric excesses in meteoritic amino acids. Science, 275, 951955.CrossRefGoogle ScholarPubMed
Des Marais, D. J., Nuth, J. A., III, Allamandola, L. J.et al. (2008). The NASA astrobiology roadmap. Astrobiology, 8, 715730, doi: 10.1089/ast.2008.0819.CrossRefGoogle ScholarPubMed
Dollfus, A. (1957). Étude des planètes par la polarisation de leur lumière. Supplements aux Annales d’Astrophysique, 4, 3114.Google Scholar
Dundas, C. M., Diniega, S., Hansen, C. J., Byrne, S., and McEwen, A. S. (2012). Seasonal activity and morphological changes in Martian gullies. Icarus, 220, 124143.CrossRefGoogle Scholar
Eliel, E. L. and Wilen, S. H. (1994). Stereochemistry of Organic Compounds. Chichester: John Wiley and Sons, Inc.Google Scholar
Flores, J. J., Bonner, W. A., and Massey, G. A. (1977). Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. The Journal of the American Chemical Society, 99(11), 36223624.CrossRefGoogle ScholarPubMed
Flynn, G. J., Keller, L. P., Feser, M., Wirick, S., and Jacobsen, C. (2003). The origin of organic matter in the solar system: Evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta, 67(24), 47914806.CrossRefGoogle Scholar
Fukue, T., Tamura, M., Kandori, R.et al. (2010). Extended high circular polarization in the Orion massive star forming region: Implications for the origin of homochirality in the solar system. Origins of Life and Evolution of Biospheres, 40(3), 335346.CrossRefGoogle ScholarPubMed
Glavin, D. P., Elsila, J. E., Burton, A. S.et al. (2012). Unusual nonterrestrial L-proteinogenic amino acid excess in the Tagish lake meteorite. Meteoritics and Planetary Science, 47(8), 13471364.CrossRefGoogle Scholar
Glavin, D. P., Burton, A. S., Elsila, J. E.et al. (2013). The abundance and enantiomeric composition of amino acids in the Sutter’s Mill carbonaceous chondrite. In Proceedings of the 44th Lunar and Planetary Science Conference, March 18–22, 2013 in The Woodlands, Texas. Houston TX: LPI. LPI Contribution No. 1719, pp. 11891190.Google Scholar
Gledhill, T. M. and McCall, A. (2000). Circular polarization by scattering from spheroidal dust grains. Monthly Notices of the Royal Astronomical Society, 314, 123137.CrossRefGoogle Scholar
Graham, J. R., Kalas, P., and Matthews, B. C. (2007). The Signature of primordial grain growth in the polarized light of the AU Microscopii debris disk. The Astrophysical Journal, 654, 595605.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hegstrom, R. A., Rein, D. W., and Sanders, P. G. H. (1980). Calculation of the parity nonconserving energy difference between mirror-image molecules. The Journal of Chemical Physics, 73, 23292341.CrossRefGoogle Scholar
Hester, J. J., Desch, S. J., Healy, K. R., and Leshin, L. A. (2004). The cradle of the solar system. Science, 304, 11161117.CrossRefGoogle ScholarPubMed
Horikoshi, K. and Bull, A. T. (2011). Prologue: Definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In Extremophiles Handbook. Japan: Springer, pp. 315.CrossRefGoogle Scholar
Hough, J. H., Lucas, P. W., Bailey, J. A.et al. (2006). PlanetPol: A very high sensitivity polarimeter. Publications of the Astronomical Society of the Pacific, 118, 13021318.CrossRefGoogle Scholar
Houssier, C. and Sauer, K. (1970). Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments. Journal of the American Chemical Society, 92, 779791.CrossRefGoogle Scholar
Johnson, W. C. (1996). Determination of the conformation of nucleic acids by electronic CD. In Fasman, G. D., ed., Circular Dichroism and the Conformational Analysis of Biomolecules. New York: Plenum Press.Google Scholar
