Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-08T06:36:17.762Z Has data issue: false hasContentIssue false

6 - Grain alignment: Role of radiative torques and paramagnetic relaxation

from II - Theory, instrumentation, and laboratory studies

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M. M., Craven, P. D., Spann, J. F.et al. (2004). Laboratory experiments on rotation and alignment of the analogs of interstellar dust grains by radiation. The Astrophysical Journal, 614, 781795.CrossRefGoogle Scholar
Alves, F.O., Frau, P., Girat, J. M.et al. (2014). On the radiation driven alignment of dust grains: Detection of the polarization hole in a starless core. Astronomy and Astrophysics, 569, L1.CrossRefGoogle Scholar
Andersson, B-G (2012). Interstellar grain alignment – observational status. arXiv:1208.4393.Google Scholar
Andersson, B-G and Potter, S. B. (2005). A high sampling-density polarization study of the Southern Coalsack. Monthly Notices of the Royal Astronomical Society, 356, 1088.CrossRefGoogle Scholar
Andersson, B-G and Potter, S. B. (2007). Observational constraints on interstellar grain alignment. The Astrophysical Journal, 665, 369.CrossRefGoogle Scholar
Andersson, B-G and Potter, S. B. (2010). Observational constraints on interstellar grain alignment near HD 97300. The Astrophysical Journal, 720, 1045.CrossRefGoogle Scholar
Andersson, B-GPintado, O., Potter, S. B., Straizys, V., and Charcos-Llorens, M. (2011). Angle-dependent radiative grain alignment. Confirmation of a magnetic field – radiation anisotropy angle dependence on the efficiency of interstellar grain alignment. Astronomy and Astrophysics, 534, A19.CrossRefGoogle Scholar
Andersson, B-GPiirola, V., De Buizer, J.et al. (2013). Evidence for H2 formation driven dust grain alignment in IC 63. The Astrophysical Journal, 775, 84.CrossRefGoogle Scholar
Arce, H. G., Goodman, A., Bastien, P.et al. (1998). The polarizing power of the interstellar medium in Taurus. The Astrophysical Journal, 499, L93L97.CrossRefGoogle Scholar
Bastien, P., Jenness, T., and Molnar, J. (2005). A polarimeter for SCUBA-2. In Astronomical Polarimetry, Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco CA: Astronomical Society of the Pacific, p. 69.Google Scholar
Behr, A. (1959). Kurze Mitteilung. Beobachtungen zur Wellenlängenabhängigkeit der interstellaren Polarisation. Zeitschrift fuer Astrophysik, 47, 54.Google Scholar
Belley, F., Ferré, E. C., Martiní-Hernández, F.et al. (2009). The magnetic properties of natural and synthetic (Fex, Mg1x)2 SiO4 olivines. Earth and Planetary Science Letters, 284, 516526.CrossRefGoogle Scholar
Bethell, T. J., Chepurnov, A., Lazarian, A., and Kim, J. (2007). Polarization of dust emission in clumpy molecular clouds and cores. The Astrophysical Journal, 663, 1055.CrossRefGoogle Scholar
Bierman, E. M., Matsumura, T., Dowell, C. D.et al. (2011). A millimeter-wave galactic plane survey with the BICEP polarimeter. The Astrophysical Journal, 741, 81.CrossRefGoogle Scholar
Bradley, J. P. (1994). Chemically anomalous, preaccretionally irradiated grains in inter-planetary dust from comets. Science, 265, 925.CrossRefGoogle Scholar
Cardelli, J. A., Clayton, G. C., and Mathis, J. S. (1989). The relationship between infrared, optical, and ultraviolet extinction. The Astrophysical Journal, 345, 245.CrossRefGoogle Scholar
Cashman, L. R. and Clemens, D. P. (2014). The magnetic field of cloud 3 in L204. The Astrophysical Journal, 793(2), id. 126, 10 pp.CrossRefGoogle Scholar
Chandrasekhar, S. and Fermi, E. (1953). Magnetic fields in spiral arms. The Astrophysical Journal, 118, 113.CrossRefGoogle Scholar
Chiar, J. E., Adamson, A. J., Whittet, D. C. Bet al. (2006). Spectropolarimetry of the 3.4 m feature in the diffuse ISM toward the galactic center quintuplet cluster. The Astrophysical Journal, 651, 268.CrossRefGoogle Scholar
Cho, J. and Lazarian, A. (2005). Grain alignment by radiation in dark clouds and cores. The Astrophysical Journal, 631, 361.CrossRefGoogle Scholar
