Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T10:48:54.380Z Has data issue: false hasContentIssue false

III - Stars and their environment

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Andersson, B-G and Potter, S. B. (2005). A high sampling-density polarization study of the Southern Coalsack. Monthly Notices of the Royal Astronomical Society, 356, 10881098.CrossRefGoogle Scholar
Andersson, B-G and Potter, S. B. (2007). Observational constraints on interstellar grain alignment. The Astrophysical Journal, 665, 369389.CrossRefGoogle Scholar
Andersson, B-G and Potter, S. B. (2010). Observational constraints on interstellar grain alignment. The Astrophysical Journal, 720, 10451054.CrossRefGoogle Scholar
Andersson, B. and Potter, S. (2011 ). Observational evidence for radiative interstellar grain alignment. In Astronomical Society of the Pacific Conference Series, 449. San Francisco CA: Astronomical Society of the Pacific, pp. 134138.Google Scholar
Andersson, B-G, Pintado, O., Potter, S. B., Straižys, V., and Charcos-Llorens, M. (2011). Angle-dependent radiative grain alignment. Confirmation of a magnetic field – radiation anisotropy angle dependence on the efficiency of interstellar grain alignment. Astronomy and Astrophysics, 534, 1927.CrossRefGoogle Scholar
Beck, R. (2001). Galactic and extragalactic magnetic fields. Space Science Reviews, 99, 243253.CrossRefGoogle Scholar
Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: Wiley.Google Scholar
Chandrasekhar, S. and Fermi, E. (1953). Magnetic fields in spiral arms. The Astrophysical Journal, 118, 116134.CrossRefGoogle Scholar
Chiar, J. E., Adamson, A. J., Whittet, D. C. B.et al. (2006). Spectropolarimetry of the 3.4 µm feature in the diffuse ISM toward the galactic center quintuplet cluster. The Astrophysical Journal, 651, 268271.CrossRefGoogle Scholar
Clayton, G. C. and Cardelli, J. A. (1988). Polarization and the ratio of total-to-selective extinction. The Astronomical Journal, 96, 695700.CrossRefGoogle Scholar
Clayton, G. C. and Mathis, J. S. (1988). The determination of ultraviolet extinction from the optical and near-infrared. The Astrophysical Journal, 327, 911919.CrossRefGoogle Scholar
Clayton, G. C., Martin, P. G., and Thompson, I. (1983). The wavelength dependence of interstellar polarization in the Large Magellanic Cloud. The Astrophysical Journal, 265, 194201.CrossRefGoogle Scholar
Clayton, G. C., Anderson, C. M., Magalhaes, A. M.et al. (1992). The first spectropolarimetric study of the wavelength dependence of interstellar polarization in the ultraviolet. The Astrophysical Journal Letters, 385, L5357.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Allen, R. G., and Lupie, O. L. (1995). Ultraviolet interstellar linear polarization. 2: The wavelength dependence. The Astrophysical Journal, 445, 947957.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Sofia, U. J., Gordon, K. D., and Misselt, K. A. (2003). Dust grain size distributions from MRN to MEM. The Astrophysical Journal, 588. 871880.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Gordon, K. D.et al. (2004). Interstellar polarization in M31. The Astronomical Journal, 127, 33823387.CrossRefGoogle Scholar
Clemens, D. P., Pinnick, A. F., Pavel, M. D., and Taylor, B. W. (2012). The Galactic Plane Infrared Polarization Survey (GPIPS). The Astrophysical Journal Supplement, 200, 119.Google Scholar
Coyne, G., Gehrels, T., and Serkowski, K. (1974). Wavelength dependence of polarization. XXVI. The wavelength of maximum polarization as a characteristic parameter of interstellar grains. The Astronomical Journal, 79, 581589.CrossRefGoogle Scholar
Crutcher, R. M. (2004). What drives star formation?Astrophysics and Space Science, 292, 225237.CrossRefGoogle Scholar
Davis, L. J. and Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. The Astrophysical Journal, 114, 206213.CrossRefGoogle Scholar
Delabrouille, J., Betoule, M., Melin, J. B. et al. (2013). The polarized radiation imaging and spectroscopy mission. Astronomy and Astrophysics, 553(A96), 135.Google Scholar
Dolginov, A. Z. and Mytrophanov, I. G. (1976). Orientation of cosmic dust grains. Astrophysics and Space Science, 43, 291317.CrossRefGoogle Scholar
Draine, B.T. and Flatau, P. J. (1994). Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 11(4), 14911499.CrossRefGoogle Scholar
Draine, B. T. and Flatau, P. J. (2008). Discrete-dipole approximation for periodic targets: Theory and tests. Journal of the Optical Society of America A, 25, 26932703.CrossRefGoogle ScholarPubMed
Draine, B. T. and Fraisse, A. A. (2009). Polarized far-infrared and submillimeter emission from interstellar dust. The Astrophysical Journal, 696, 111.CrossRefGoogle Scholar
Draine, B. T. and Weingartner, J. C. (1996). Radiative torques on interstellar grains. I. Superthermal spin-up. The Astrophysical Journal, 470, 551565.CrossRefGoogle Scholar
Draine, B. T. and Weingartner, J. C. (1997). Radiative torques on interstellar grains. II. Grain alignment. The Astrophysical Journal, 480, 633646.CrossRefGoogle Scholar
Efimov, Y. S. (2009). Interstellar polarization: New approximation. Bulletin Crimean Astrophysical Observatory, 105, 82114.CrossRefGoogle Scholar
Falceta-Goncalves, D., Lazarian, A., and Kowal, G. (2009). Studying ISM magnetic fields and turbulent regimes from polarimetric maps. Revista Mexicana de Astronomia y Astrofisica Conference Series, 36, 3744.Google Scholar