Kasting, J. F., Whitmire, D. P., and Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101, 108128.CrossRefGoogle ScholarPubMed
Kelly, S. M. and Price, N. C. (2000). The use of circular dichroism in the investigation of protein structure and function. Current Protein & Peptide Science, 1, 349384.CrossRefGoogle ScholarPubMed
Kelvin, Lord (Thomson, W.) (1904). Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. London: C. J. Clay and Sons.Google Scholar
Kemp, J. C. (1974). Circular polarization of plants. In Gehrels, T., ed., Plates, Stars and Nebulae. Tucson: The University of Arizona Press, pp. 607616.Google Scholar
Kemp, J. C. and Wolstencroft, R. D. (1971). Elliptical polarization by surface layer scattering. Nature, 231, 170171.CrossRefGoogle ScholarPubMed
Kemp, J. C., Wolstencroft, R. D., and Swedlund, J. B. (1971). Circular polarization: Jupiter and other planets. Nature, 232, 165168.CrossRefGoogle ScholarPubMed
Kemp, J. C., Henson, G. D., Steiner, C. T., and Powell, E. R. (1987). The optical polarization of the sun measured at a sensitivity of parts in ten million. Nature, 326, 270273.CrossRefGoogle Scholar
Kiang, N. Y. (2008). The color of plants on other worlds. Scientific American, April, 4855.CrossRefGoogle Scholar
Kiang, N. Y., Siefert, J., and Blankenship, R. E. (2007a). Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology, 7(1), 222251.CrossRefGoogle ScholarPubMed
Kiang, N. Y., Segura, A., Tinetti, G.et al. (2007b). Spectral signatures of photosynthesis II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology, 7, 252274.CrossRefGoogle ScholarPubMed
Kwon, J., Tamura, M., Lucas, P. W.et al. (2013). Near-infrared circular polarization images of NGC6334V. The Astrophysical Journal Letters, 765, 16.Google Scholar
Landis, G. A. (2001). Martian water: Are there extant halobacteria on Mars?Astrobiology, 1, 161164.CrossRefGoogle ScholarPubMed
Lucas, P. W., Hough, J. H., Bailey, J.et al. (2005). UV circular polarisation in star formation regions: The origin of homochirality?Origins of Life and Evolution of Biospheres, 35(1), 2960.CrossRefGoogle ScholarPubMed
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192.CrossRefGoogle Scholar
Mackowski, D. W., Kolokolova, L., and Sparks, W. (2011). T-matrix approach to calculating circular polarization of aggregates made of optically active materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17261732.CrossRefGoogle Scholar
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Dobrea, E. Z. N. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 15731577.CrossRefGoogle ScholarPubMed
Martin, W. E., Hesse, E., Hough, J. H.et al. (2010). Polarized optical scattering signatures from biological material. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 24442459.CrossRefGoogle Scholar
McCullough, P. (2006). Models of polarized light from oceans and atmospheres of Earth-like extrasolar planets. arXiv:astro-ph/0610518.Google Scholar
Meierhenrich, U. J., Thiemann, W. H.-P., Barbier, B.et al. (2002). Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals. Origins of Life and Evolution of Biospheres, 32, 181190.CrossRefGoogle ScholarPubMed
Meierhenrich, U. J., Filippi, J.-J., Meinert, C.et al. (2010). Circular dichroism of amino acids in the vacuum-ultraviolet region. Angewandte Chemie International Edition, 49, 77997802.CrossRefGoogle ScholarPubMed
Milli, J., Mouillet, D., Mawet, D.et al. (2013). Prospects for detecting the polarimetric signature of the Earth-mass planet alpha Centauri B b with SPHERE/ZIMPOL. Astronomy and Astrophysics, 556, 6468, astro-ph/1306.1006.CrossRefGoogle Scholar