Cho, J. and Lazarian, A. (2007). Grain alignment and polarized emission from magnetized T Tauri disks. The Astrophysical Journal, 669, 10851097.CrossRefGoogle Scholar
Chrysostomou, A., Hough, J. H., Whittet, D. C. B.et al. (1996). Interstellar polarization from CO and XCN mantled grains: A severe test for grain alignment mechanisms. The Astrophysical Journal Letters, 465, L61.CrossRefGoogle Scholar
Clayton, G. C., Anderson, C. M., Magalhaes, A. M.et al. (1992). The first spectropolarimetric study of the wavelength dependence of interstellar polarization in the ultraviolet. The Astrophysical Journal, 385, L53.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Allen, R. G., and Lupie, O. L. (1995). Ultraviolet interstellar linear polarization. 2: The wavelength dependence. The Astrophysical Journal, 445, 947.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Sofia, U. J., Gordon, K. D., and Misselt, K. A. (2003). Dust grain size distributions from MRN to MEM. The Astrophysical Journal, 588, 871.CrossRefGoogle Scholar
Codina-Landaberry, S. and Magalhaes, A. M. (1976). On the polarizing interstellar dust. Astronomy and Astrophysics, 49, 407.Google Scholar
Crutcher, R. M. (2012). Magnetic fields in molecular clouds. Annual Review of Astronomy and Astrophysics, 50, 2963.CrossRefGoogle Scholar
Davis, L. and Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. The Astrophysical Journal, 114, 206.CrossRefGoogle Scholar
Dickinson, C., Davies, R. D., Allison, J. R.et al. (2009). Anomalous microwave emission from the H II Region RCW175. The Astrophysical Journal, 690, 1585.CrossRefGoogle Scholar
Dolginov, A. Z. and Mytrophanov, I. G. (1976). Orientation of cosmic dust grains. Astrophysics and Space Science, 43, 291.CrossRefGoogle Scholar
Draine, B. (1989). On the interpretation of the lambda 2175 Å feature. In Interstellar Dust: Proceedings of the 135th Symposium of the International Astronomical Union, p. 313.CrossRefGoogle Scholar
Draine, B. T. (1996). Optical and magnetic properties of dust grains. In W. G. Roberge and D. C. B. Whittet, eds., Polarimetry of the Interstellar Medium. ASP Conference Series, Vol. 97. San Francisco: ASP, p. 16.Google Scholar
Draine, B. and Flatau, P. (1994). Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 11, 1491.CrossRefGoogle Scholar
Draine, B. T. and Fraisse, A. A. (2009). Polarized far-infrared and submillimeter emission from interstellar dust. The Astrophysical Journal, 696, 1.CrossRefGoogle Scholar
Draine, B. T. and Lazarian, A. (1998a). Diffuse galactic emission from spinning dust grains. The Astrophysical Journal, 494, L19.CrossRefGoogle Scholar
Draine, B. T. and Lazarian, A. (1998b). Electric dipole radiation from spinning dust grains. The Astrophysical Journal, 508, 157.CrossRefGoogle Scholar
Draine, B. T. and Li, A. (2007). Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. The Astrophysical Journal, 657, 810.CrossRefGoogle Scholar
Draine, B. T. and Weingartner, J. C. (1996). Radiative torques on interstellar grains. I. Superthermal spin-up. The Astrophysical Journal, 470, 551565 (DW96).CrossRefGoogle Scholar
Draine, B. and Weingartner, J. (1997). Radiative torques on interstellar grains. II. Grain alignment. The Astrophysical Journal, 480, 633 (DW97).CrossRefGoogle Scholar
Gehrels, T. (1960). The wavelength dependence of polarization. II. Interstellar polarization. The Astronomical Journal, 65, 470.CrossRefGoogle Scholar
Gerakines, P. A., Whittet, D. C. B., and Lazarian, A. (1995). Grain alignment in the Taurus dark cloud. The Astrophysical Journal Letters, 455, L171.Google Scholar
Gold, T. (1952a). Polarization of starlight. Nature, 169, 322.CrossRefGoogle Scholar
Gold, T. (1952b). The alignment of galactic dust. Monthly Notices of the Royal Astronomical Society, 112, 215.CrossRefGoogle Scholar