Fosalba, P., Lazarian, A., Prunet, S., and Tauber, J. A. (2002). Statistical properties of galactic starlight polarization. The Astrophysical Journal, 564, 762775.CrossRefGoogle Scholar
Gerakines, P. A., Whittet, D. C. B., and Lazarian, A. (1995). Grain alignment in the Taurus dark cloud. The Astrophysical Journal, 455, L171L175.CrossRefGoogle Scholar
Gold, T. (1952). The alignment of galactic dust. Monthly Notices of the Royal Astronomical Society, 112, 215219.CrossRefGoogle Scholar
Goodman, A. A. and Whittet, D. C. B. (1995). A point in favor of the superparamagnetic grain hypothesis. The Astrophysical Journal, 455, L181184.CrossRefGoogle Scholar
Goodman, A. A., Jones, T. J., Lada, E. A., and Myers, P. C. (1992). The structure of magnetic fields in dark clouds – Infrared polarimetry in B216-217. The Astrophysical Journal, 339, 108113.CrossRefGoogle Scholar
Greenberg, J. M. (1968). Interstellar grains. In B. M. Middlehurst and L. H. Aller, eds., Nebulae and Interstellar Matter. University of Chicago Press, pp. 221364.Google Scholar
Hall, J. S. (1949). Observations of the polarized light from stars. Science, 109, 166167.CrossRefGoogle ScholarPubMed
Henning, T., Launhardt, R., Stecklum, B., and Wolf, S. (2002). Continuum polarization as a tool. In J. Alves and M McCaughrean, eds., The Origin of Stars and Planets: The VLT View. Amsterdam: Springer, pp. 7984.CrossRefGoogle Scholar
Hildebrand, R. H., Davidson, J. A., Dotson, J. L.et al. (2000). A primer on far-infrared polarimetry. Publications of the Astronomical Society of the Pacific, 112, 12151235.CrossRefGoogle Scholar
Hildebrand, R. H., Kirby, L., Dotson, J. L., Houde, M., and Vaillancourt, J. E. (2009). Dispersion of magnetic fields in molecular clouds. I. The Astrophysical Journal, 696, 567573.CrossRefGoogle Scholar
Hiltner, W. A. (1949). On the presence of polarization in the continuous radiation of stars. II. The Astrophysical Journal, 109, 471481.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2008). Radiative torque alignment: Essential physical processes. Monthly Notices of the Royal Astronomical Society, 388, 117143.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2009a). Radiative torques alignment in the presence of pinwheel torques. The Astrophysical Journal, 695, 14571476.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2009b). Grain alignment induced by radiative torques: Effects of internal relaxation of energy and complex radiation field. The Astrophysical Journal, 697, 13161333.CrossRefGoogle Scholar
Holloway, R. P., Chrysostomou, A., Aitken, D. K., Hough, J. H., and McCall, A. (2002). Spectropolarimetry of the 3-µm water-ice feature towards young stellar objects. Monthly Notices of the Royal Astronomical Society, 336, 425435.CrossRefGoogle Scholar
Houde, M., Vaillancourt, J. E., Hildebrand, R. H., Chitsazzadeh, S., and Kirby, L. (2009). Dispersion of magnetic fields in molecular clouds. II. The Astrophysical Journal, 706, 15041516.CrossRefGoogle Scholar
Hough, J. H., Bailey, J. A., Rouse, M. F., and Whittet, D. C. B. (1987). Interstellar polarization in the dust lane of Centaurus A (NGC 5128). Monthly Notices of the Royal Astronomical Society, 227, 1P5P.CrossRefGoogle Scholar
Hough, J. H., Sato, S., Tamura, M.et al. (1988). Spectropolarimetry FO the 3-micron ice band in Elias 16 (Taurus Dark Cloud). Monthly Notices of the Royal Astronomical Society, 230, 107115.CrossRefGoogle Scholar
Hough, J. H., Aitken, D. K., Whittet, D. C. B., Adamson, A. J., and Chrysostomou, A. (2008). Grain alignment in dense interstellar environments: Spectropolarimetry of the 4.67-µm CO-ice feature in the field star Elias 16 (Taurus dark cloud). Monthly Notices of the Royal Astronomical Society, 387, 797802.CrossRefGoogle Scholar
Itoh, Y., Chrysostomou, A., Burton, M., Hough, J. H., and Tamura, M. (1999). The magnetic field structure of the DR21 region. Monthly Notices of the Royal Astronomical Society, 304, 406416.CrossRefGoogle Scholar
Jaffe, T. R., Ferrière, K. M., Banday, A. J.et al. (2013). Comparing polarized synchrotron and thermal dust emission in the Galactic plane. Monthly Notices of the Royal Astronomical Society, 431, 683694.CrossRefGoogle Scholar
Jones, T. J. (1989a). Infrared polarimetry and the interstellar magnetic field. The Astrophysical Journal, 346, 728734.CrossRefGoogle Scholar
Jones, T. J. (1989b). Infrared polarimetry of galaxies. II – NGC 4565. The Astronomical Journal, 98, 2062265.CrossRefGoogle Scholar
Jones, T. J. (1990). Interstellar polarization at 3.6 microns. The Astronomical Journal, 99, 18941896.CrossRefGoogle Scholar
Jones, T. J. (1996). Observational constraints on grain alignment mechanisms. In Astronomical Society of the Pacific Conference Series, Vol. 97. San Francisco CA: Astronomical Society of the Pacific, pp. 381395.Google Scholar
Jones, T. J. (2003). Polarimetry in the visible and infrared: Application to CMB polarimetry. New Astronomy Reviews, 47, 11231126.CrossRefGoogle Scholar
Jones, T. W. and O’Dell, S. L. (1977). Transfer of polarized radiation in self-absorbed synchrotron sources. I. Results for a homogeneous source. The Astrophysical Journal, 214, 522539.CrossRefGoogle Scholar
Jones, T. J., Klebe, D., and Dickey, J. M. (1992). Infrared polarimetry and the Galactic magnetic field. II – Improved models. The Astrophysical Journal, 389, 602615.CrossRefGoogle Scholar