Mumma, M. J., Villanueva, G. L., Novak, R. E.et al. (2009). Strong release of methane on Mars in Northern Summer 2003. Science, 323, 10411045.CrossRefGoogle ScholarPubMed
Nagdimunov, L., Kolokolova, L., and Mackowski, D. (2013a). Characterization and remote sensing of biological particles using circular polarization. Journal of Quantitative Spectroscopy and Radiative Transfer, 131, 5965, doi 10.1016/j.jqsrt.2013.04.018.CrossRefGoogle Scholar
Nagdimunov, L., Kolokolova, L., and Sparks, W. (2013b). Polarimetric technique to study (pre)biological organics in cosmic dust and planetary aerosols. Earth, Planets and Space, 65, 11671173.CrossRefGoogle Scholar
Ohishi, M. (1997). Observations of “hot cores”. In van Dishoek, E. F., ed., Molecules in Astrophysics: Probes and Processes. IAU Symposium, Vol. 178. Dordrecht, The Netherlands: Kluwer, pp. 6174.Google Scholar
Pasteur, M. L. (1850). Recherches sur les Propriétés Spécifiques des deux Acides qui composent l’Acide Racémique. Annales de Chimie et de physique, 28, 5699.Google Scholar
Pizzarello, S. and Cronin, J. R. (2000). Non-racemic amino acids in the Murray and Murchison meteorites. Geochimica et Cosmochimica Acta, 64, 329338.CrossRefGoogle ScholarPubMed
Pizzarello, S. and Weber, A. L. (2004). Prebiotic amino acids as asymmetric catalysts. Science, 303, 1151.CrossRefGoogle ScholarPubMed
Pospergelis, M. M. (1969). Spectroscopic measurements of the four Stokes parameters for light scattered by natural objects. Soviet Astronomy, 12, 973977.Google Scholar
Raven, J. A. and Wolstencroft, R. D. (2004). Constraints on photosynthesis on Earth and Earth-like planets. In Norris, R. P. and Stootman, F. H., eds., Bioastronomy 2002: Life Among the Stars. Proceedings of the IAU Symposium. San Francisco: Astronomical Society of the Pacific, pp. 305308.Google Scholar
Riehl, J. P. and Richardson, F. S. (1986). Circularly polarized luminescence spectroscopy. Chemical Reviews, 86, 116.CrossRefGoogle Scholar
Rosenbush, V., Kolokolova, L., Lazarian, A., Shakhovskoj, N., and Kiselev, N. (2007). Circular polarization in comets: Observations of Comet C/1999 S4 (LINEAR) and tentative interpretation. Icarus, 186, 317330.CrossRefGoogle Scholar
Satoh, S., Ikeuchi, M., Mimuro, M., and Tanaka, A. (2001). Chlorophyll b expressed in Cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. The Journal of Biological Chemistry, 276, 42934297.CrossRefGoogle ScholarPubMed
Scheer, H. (1991). Chemistry of chlorophylls. In Scheer, H., ed., Chlorophylls. Boca Raton FL: CRC Press, pp. 330.Google Scholar
Schmid, H. M., Beuzit, J.-L., Feldt, M.et al. (2006). Search and investigation of extra-solar planets with polarimetry. In Aime, C. and Vakili, F., eds., Direct Imaging of Exoplanets: Science and Techniques. Proceedings of the IAU Colloquium, Vol. 200. Cambridge University Press, pp. 165170.Google Scholar
Seager, S., Turner, E. L., Schafer, J., and Ford, E. B. (2005). Vegetation’s red edge: A possible spectroscopic biosignature of extraterrestrial plants. Astrobiology, 5, 372390.CrossRefGoogle Scholar
Sephton, M. (2002). Organic compounds in carbonaceous meteorite. Natural Product Reports, 19, 292311.CrossRefGoogle Scholar
Soai, K. and Kawasaki, T. (2008). Asymmetric autocatalysis with amplification of chirality. Topics in Current Chemistry, 284, 133.Google Scholar
Sparks, W. B., Hough, J. H., and Bergeron, L. E. (2005). A search for chiral signatures on Mars. Astrobiology, 5, 737748.CrossRefGoogle ScholarPubMed
Sparks, W. B., Hough, J., Germer, T. A.et al. (2009a). Detection of circular polarization in light scattered from photosynthetic microbes. Proceedings of the National Academy of Sciences, 106, 78167821.CrossRefGoogle ScholarPubMed