Goodman, A. A. and Whittet, D. C. B. (1995). A point in favor of the superparamagnetic grain hypothesis. The Astrophysical Journal Letters, 455, L181.Google Scholar
Hall, J. (1949). Observations of the polarized light from stars. Science, 109, 166.CrossRefGoogle Scholar
Heiles, C. (2000). 9286 Stars: An agglomeration of stellar polarization catalogs. The Astronomical Journal, 119, 923927.CrossRefGoogle Scholar
Hiltner, W. A. (1949). Polarization of radiation from distant stars by the interstellar medium. The Astrophysical Journal, 109, 471480.CrossRefGoogle Scholar
Hildebrand, R. H. (1988). Magnetic fields and stardust. Quarterly Journal of the Royal Astronomical Society, 29, 327.Google Scholar
Hildebrand, R. H., Dotson, J. L., Dowell, C. D.Schleuning, D. A., and Vaillancourt, J. E. (1999). The far-infrared polarization spectrum: First results and analysis. The Astrophysical Journal, 516, 834.CrossRefGoogle Scholar
Hildebrand, R. H., Davidson, J. A., Dotson, J. L.et al. (2000). A primer on far-infrared polarimetry. Publications of the Astronomical Society of the Pacific, 112, 12151235.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2008). Radiative torque alignment: Essential physical processes. Monthly Notices of the Royal Astronomical Society, 388, 117 (HL08).CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2009a). Radiative torques alignment in the presence of pinwheel torques. The Astrophysical Journal, 695, 14571476 (HL09a).CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2009b). Grain alignment induced by radiative torques: Effects of internal relaxation of energy and complex radiation field. The Astrophysical Journal, 697, 1316 (HL09b).CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2012). Spinning dust emission from wobbling grains: Important physical effects and implications. Advances in Astronomy, 1, 44.Google Scholar
Hoang, T. and Lazarian, A. (2014). Grain alignment by radiative torques in special conditions and implications. Monthly Notices of the Royal Astronomical Society, 438, 680703.CrossRefGoogle Scholar
Hoang, T., Draine, B. T., and Lazarian, A. (2010). Improving the model of emission from spinning dust: Effects of grain wobbling and transient spin-up. The Astrophysical Journal, 715, 14621485.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Draine, B. T. (2011). Spinning dust emission: Effects of irregular grain shape, transient heating, and comparison with Wilkinson microwave anisotropy probe results. The Astrophysical Journal, 741, 87.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Schlickeiser, R. (2012). Revisiting acceleration of charged grains in magnetohydrodynamic turbulence. The Astrophysical Journal, 747, 54.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Martin, P. G. (2013). Constraint on the polarization of electric dipole emission from spinning dust. The Astrophysical Journal, 779, 152.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Martin, P. G. (2014). Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields. The Astrophysical Journal, 790(1), id. 6, 22 pp., arXiv: 1312.2106v1.CrossRefGoogle Scholar
Hoang, T., Lazarian, A., and Andersson, B-G. (2015). Modelling grain alignment by radiative torques and hydrogen formation torques in reflection nebula. Monthly Notices of the Royal Astronomical Society, 448(2), 11781198.CrossRefGoogle Scholar
Hollenbach, D., Kaufman, M. J., Bergin, E. A., and Melnick, G. J. (2009). Water, O2, and ice in molecular clouds. The Astrophysical Journal, 690, 1497.CrossRefGoogle Scholar
Hough, J. H., Sato, S., Tamura, M.et al. (1988). Spectropolarimetry of the 3-micron ice band in Elias 16 (Taurus Dark Cloud). Monthly Notices of the Royal Astronomical Society, 230, 107115.CrossRefGoogle Scholar
Hough, J. H., Aitken, D. K., Whittet, D. C. B., Adamson, A. J., and Chrysostomou, A. (2008). Grain alignment in denseinterstellar environments: spectropolarimetry of the 4.67-m CO-ice feature in the field star Elias 16 (Taurus dark cloud). Monthly Notices of the Royal Astronomical Society, 387, 797.CrossRefGoogle Scholar