Jones, T. J., Krejny, M., Andersson, B-G. and Bastien, P. (2011). Grain alignment in starless cores. Bulletin of the American Astronomical Society, 217, 251.22.Google Scholar
Kim, S.-H. and Martin, P. G. (1995). The size distribution of interstellar dust particles as determined from polarization: spheroids. The Astrophysical Journal, 444, 293305.CrossRefGoogle Scholar
Kobulnicky, H. A., Molnar, L. A., and Jones, T. J. (1994). R band polarimetry of Cygnus OB2: Implications for the magnetic field geometry and polarization models. The Astronomical Journal, 107, 14331443.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (1999a). Nuclear spin relaxation within interstellar grains. The Astrophysical Journal Letters, 520, L67L70.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (1999b). Thermal flipping and thermal trapping: New elements in grain dynamics. The Astrophysical Journal Letters, 516, L37L40.CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2007). Radiative torques: Analytical model and basic properties. Monthly Notices of the Royal Astronomical Society, 378, 910946.CrossRefGoogle Scholar
Marchwinski, R. C., Pavel, M. D., and Clemens, D. P. (2012). Resolved magnetic field mapping of a molecular cloud using GPIPS. The Astrophysical Journal, 755, 130140.CrossRefGoogle Scholar
Martin, P. G. and Whittet, D. C. B. (1990). Interstellar extinction and polarization in the infrared. The Astrophysical Journal, 357, 113124.CrossRefGoogle Scholar
Martin, P. G., Adamson, A. J., Whittet, D. C. B.et al. (1992). Interstellar polarization from 3 to 5 microns in reddened stars. The Astrophysical Journal, 392, 691701.CrossRefGoogle Scholar
Martin, P. G., Clayton, G. C., and Wolff, M. J. (1999). Ultraviolet interstellar linear polarization. V. Analysis of the final data set. The Astrophysical Journal, 510, 905914.CrossRefGoogle Scholar
Mathis, J. S. (1986). The alignment of interstellar grains. The Astrophysical Journal, 308, 281287.CrossRefGoogle Scholar
Mathis, J. S., Rumpl, W., and Nordsieck, K. H. (1977). The size distribution of interstellar grains. The Astrophysical Journal, 217, 425433.CrossRefGoogle Scholar
Matthews, B. C., McPhee, C. A., Fissel, L. M., and Curran, R. L. (2009). The legacy of SCUPOL: 850 µm imaging polarimetry from 1997 to 2005. The Astrophysical Journal Supplements, 182, 143204.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Mackowski, D. W. (1996). T-matrix computations of light scattering by nonspherical particles: A review. Journal of Quantitative Spectroscopy, 55, 535575.CrossRefGoogle Scholar
Miville-Deschênes, M.-A., Ysard, N., Lavabre, A.et al. (2008). Separation of anomalous and synchrotron emissions using WMAP polarization data. Astronomy and Astrophysics, 490, 10931102.CrossRefGoogle Scholar
Morris, M., Davidson, J. A., Werner, M.et al. (1992). Polarization of the far-infrared emission from the thermal filaments of the Galactic center arc. The Astrophysical Journal Letters, 399, L63L66.CrossRefGoogle Scholar
Myers, P. C. and Goodman, A. A. (1991). On the dispersion in direction of interstellar polarization. The Astrophysical Journal, 373, 509524.CrossRefGoogle Scholar
Nagata, T. (1990). Observation of interstellar polarization at 2.2 and 3.8 microns. The Astrophysical Journal Letters, 348, L13L16.CrossRefGoogle Scholar
Ostriker, E. C., Stone, J. M., and Gammie, C. F. (2001). Density, velocity, and magnetic field structure in turbulent molecular cloud models. The Astrophysical Journal, 546, 9801005.CrossRefGoogle Scholar
Pascale, E. (2013). The balloon-borne large aperture submillimetre telescope (BLAST) and BLASTPol. International Astronomical Union Symposium, 288, 154160.Google Scholar
Purcell, E. M. (1975). Interstellar grains as pinwheels. In The Dusty Universe. (A76-15076 04-90) New York: Neale Watson Academic Publications, Inc., pp. 155167.Google Scholar
Purcell, E. M. (1979). Suprathermal rotation of interstellar grains. The Astrophysical Journal, 231, 404416.CrossRefGoogle Scholar
Purcell, E. M. and Pennypacker, C. R. (1973). Scattering and absorption of light by nonspherical dielectric grains. The Astrophysical Journal, 186, 705714.CrossRefGoogle Scholar
Rao, R. (2008). Recent results and future prospects for SMA observations of dust polarization. In Cosmic Agitator: Magnetic Fields in the Galaxy. Available online at thunder.pa.uky.edu/magnetic (accessed January 26, 2015).Google Scholar
Roberge, W. G. (1996). Grain alignment in molecular clouds. In W. G. Roberge and D. C. B. Whittet, eds., Polarimetry of the Interstellar Medium. Astronomical Society of the Pacific Conference Series, Vol. 97. San Francisco CA: Astronomical Society of the Pacific, pp. 401418.Google Scholar
Serkowski, K. (1973). Interstellar Polarization (review). In IAU Symposium, Vol. 52, pp. 145152.Google Scholar
Serkowski, K., Mathewson, D. S., and Ford, V. L. (1975). Wavelength dependence of interstellar polarization and ratio of total to selective extinction. The Astrophysical Journal, 196, 261290.CrossRefGoogle Scholar
Simpson, J. P., Burton, M. G., Colgan, S. W. J.et al. (2009). Hubble Space Telescope NICMOS polarization observations of three edge-on massive young stellar objects. The Astrophysical Journal, 700, 14881501.CrossRefGoogle Scholar