Sparks, W. B., Hough, J. H., Kolokolova, L.et al. (2009b). Circular polarization in scattered light as a possible biomarker. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17711779.CrossRefGoogle Scholar
Sparks, W. B., Hough, J. H., Germer, T. A., Robb, F., and Kolokolova, L. (2012). Remote sensing of chiral signatures on Mars. Planetary and Space Science, 72, 111115.CrossRefGoogle Scholar
Stam, D. M. (2008). Spectropolarimetric signatures of Earth-like extrasolar planets. Astronomy and Astrophysics, 482, 9891007.CrossRefGoogle Scholar
Sterzik, M., Bagnulo, S., Azua, A.et al. (2010). Astronomy meets biology: EFOSC2 and the chirality of life. The Messenger, 142, 2527.Google Scholar
Sterzik, M. F., Bagnulo, S., and Palle, E. (2012). Biosignatures as revealed by spectropolarimetry of Earthshine. Nature, 483, 6466.CrossRefGoogle ScholarPubMed
Tachibana, S., Huss, G. R., Kita, N. T., Shimoda, G., and Morishita, Y. (2006). 60Fe in Chondrites: Debris from a nearby supernova in the early solar system?The Astrophysical Journal, 639, L87L90.CrossRefGoogle Scholar
Takahashi, J., Itoh, Y., Akitaya, H.et al. (2013). Phase variation of Earthshine polarization spectra. Publications of the Astronomical Society of Japan, 65, 9.CrossRefGoogle Scholar
Takats, Z., Nanita, S. C., and Cooks, R. G. (2003). Serine octamer reactions: Indicators of prebiotic relevance. Angewandte Chemie International Edition England, 42, 35213523.CrossRefGoogle ScholarPubMed
Vanderbilt, V. C., Grant, L., and Daughtry, C. S. T. (1985). Polarization of light scattered by vegetation. Proceedings of IEEE, 73, 10121024.CrossRefGoogle Scholar
Van Heijenoort, J. (2001). Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology, 11(3), 25R36R.CrossRefGoogle ScholarPubMed
Villanueva, G. L., Mumma, M. J., Novak, R. E.et al. (2013). A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus, 223, 1117.CrossRefGoogle Scholar
Wald, G. (1957). The origin of optical activity. Annals of the New York Academy of Sciences, 69, 352368.CrossRefGoogle ScholarPubMed
Whitton, B. A. and Potts, M. (2000). Introduction to the cyanobacteria. In Whitton, B. A. and Potts, M., eds., The Ecology of Cyanobacteria: Their Diversity in Time and Space. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 111.Google Scholar
Wolstencroft, R. D. and Raven, J. A. (2002). Photosynthesis: Likelihood of occurrence and possibility of detection on Earth-like planets. Icarus, 157, 535548.CrossRefGoogle Scholar
Wolstencroft, R. D., Tranter, G. E., and Le Pevelen, D. D. (2004). Diffuse reflectance circular dichroism for the detection of molecular chirality: An application in remote sensing of flora. In Norris, R. P. and Stootman, F. H., eds., Bioastronomy 2002: Life Among the Stars. Proceedings of the IAU Symposium. San Francisco: Astronomical Society of the Pacific, pp. 149153.Google Scholar
Wolstencroft, R. D., Breon, F., and Tranter, G. (2007). Polarization of light reflected from forest canopies on Earth with applications to Earth-like planets with realistic cloud cover. AAS Meeting 210, #09.06, Bulletin of the American Astronomical Society, 39, 106.Google Scholar
Zahnle, K., Freedman, R. S., and Catling, D. C. (2011). Is there methane on Mars?Icarus, 212, 493503.CrossRefGoogle Scholar
Zugger, M. E., Kasting, J. F., Williams, D. M., Kane, T. J., and Philbrick, C. R. (2010). Light scattering from exoplanet oceans and atmospheres. The Astrophysical Journal, 723, 11681179.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×