Jenkins, E. B. (2009). A unified representation of gas-phase element depletions in the interstellar medium. The Astrophysical Journal, 700, 1299.CrossRefGoogle Scholar
Jones, T. J. (1989). Infrared polarimetry and the interstellar magnetic field. The Astrophysical Journal, 346, 728734.CrossRefGoogle Scholar
Jones, T. J., Hyland, A. R., and Bailey, J. (1984). The inner core of a BOK globule. The Astrophysical Journal, 282, 675.CrossRefGoogle Scholar
Jones, T. J., Hyland, A. R., Harvey, P. M., Wilking, B. A., and Joy, M. (1985). The Chamaeleon dark cloud complex. II – A deep survey around HD 97300. The Astronomical Journal, 90, 1191.CrossRefGoogle Scholar
Jones, T. J., Klebe, D., and Dickey, J. M. (1992). Infrared polarimetry and the galactic magnetic field. II – improved models. The Astrophysical Journal, 389, 602615.CrossRefGoogle Scholar
Jones, T. J., Krejny, M., Andersson, B-G, and Bastien, P. (2011). Grain alignment in starless cores. Bulletin of the American Astronomical Society, 43, 251.22.Google Scholar
Jones, T. J., Bagley, M., Krejny, M., Andersson, B-G, and Bastien, P. (2015). Grain Alignment in Starless Cores. The Astronomical Journal, 149, 31.CrossRefGoogle Scholar
Jones, R. V. and Spitzer Jr., L., (1967). Magnetic alignment of interstellar grains. The Astrophysical Journal, 147, 943.CrossRefGoogle Scholar
Jordan, M. E. and Weingartner, J. C. (2009). Electric dipole moments and disalignment of interstellar dust grains. Monthly Notices of the Royal Astronomical Society, 400, 536.CrossRefGoogle Scholar
Kim, S.-H. and Martin, P. G. (1995). The size distribution of interstellar dust particles as determined from polarization: Spheroids. The Astrophysical Journal, 444, 293305.CrossRefGoogle Scholar
Kogut, A., Fixsen, D. J., Levin, S. M.et al. (2011). ARCADE 2 observations of galactic radio emission. The Astrophysical Journal, 734, 4.CrossRefGoogle Scholar
Lazarian, A. (1994). Gold-type mechanisms of grain alignment. Monthly Notices of the Royal Astronomical Society, 268, 713.CrossRefGoogle Scholar
Lazarian, A. (1995a). Mechanical alignment of suprathermally rotating grains. The Astrophysical Journal, 453, 229.CrossRefGoogle Scholar
Lazarian, A. (1995b). Alignment of suprathermally rotating grains. Monthly Notices of the Royal Astronomical Society, 277, 1235.CrossRefGoogle Scholar
Lazarian, A. (1997). Paramagnetic alignment of thermally rotating dust. Monthly Notices of the Royal Astronomical Society, 288, 609.CrossRefGoogle Scholar
Lazarian, A. (2003). Magnetic fields via polarimetry: Progress of grain alignment theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 881902.CrossRefGoogle Scholar
Lazarian, A. (2007). Tracing magnetic fields with aligned grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 225.CrossRefGoogle Scholar
Lazarian, A. (2008). Grain alignment and CMB polarization studies. arXiv: 0811.1020.Google Scholar
Lazarian, A. and Draine, B. T. (1997). Disorientation of suprathermally rotating grains and the grain alignment problem. The Astrophysical Journal, 487, 248.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (1999a). Thermal flipping and thermal trapping: new elements in grain dynamics. The Astrophysical Journal, 516, L37.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (1999b). Nuclear spin relaxation within interstellar grains. The Astrophysical Journal, 520, L67.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (2000). Resonance paramagnetic relaxation and alignment of small grains. The Astrophysical Journal, 536, L15.CrossRefGoogle ScholarPubMed