Sukumar, S. and Allen, R. J. (1991). Polarized radio emission from the edge-on spiral galaxies NGC 891 and NGC 4565. The Astrophysical Journal, 382, 100107.CrossRefGoogle Scholar
Tauber, J. A. (2004). Prospects for polarimetry of the interstellar medium with the Planck satellite. In Proceedings of the Magnetized Interstellar Medium Conference, pp. 191199.Google Scholar
Vaillancourt, J. E. (2002). Analysis of the far-infrared/submillimeter polarization spectrum based on temperature maps of Orion. The Astrophysical Journal Supplements, 142, 5369.CrossRefGoogle Scholar
Van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: Wiley.CrossRefGoogle Scholar
Voshchinnikov, N. V. (2012). Interstellar extinction and interstellar polarization: Old and new models. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 23342350.CrossRefGoogle Scholar
Voshchinnikov, N. V. and Farafonov, V. G. (1993). Optical properties of spheroidal particles. Astrophysics and Space Science, 204, 1968.CrossRefGoogle Scholar
Whittet, D. C. B. (2003). Dust in the Galactic Environment. Bristol: IoP Pub.Google Scholar
Whittet, D. C. B. (2004). Polarization of starlight. In Astrophysics of Dust. ASP Conference Series, 309, San Francisco CA: Astronomical Society of the Pacific, p. 65.Google Scholar
Whittet, D. C. B. and van Breda, I. G. (1978). The correlation of the interstellar extinction law with the wavelength of maximum polarization. Astronomy and Astrophysics, 66, 5763.Google Scholar
Whittet, D. C. B., Martin, P. G., Hough, J. H.et al. (1992). Systematic variations in the wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 386, 562577.CrossRefGoogle Scholar
Whittet, D. C. B., Gerakines, P. A., Hough, J. H., and Shenoy, S. S. (2001). Interstellar extinction and polarization in the Taurus dark clouds: The optical properties of dust near the diffuse/dense cloud interface. The Astrophysical Journal, 547, 872884.CrossRefGoogle Scholar
Whittet, D. C. B., Hough, J. H., Lazarian, A., and Hoang, T. (2008). The efficiency of grain alignment in dense interstellar clouds: A reassessment of constraints from near-infrared polarization. The Astrophysical Journal, 674, 304315.CrossRefGoogle Scholar
Wilking, B. A., Lebofsky, M. J., Kemp, J. C., Martin, P. G., and Rieke, G. H. (1980). The wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 235, 905910.CrossRefGoogle Scholar
Wilking, B. A., Lebofsky, M. J., and Rieke, G. H. (1982). The wavelength dependence of interstellar linear polarization – Stars with extreme values of lambda/max. The Astronomical Journal, 87, 695697.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., Martin, P. G., and Schulte-Ladbeck, R. E. (1994). Modeling composite and fluffy grains: The effects of porosity. The Astrophysical Journal, 423, 412425.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., Kim, S.-H., Martin, P. G., and Anderson, C. M. (1997). Ultraviolet interstellar linear polarization. III. Features. The Astrophysical Journal, 478, 395402.CrossRefGoogle Scholar
Zweibel, E. G. (1990). Magnetic field-line tangling and polarization measurements in clumpy molecular gas. The Astrophysical Journal, 362, 545550.CrossRefGoogle Scholar
Zweibel, E. G. (1996). Polarimetry and the theory of the galactic magnetic field. Astronomical Society of the Pacific Conference Series, 97, 486503.Google Scholar

References

Adams, F. C., Lada, C. J., and Shu, F. H. (1987). Spectral evolution of young stellar objects. The Astrophysical Journal, 312, 788806.CrossRefGoogle Scholar
Andre, P., Ward-Thompson, D., and Barsony, M. (1993). Submillimeter continuum observations of Rho Ophiuchi A – The candidate protostar VLA 1623 and prestellar clumps. The Astrophysical Journal, 406, 122141.CrossRefGoogle Scholar
Bailey, J., Chrysostomou, A., Hough, J. H.et al. (1998). Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science, 281, 672674.CrossRefGoogle Scholar
Barvainis, R., Clemens, D. P., and Leach, R. (1988). Polarimetry at 1.3 mm using MILLIPOL – Methods and preliminary results for Orion. The Astronomical Journal, 95, 510515.CrossRefGoogle Scholar
Bonner, W. A. (1991). The origin and amplification of biomolecular chirality. Origins of Life and Evolution of Biospheres, 21, 59111.CrossRefGoogle ScholarPubMed
Buschermöhle, M., Whittet, D. C. B., Chrysostomou, A.et al. (2005). An extended search for circularly polarized infrared radiation from the OMC-1 region of Orion. The Astrophysical Journal, 624, 821826.CrossRefGoogle Scholar
Capps, R. W. and Knacke, R. F. (1976). Infrared polarization of the galactic center. The Astrophysical Journal, 210, 7684.CrossRefGoogle Scholar
Chrysostomou, A., Menard, F., Gledhill, T. M.et al. (1997). Polarimetry of young stellar objects – II. Circular polarization of GSS 30. Monthly Notices of the Royal Astronomical Society, 285, 750758.CrossRefGoogle Scholar
Chrysostomou, A., Gledhill, T. M., Menard, F.et al. (2000). Polarimetry of young stellar objects – III. Circular polarimetry of OMC-1. Monthly Notices of the Royal Astronomical Society, 312, 103115.CrossRefGoogle Scholar
Clark, S., McCall, A., Chrysostomou, A. et al. (2000). Polarization models of young stellar objects – II. Linear and circular polarimetry of R Coronae Australis. Monthly Notices of the Royal Astronomical Society, 319, 337349.Google Scholar
Cronin, J. R. and Pizzarello, S. (1997). Enantiomeric excesses in meteoritic amino acids. Science, 275, 951955.CrossRefGoogle ScholarPubMed