Lazarian, A. and Efroimsky, M. (1999). Inelastic dissipation in a freely rotating body: Application to cosmic dust alignment. Monthly Notices of the Royal Astronomical Society, 303, 673.CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2007a). Radiative torques: analytical model and basic properties. Monthly Notices of the Royal Astronomical Society, 378, 910946 (LH07a).CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2007b). Subsonic mechanical alignment of irregular grains. The Astrophysical Journal Letters, 669, L77 (LH07b).CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2008). Alignment of dust with magnetic inclusions: Radiative torques and superparamagnetic Barnett and nuclear relaxation. The Astrophysical Journal Letters, 676, L25L28 (LH08).CrossRefGoogle Scholar
Lazarian, A. and Roberge, W. G. (1997). Barnett relaxation in thermally rotating grains. The Astrophysical Journal, 484, 230.CrossRefGoogle Scholar
Lazarian, A. and Yan, H. (2002). Grain dynamics in magnetized interstellar gas. The Astrophysical Journal, 566, L105L108.CrossRefGoogle Scholar
Lazarian, A., Goodman, A. A., and Myers, P. C. (1997). On the efficiency of grain alignment in dark clouds. The Astrophysical Journal, 490, 273.CrossRefGoogle Scholar
López-Caraballo, C. H., Rubĩno-Martín, J. A., Rebolo, R., and Génova-Santos, R. (2011). Constraints on the polarization of the anomalous microwave emission in the Perseus molecular complex from seven-year WMAP data. The Astrophysical Journal, 729, 25.CrossRefGoogle Scholar
Luhman, K. L. (2004). A census of the Chamaeleon I star-forming region. The Astrophysical Journal, 602, 816.CrossRefGoogle Scholar
Macellari, N., Pierpaoli, E., Dickinson, C., and Vaillancourt, J. E. (2011). Galactic foreground contributions to the 5-year Wilkinson Microwave Anisotropy Probe maps. Monthly Notices of the Royal Astronomical Society, 418, 888.CrossRefGoogle Scholar
Martin, P. G. (1974). Interstellar polarization from a medium with changing grain alignment. The Astrophysical Journal, 187, 461.CrossRefGoogle Scholar
Martin, P. G. (1995). On the value of GEMS (glass with embedded metal and sulphides). The Astrophysical Journal, 445, L63L66.CrossRefGoogle Scholar
Martin, P. G. and Angel, J. R. P. (1976). Systematic variations in the wavelength dependence of interstellar circular polarization. The Astrophysical Journal, 207, 126.CrossRefGoogle Scholar
Martin, P. G., Clayton, G. C., and Wolff, M. J. (1999). Ultraviolet interstellar linear polarization. v. analysis of the final data set. The Astrophysical Journal, 510, 905.CrossRefGoogle Scholar
Mason, B. S., Robishaw, T., Heiles, C., Finkbeiner, D., and Dickinson, C. (2009). A limit on the polarized anomalous microwave emission of lynds 1622. The Astrophysical Journal, 697, 11871193.CrossRefGoogle Scholar
Mathis, J. S. (1986). The alignment of interstellar grains. The Astrophysical Journal, 308, 281287.CrossRefGoogle Scholar
Mathis, J. S., Rumpl, W., and Nordsieck, K. H. (1977). The size distribution of interstellar grains. The Astrophysical Journal, 217, 425.CrossRefGoogle Scholar
Matsumura, M., Kameura, Y., Kawabata, K. S.et al. (2011). Correlation between interstellar polarization and dust temperature: Is the alignment of grains by radiative torques ubiquitous?Publications of the Astronomical Society of Japan, 63, L43.CrossRefGoogle Scholar
Morata, O. and Herbst, E. (2008). Time-dependent models of dense PDRs with complex molecules. Monthly Notices of the Royal Astronomical Society, 390, 1549.Google Scholar
Murakawa, K., Tamura, M., and Nagata, T. (2000). 1–4 micron spectrophotometry of dust in the Taurus dark cloud: Water ice distribution in Heiles cloud 2. The Astrophysical Journal Supplement Series, 128, 603.CrossRefGoogle Scholar
Myers, P. C. and Goodman, A. A. (1991). On the dispersion in direction of interstellar polarization. The Astrophysical Journal, 373, 509.CrossRefGoogle Scholar
Ostriker, E. C., Stone, J. M., and Gammie, C. F. (2001). Density, velocity, and magnetic field structure in turbulent molecular cloud models. The Astrophysical Journal, 546, 980.CrossRefGoogle Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M.et al. (2011). Planck early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 536, A20.Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N.et al. (2014). Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 565, A103, arXiv:1309.1357.Google Scholar