Cudlip, W., Furniss, I., King, K. J., and Jennings, R. E. (1982). Far infrared polarimetry of W51A and M42. Monthly Notices of the Royal Astronomical Society, 200, 11691173.CrossRefGoogle Scholar
DavisJr., L. and Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. The Astrophysical Journal, 114, 206240.CrossRefGoogle Scholar
Dennison, B. (1977). On the infrared polarization of the Orion Nebula. The Astrophysical Journal, 215, 529532.CrossRefGoogle Scholar
Dennison, B., Ward, D. B., Gull, G. E., and Harwit, M. (1977). Far-infrared polarization of M42. The Astronomical Journal, 82, 3941.CrossRefGoogle Scholar
Dowell, C. D., Cook, B. T., Al Harper, D.et al. (2010). HAWCPol: A first-generation far-infrared polarimeter for SOFIA. In SPIE Astronomical Telescopes + Instrumentation. Bellingham WA: International Society for Optics and Photonics, p. 77356H.Google Scholar
Dyck, H. M. and Beichman, C. A. (1974). Observations of infrared polarization in the Orion Nebula. The Astrophysical Journal, 194, 5764.CrossRefGoogle Scholar
Dyck, H. M. and Capps, R. W. (1978). Near-infrared polarimetry of compact infrared sources associated with H II regions and molecular clouds. The Astrophysical Journal, 220, L49L51.CrossRefGoogle Scholar
Fischer, O., Henning, T., and Yorke, H. W. (1994). Simulation of polarization maps. 1: Protostellar envelopes. Astronomy and Astrophysics, 284, 187209.Google Scholar
Fischer, O., Henning, T., and Yorke, H. W. (1996). Simulation of polarization maps. II. The circumstellar environment of pre-main sequence objects. Astronomy and Astrophysics, 308, 863885.Google Scholar
Flett, A. M. and Murray, A. G. (1991). First results from a submillimetre polarimeter on the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society, 249, 4P6P.CrossRefGoogle Scholar
Fukagawa, M., Hayashi, M., Tamura, M.et al. (2004). Spiral structure in the circumstellar disk around AB Aurigae. The Astrophysical Journal Letters, 605, L53L56.CrossRefGoogle Scholar
Fukue, T., Tamura, M., Kandori, R.et al. (2009). Near-infrared circular polarimetry and correlation diagrams in the Orion Becklin-Neugebauer/Kleinman-low region: Contribution of dichroic extinction. The Astrophysical Journal Letters, 692, L88L91.CrossRefGoogle Scholar
Gatley, I., Merrill, K. M., Fowler, A. M., and Tamura, M. (1991). The luminosity function in regions of massive star formation. In R. Elston, ed., Astronomical Society of the Pacific Conference Series, Vol. 14. San Francisco CA: Astronomical Society of the Pacific, pp. 230237.Google Scholar
Girart, J. M., Rao, R., and Marrone, D. P. (2006). Magnetic fields in the formation of Sun-like stars. Science, 313, 812814.CrossRefGoogle ScholarPubMed
Girart, J. M., Rao, R., and Marrone, D. P. (2008). SMA observations of the magnetic fields around a low-mass protostellar system. Astrophysics and Space Science, 313, 8790.CrossRefGoogle Scholar
Gonatas, D. P., Engargiola, G. A., Hildebrand, R. H.et al. (1990). The far-infrared polarization of the Orion nebula. The Astrophysical Journal, 357, 132137.CrossRefGoogle Scholar
Goodman, A. A., Bastien, P., Menard, F., and Myers, P. C. (1990). Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus. The Astrophysical Journal, 359, 363377.CrossRefGoogle Scholar
Goodman, A. A., Jones, T. J., Lada, E. A., and Myers, P. C. (1992). The structure of magnetic fields in dark clouds – Infrared polarimetry in B216-217. The Astrophysical Journal, 399, 108113.CrossRefGoogle Scholar
Greaves, J. S., Murray, A. G., and Holland, W. S. (1994). Investigating the magnetic field structure around star formation cores. Astronomy and Astrophysics, 284, L19L22.Google Scholar
Greaves, J. S., Holland, W. S., and Murray, A. G. (1995). Magnetic field compression in the MON R2 cloud core. Astronomy and Astrophysics, 297, L49L52.Google Scholar
Greaves, J. S., Holland, W. S., Jenness, T.et al. (2003). A submillimetre imaging polarimeter at the James Clerk Maxwell Telescope. Monthly Notice of the Royal Astronomical Society, 340, 353361.CrossRefGoogle Scholar
Gull, G. E., Houck, J. R., McCarthy, J. F., Forrest, W. J., and Harwit, M. (1978). Far-infrared polarization of the Kleinmann-Low Nebula in Orion. The Astronomical Journal, 83, 14401444.CrossRefGoogle Scholar
Hashimoto, J., Tamura, M., Muto, T.et al. (2011). Direct imaging of fine structures in giant planet-forming regions of the protoplanetary disk around AB Aurigae. The Astrophysical Journal Letters, 729, id. L17.CrossRefGoogle Scholar
Hashimoto, J., Dong, R., Kudo, T.et al. (2012). Polarimetric imaging of large cavity structures in the pre-transitional protoplanetary disk around PDS 70: Observations of the disk. The Astrophysical Journal Letters, 758, id. L19.CrossRefGoogle Scholar
Hildebrand, R. H., Dragovan, M., and Novak, G. (1984). Detection of submillimeter polarization in the Orion nebula. The Astrophysical Journal, 284, L51L54.CrossRefGoogle Scholar
Hildebrand, R. H., Dotson, J. L., Dowell, C. D.et al. (1995). Far-infrared polarimetry. In Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust. Astronomical Society of the Pacific Conference Series, Vol. 73. San Francisco CA: Astronomical Society of the Pacific, pp. 97104.Google Scholar
Hillenbrand, L. A. and Carpenter, J. M. (2000). Constraints on the stellar/substellar mass function in the inner Orion Nebula Cluster. The Astrophysical Journal, 540, 236254.CrossRefGoogle Scholar
Henning, Th., Wolf, S., Launhardt, R., and Waters, R. (2001). Measurements of the magnetic field geometry and strength in Bok globules. The Astrophysical Journal, 561, 871879.CrossRefGoogle Scholar
Hodapp, K.-W. (1994). A K' imaging survey of molecular outflow sources. The Astrophysical Journal Supplement, 94, 615649.CrossRefGoogle Scholar
Hough, J. H. (1997). New opportunities for astronomical polarimetry. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 122132.CrossRefGoogle Scholar
Hughes, A. M., Andrews, S. M., Espaillat, C.et al. (2009). A spatially resolved inner hole in the disk around GM Aurigae. The Astrophysical Journal, 698, 131142.CrossRefGoogle Scholar
Johnson, H. L. (1965). Interstellar extinction in the galaxy. The Astrophysical Journal, 141, 923942.CrossRefGoogle Scholar
Jones, T. J. (1997). Infrared imaging polarimetry of galaxies. The Astronomical Journal, 114, 13931404.CrossRefGoogle Scholar
Kim, S.-H. and Martin, P. G. (1995). The size distribution of interstellar dust particles as determined from polarization: Spheroids. The Astrophysical Journal, 444, 293305.CrossRefGoogle Scholar
Kwon, J. (2013). Near-infrared linear and circular polarimetry in star forming regions. Ph.D. thesis, GUAS.Google Scholar
Kwon, J., Tamura, M., Kandori, R.et al. (2011). Complex scattered radiation fields and multiple magnetic fields in the protostellar cluster in NGC 2264. The Astrophysical Journal, 741, id. 35.CrossRefGoogle Scholar
Kwon, J., Tamura, M., Lucas, P.et al. (2013). Near-infrared circular polarization images of NGC 6334-V. The Astrophysical Journal Letters, 765, id. L6.CrossRefGoogle Scholar
Kwon, J., Tamura, M., Hough, J. H.et al. (2014). Near-infrared circular polarization survey in star-forming regions: Correlations and trends. The Astrophysical Journal Letters, 795, 17.CrossRefGoogle Scholar
Lada, C. J. and Adams, F. C. (1992). Interpreting infrared color-color diagrams – Circumstellar disks around low- and intermediate-mass young stellar objects. The Astrophysical Journal, 393, 278288.CrossRefGoogle Scholar
Lada, C. J., DePoy, D. L., Merrill, K. M., and Gatley, I. (1991). Infrared images of M17. The Astrophysical Journal, 374, 533539.CrossRefGoogle Scholar
Lonsdale, C. J., Dyck, H. M., Capps, R. W., and Wolstencroft, R. D. (1980). Near-infrared circular polarization observations of molecular cloud sources, The Astrophysical Journal, 238, L31L35.CrossRefGoogle Scholar
Lucas, P. W. and Roche, P. F. (1998). Imaging polarimetry of class I young stellar objects. Monthly Notices of the Royal Astronomical Society, 299, 699722.CrossRefGoogle Scholar
Lucas, P. W., Fukagawa, M., Tamura, M.et al. (2004). High-resolution imaging polarimetry of HL Tau and magnetic field structure. Monthly Notices of the Royal Astronomical Society, 352, 13471364.CrossRefGoogle Scholar
Leach, R. W., Clemens, D. P., Kane, B. D., and Barvainis, R. (1991). Polarimetric mapping of Orion using MILLIPOL – Magnetic activity in BN/KL. The Astrophysical Journal, 370, 257262.CrossRefGoogle Scholar
Margulis, M., Lada, C. J., and Young, E. T. (1989). Young stellar objects in the Monoceros OB1 molecular cloud. The Astrophysical Journal, 345, 906917.CrossRefGoogle Scholar
Martin, P. G. (1972). Interstellar circular polarization. Monthly Notices of the Royal Astronomical Society, 159, 179190.CrossRefGoogle Scholar
Martin, P. G. (1974). Interstellar polarization from a medium with changing grain alignment. The Astrophysical Journal, 187, 461472.CrossRefGoogle Scholar
Matthews, B. C. and Wilson, C. D. (2002). Magnetic fields in star-forming molecular clouds. V. Submillimeter polarization of the Barnard 1 Dark Cloud. The Astrophysical Journal, 574, 822833.CrossRefGoogle Scholar
Matthews, B. C., McPhee, C. A., Fissel, L. M., and Curran, R. L. (2009). The legacy of SCUPOL: 850 μm imaging polarimetry from 1997 to 2005. The Astrophysical Journal Supplement, 182, 143204.CrossRefGoogle Scholar
Ménard, F., Bastien, P., and Robert, C. (1988). Detection of circular polarization in R Monocerotis and NGC 2261 – Implications for the polarization mechanism. The Astrophysical Journal, 335, 290294.CrossRefGoogle Scholar
Minchin, N. and Murray, A. G. (1994). Submillimetre polarimetric mapping of DR 21 and NGC 7538-IRS 11: Tracing the circumstellar magnetic field. Astronomy and Astrophysics, 286, 579587.Google Scholar
Minchin, N. R., Hough, J. H., McCall, A.et al. (1991). Near-infrared imaging polarimetry of bipolar nebulae. I – The BN-KL region of OMC-1. Monthly Notices of the Royal Astronomical Society, 248, 715729.CrossRefGoogle Scholar
Mishchenko, M. I. (1991). Extinction and polarization of transmitted light by partially aligned nonspherical grains. The Astrophysical Journal, 367, 561574.CrossRefGoogle Scholar
Nakamura, F. and Li, Z.-Y. (2011). Clustered star formation in magnetic clouds: Properties of dense cores formed in outflow-driven turbulence. The Astrophysical Journal, 740, id. 36.CrossRefGoogle Scholar
Novak, G. (2011). Instrumentation for far-IR and submillimeter polarimetry. In P. Bastien, N. Manset, D. P. Clemens, and N. St-Louis, eds., Astronomical Polarimetry 2008: Science from Small to Large Telescopes. ASP Conference Series, Vol. 449. San Francisco: Astronomical Society of the Pacific, p. 50.Google Scholar