Purcell, E. M. (1975). Interstellar grains as pinwheels. In The Dusty Universe, (A76-15076 04-90) New York: Neale Watson, p. 155.Google Scholar
Purcell, E. (1979). Suprathermal rotation of interstellar grains. The Astrophysical Journal, 231, 404416.CrossRefGoogle Scholar
Roberge, W. G. (1996). Grain alignment in molecular clouds. In Polarimetry of the Interstellar Medium. Astronomical Society of the Pacific Conference Series, Vol. 97. San Francisco: Astronomical Society of the Pacific, p. 401.Google Scholar
Roberge, W. G. and Lazarian, A. (1999). Davis–Greenstein alignment of oblate spheroidal grains. Monthly Notices of the Royal Astronomical Society, 305, 615.CrossRefGoogle Scholar
Roberge, W., DeGraff, T. A., and Flatherty, J. E. (1993). The Langevin equation and its application to grain alignment in molecular clouds. The Astrophysical Journal, 418, 287.CrossRefGoogle Scholar
Rosenbush, V. K., Kolokolova, L., Lazarian, A., Shakhovskoy, N., and Kiselev, N. (2007). Circular polarization in comets: Observations of Comet C/1999 S4 (LINEAR) and tentative interpretation. Icarus, 186, 317330.CrossRefGoogle Scholar
Serezhkin, Y. (2000). Formation of ordered structures of charged microparticles in near-surface cometary gas-dusty atmosphere. In R. Hoover, ed., Instruments, Methods, and Missions for Astrobiology III. Proceedings of the SPIE, Vol. 4137. Bellingham WA: International Society for Optics and Photonics, p. 1.Google Scholar
Serkowski, K. (1973). Interstellar polarization (review). In J. M. Greenberg and H. C. Van de Hulst, eds., IAU Symposium 52, Interstellar Dust and Related Topics. Dordrecht, the Netherlands: Kluwer Academic Publishers, p. 145.CrossRefGoogle Scholar
Serkowski, K., Mathewson, D. S., and Ford, V. L. (1975). Wavelength dependence of interstellar polarization and ratio of total to selective extinction. The Astrophysical Journal, 196, 261.CrossRefGoogle Scholar
Smith, C. H., Wright, C. M., Aitken, D. K., Roche, P. F., and Hough, J. H. (2000). Studies in mid-infrared spectropolarimetry – II. An atlas of spectra. Monthly Notices of the Royal Astronomical Society, 312, 327.CrossRefGoogle Scholar
Spitzer, L. and McGlynn, T. (1979). Disorientation of interstellar grains in suprathermal rotation. The Astrophysical Journal, 231, 417.CrossRefGoogle Scholar
Tibbs, C. T., Paladini, R., Compiègne, M.et al. (2012). A multi-wavelength investigation of RCW175: An H II region harboring spinning dust emission. The Astrophysical Journal, 754, 94.CrossRefGoogle Scholar
Vaillancourt, J. E. (2002). Analysis of the far-infrared/submillimeter polarization spectrum based on temperature maps of Orion. The Astrophysical Journal Supplement Series, 142, 53.CrossRefGoogle Scholar
Vaillancourt, J. E. and Matthews, B. C. (2012). Submillimeter polarization of galactic clouds: A comparison of 350 μm and 850 μm data. The Astrophysical Journal Supplement Series, 201, 13.CrossRefGoogle Scholar
Vaillancourt, J. E., Dowell, C. D., Hildebrand, R. H.et al. (2008). New results on the submillimeter polarization spectrum of the Orion molecular cloud. The Astrophysical Journal Letters, 679, L25.CrossRefGoogle Scholar
van Dishoeck, E. F. (2004). ISO spectroscopy of gas and dust: From molecular clouds to protoplanetary disks. The Annual Review of Astronomy and Astrophysics, 42, 119.CrossRefGoogle Scholar
Van Eck, C. L., Brown, J. C., Stil, J. M.et al. (2011). Modeling the magnetic field in the galactic disk using new rotation measure observations from the very large array. The Astrophysical Journal, 728, 97.CrossRefGoogle Scholar
Voshchinnikov, N. V., Henning, T., Prokopjeva, M. S., and Das, H. K. (2012). Interstellar polarization and grain alignment: the role of iron and silicon. Astronomy and Astrophysics, 541, A52.CrossRefGoogle Scholar