Novak, G., Predmore, C. R., and Goldsmith, P. F. (1990). Polarization of the lambda = 1.3 millimeter continuum radiation from the Kleinmann-Low nebula. The Astrophysical Journal, 355, 166171.CrossRefGoogle Scholar
Novak, G., Dotson, J. L., and Li, H. (2009). Dispersion of observed position angles of submillimeter polarization in molecular clouds. The Astrophysical Journal, 695, 13621369.CrossRefGoogle Scholar
Padoan, P., Goodman, A., Draine, B. T.et al. (2001). Theoretical models of polarized dust emission from protostellar cores. The Astrophysical Journal, 559, 10051018.CrossRefGoogle Scholar
Peretto, N., André, P., and Belloche, A. (2006). Probing the formation of intermediate- to high-mass stars in protoclusters. A detailed millimeter study of the NGC 2264 clumps. Astronomy and Astrophysics, 445, 979998.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Kalas, P.et al. (2004). Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be Stars. Science, 303, 13451348.CrossRefGoogle ScholarPubMed
Pizzarello, S. and Cronin, J. R. (2000). Non-racemic amino acids in the Murray and Murchison meteorites. Geochimica et Cosmochimica Acta, 64, 329338.CrossRefGoogle ScholarPubMed
Rao, R., Girart, J. M., Marrone, D. P., Lai, S-P., and Schnee, S. (2009). IRAS 16293: A “magnetic” tale of two cores. The Astrophysical Journal, 707, 921935.CrossRefGoogle Scholar
Scarrott, S. M. (1991). Optical polarization studies of astronomical objects. Vistas in Astronomy, 34, 163177.CrossRefGoogle Scholar
Scarrott, S. M. (1996). Optical polarization and magnetic fields in spiral galaxies. Quarterly Journal of the Royal Astronomical Society, 37, 297305.Google Scholar
Shafter, A. and Jura, M. (1980). Circular polarization from scattering by circumstellar grains. The Astronomical Journal, 85, 15131519.CrossRefGoogle Scholar
Siringo, G. (2003). PolKa: A polarimeter for submillimeter bolometer arrays. Ph.D. thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn.Google Scholar
SpitzerJr., L. and Tukey, J. W. (1951). A theory of interstellar polarization. The Astrophysical Journal, 114, 187205.CrossRefGoogle Scholar
Stein, W. (1966). Infrared emission by circumstellar dust. The Astrophysical Journal, 145, 101105.CrossRefGoogle Scholar
Sugitani, K., Nakamura, F., Watanabe, M.et al. (2011). Near-infrared-imaging polarimetry toward Serpens South: Revealing the importance of the magnetic field. The Astrophysical Journal, 734, id. 63.CrossRefGoogle Scholar
Tamura, M. (1999). Submillimeter polarimetry of star forming regions: From cloud cores to circumstellar disks. In T. Nakamoto, ed., Proceedings of Star Formation 1999 Conference, Nagoya, Japan, June 21–25, 1999, pp. 212216.Google Scholar
Tamura, M. (2009). Subaru strategic exploration of exoplanets and disks with HiCIAO/AO188 (SEEDS), Exoplanets and Disks: Their formation and diversity: Proceedings of the International Conference. AIP Conference Proceedings, 1158, pp. 1116.CrossRefGoogle Scholar
Tamura, M. and Fukagawa, M. (2005). Circumstellar disks in PMS and T Tauri Stars-Herbig Ae/Be Stars, Vega-like stars, and submillimeter polarizations. In A. Adamson, C. Aspin, C. J. Davis, and T. Fujiyoshi, eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343, Proceedings of the Conference held 15–19 March, 2004 in Waikoloa, Hawaii, USA. San Francisco CA: Astronomical Society of the Pacific, p. 215.Google Scholar
Tamura, M., Nagata, T., Sato, S., and Tanaka, M. (1987). Infrared polarimetry of dark clouds. I – Magnetic field structure in Heiles Cloud 2. Monthly Notices of the Royal Astronomical Society, 224, 413423.CrossRefGoogle Scholar
Tamura, M., Gatley, I., Joyce, R. R.et al. (1991). Infrared polarization images of star-forming regions. I – The ubiquity of bipolar structure. The Astrophysical Journal, 378, 611627.CrossRefGoogle Scholar
Tamura, M., Hayashi, S. S., Yamashita, T.et al. (1993). Magnetic field in a low-mass protostar disk – Millimeter polarimetry of IRAS 16293-2422. The Astrophysical Journal Letters, 404, L21L24.CrossRefGoogle Scholar
Tamura, M., Hough, J. H., and Hayashi, S. S. (1995). 1 millimeter polarimetry of young stellar objects: Low-mass protostars and T Tauri stars. The Astrophysical Journal, 648, 346355.CrossRefGoogle Scholar
Tamura, M., Kandori, R., Kusakabe, N.et al. (2006a). Near-infrared polarization images of the Orion nebula. The Astrophysical Journal Letters, 649, L29L32.CrossRefGoogle Scholar
Tamura, M., Fukagawa, M., Kimura, H.et al. (2006b). First two-micron imaging polarimetry of β Pictoris. The Astrophysical Journal, 648, 11721177.CrossRefGoogle Scholar
Vallée, J. P. and Bastien, P. (1995). Extreme-infrared (800 microns) polarimetry at the JCMT of the W 75N-IRS 1 cloud, Astronomy and Astrophysics, 641, 831834.Google Scholar
Vallée, J. P. (1997). Observations of the magnetic fields inside and outside the Milky Way. Fundamentals of Cosmic Physics, 19, 189.Google Scholar
Vrba, F. J., Strom, S. E., and Strom, K. M. (1976). Magnetic field structure in the vicinity of five dark cloud complexes. The Astronomical Journal, 81, 958969.CrossRefGoogle Scholar
Weintraub, D. A., Goodman, A. A., and Akeson, R. L. (2000). Polarized light from star-forming regions. In V. Mannings, A. P. Boss, and S. S. Russell, eds., Protostars and Planets IV. Tucson: University of Arizona Press, pp. 247271.Google Scholar