Ward-Thompson, D., Kirk, J. M., Crutcher, R. M.et al. (2000). First observations of the magnetic field geometry in prestellar cores. The Astrophysical Journal, 537, L135L138.CrossRefGoogle Scholar
Weingartner, J. C. (2009). Thermal flipping of interstellar grains. The Astrophysical Journal, 690, 875878.CrossRefGoogle Scholar
Weingartner, J. and Draine, B. (2003). Radiative torques on interstellar grains. III. Dynamics with thermal relaxation. The Astrophysical Journal, 589, 289.CrossRefGoogle Scholar
Whittet, D. C. B. (2003). Dust in the Galactic Environment, 2nd edn. Series in Astronomy and Astrophysics. Bristol: Institute of Physics (IoP) Publishing. ISBN 0750306246.Google Scholar
Whittet, D. C. B. and van Breda, I. G. (1978). The correlation of the interstellar extinction law with the wavelength of maximum polarization. Astronomy and Astrophysics, 66, 57.Google Scholar
Whittet, D. C. B., Adamson, A. J., Duley, W. W., Geballe, T. R., and McFadzean, A. D. (1989). Infrared spectroscopy of dust in the Taurus dark clouds – Solid carbon monoxide. Monthly Notices of the Royal Astronomical Society, 241, 707.CrossRefGoogle Scholar
Whittet, D. C. B., Martin, P. G., Hough, J. H.et al. (1992). Systematic variations in the wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 386, 562.CrossRefGoogle Scholar
Whittet, D. C. B., Gerakines, P. A., Hough, J. H., and Snenoy, S. S. (2001). Interstellar extinction and polarization in the Taurus dark clouds: The optical properties of dust near the diffuse/dense cloud interface. The Astrophysical Journal, 547, 872.CrossRefGoogle Scholar
Whittet, D. C. B, Hough, J. H, Lazarian, A., and Hoang, T. (2008). The efficiency of grain alignment in dense interstellar clouds: A reassessment of constraints from near-infrared polarization. The Astrophysical Journal, 674, 304315.CrossRefGoogle Scholar
Whittet, D. C. B., Goldsmith, P. F., and Pineda, J. L. (2010). The uptake of interstellar gaseous CO into icy grain mantles in a quiescent dark cloud. The Astrophysical Journal, 720, 259.CrossRefGoogle Scholar
Wilking, B. A., Lebofsky, M. J., Kemp, J. C., Martin, P. G., and Rieke, G. H. (1980). The wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 235, 905.CrossRefGoogle Scholar
Wilking, B. A., Lebofsky, M. J., and Rieke, G. H. (1982). The wavelength dependence of interstellar linear polarization – Stars with extreme values of lambda/max/. The Astronomical Journal, 87, 695.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., and Meade, M. R. (1993). Ultraviolet interstellar linear polarization. I – Applicability of current dust grain models. The Astrophysical Journal, 403, 722735.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., Kim, S. H.et al. (1997). Ultraviolet interstellar linear polarization. III. Features. The Astrophysical Journal, 478, 395402.CrossRefGoogle Scholar
Wolstencroft, R. D. (1987). Magnetic fields in spiral galaxies. Quarterly Journal of the Royal Astronomical Society, 28, 209.Google Scholar
Wolstencroft, R. D. and Kemp, J. C. (1972). Circular polarization of the nightsky radiation. The Astrophysical Journal, 177, L137.CrossRefGoogle Scholar
Yan, H. and Lazarian, A. (2003). Grain acceleration by magnetohydrodynamic turbulence: Gyroresonance mechanism. The Astrophysical Journal, 592(1), L33L36.CrossRefGoogle Scholar
Yan, H. and Lazarian, A. (2006). Polarization of absorption lines as a diagnostics of circumstellar, interstellar, and intergalactic magnetic fields: Fine-structure atoms. The Astrophysical Journal, 653, 12921313.CrossRefGoogle Scholar
Yan, H., Lazarian, A., and Draine, B. T. (2004). Dust dynamics in compressible magnetohydrodynamic turbulence. The Astrophysical Journal, 616, 895.CrossRefGoogle Scholar
Zeng, L., Bennett, C. L., Chapman, N. L.et al. (2013). The submillimeter polarization spectrum of M17. The Astrophysical Journal, 773, 29.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×