Wildey, R. L. and Murray, B. C. (1964). 10-μ photometry of 25 stars from B8 to M7. The Astrophysical Journal, 139, 435441.CrossRefGoogle Scholar
Wolf-Chase, G., Moriarty-Schieven, G., Fich, M., and Barsony, M. (2003). Star formation in massive protoclusters in the Monoceros OB1 dark cloud. Monthly Notices of the Royal Astronomical Society, 344, 809822.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., and Meade, M. R. (1993). Ultraviolet interstellar linear polarization. I – Applicability of current dust grain models. The Astrophysical Journal, 403, 722735.CrossRefGoogle Scholar

References

Akitaya, H, Ikeda, Y., Kawabata, K. S. et al. (2011). Linear polarization in forbidden lines of the T Tauri star RY Tauri. Astronomy and Astrophysics, 499, 163173.CrossRefGoogle Scholar
Alonso-Albi, T., Fuente, A., Bachiller, R.et al. (2009). Circumstellar disks around Herbig Be stars. Astronomy and Astrophysics, 497, 117–136.CrossRefGoogle Scholar
Apai, D., Pascucci, I., Brandner, W.et al. (2004). NACO polarimetric differential imaging of TW Hya. A sharp look at the closest T Tauri disk. Astronomy and Astrophysics, 415, 671676.CrossRefGoogle Scholar
Appenzeller, I. (1994). Herbig Ae/Be stars: The interface between low-mass and high-mass star formation. In Thé, P. S., Pérez, M. R., and van den Heuvel, P. J., eds., The Nature and Evolutionary Status of Herbig Ae/Be Stars, Vol. 62. San Francisco USA: Astronomical Society of the Pacific, pp. 1219.Google Scholar
Appenzeller, I. and Mundt, R. (1989). T Tauri stars. Astronomy and Astrophysics Review, 1, 291334.CrossRefGoogle Scholar
Aspin, C., McLean, I. S., and Coyne, G. V. (1985). CCD observations of bipolar nebulae. III. R Mon/NGC 2261. Astronomy and Astrophysics, 148, 159166.Google Scholar
Asselin, L., Ménard, F., Bastien, P., Monin, J.-L., and Rouan, D. (1996). The environment of V633 Cassiopeiae and V376 Cassiopeiae: Evidence for circumstellar disks. The Astrophysical Journal, 472, 349359.CrossRefGoogle Scholar
Bastien, P. (1981). The wavelength dependence of linear polarization in T Tauri stars. Astronomy and Astrophysics, 94, 294298.Google Scholar
Bastien, P. (1982). A linear polarization survey of linear polarization in T Tauri stars. Astronomy and Astrophysics Supplement, 48, 153164 and 48, 513518.Google Scholar
Bastien, P. (1985). A linear polarization survey of southern T Tauri stars. The Astrophysical Journal Supplement, 59, 277291.CrossRefGoogle Scholar
Bastien, P. (1987). Polarization, jets and the distribution of circumstellar dust around T Tauri stars and other young infrared sources. The Astrophysical Journal, 317, 231240.CrossRefGoogle Scholar
Bastien, P. (1988). Polarization properties of T Tauri stars and other pre-main sequence objects. In Coyne, G. V., Magalhães, A. M., Moffat, A. F. J.et al., eds., Proceedings of the Vatican Observatory Conference on Polarized Radiation of Circumstellar Origin. Vatican: Vatican Press, pp. 541582.Google Scholar
Bastien, P. (1991). Polarization of light and models of the circumstellar environment of young stellar objects. In Lada, C. and Kylafis, N., eds., Physics of Star Formation and Early Stellar Evolution. NATO Advanced Study Institute. Dordrecht, Holland: Kluwer Academic Publishers, pp. 709736.CrossRefGoogle Scholar
Bastien, P. (1996). Polarization of young stellar objects. In Roberge, W. G. and Whittet, D. C. B., eds., Polarimetry of the Interstellar Medium. ASP Conference, 97. San Francisco USA: Astronomical Society of the Pacific, pp. 297314.Google Scholar
Bastien, P. and Landstreet, J. D. (1979). Polarization observations of the T Tauri stars RY Tauri, T Tauri, and V866 Scorpii. The Astrophysical Journal, 229, L37L40.CrossRefGoogle Scholar
Bastien, P. and Ménard, F. (1988). On the interpretation of polarization maps of young stellar objects. The Astrophysical Journal, 326, 334338.CrossRefGoogle Scholar
Bastien, P. and Ménard, F. (1990a). Parameters of disks around young stellar objects from polarization observations. The Astrophysical Journal, 364, 232241.CrossRefGoogle Scholar
Bastien, P. and Ménard, F. (1990b) Recent results on polarization of T Tauri stars and other young stellar objects. In Mirzoyan, L. V., Pettersen, B. R., and Tsvetkov, M. K., eds., Flare Stars in Star Clusters, Associations and the Solar Vicinity. IAU Symposium 137. Dordrecht, Holland: Kluwer, pp. 179184.CrossRefGoogle Scholar
Bastien, P., Ménard, F., Asselin, L., and Turbide, L. (1989a). The circumstellar environment of two young stars in Cassiopeia. In Modeling the Stellar Environment: How and why? Fourth IAP Astrophysics Meeting. Gif-sur-Yvette, France: Éditions Frontières, pp. 185188.Google Scholar
Bastien, P., Robert, C., and Nadeau, R. (1989b). Circular polarization in T Tauri stars. II. New observations and evidence for multiple scattering. The Astrophysical Journal, 339, 10891092.CrossRefGoogle Scholar
Bastien, P., Vernet, E., Drissen, L.et al. (2007). The variability of polarized standard stars. In Sterken, C., ed., The Future of Photometric, Spectrophotometric and Polarimetric Standardization. ASP Conference, 364. San Francisco USA: Astronomical Society of the Pacific, pp. 529541.Google Scholar
Berger, J.-P. and Ménard, F. (1997). The contribution of circumbinary envelopes to polarisation modulations. In Malbet, F. and Castets, A., eds., Low-Mass Star Formation – from Infall to Outflow. IAU Symposium 182. Dordrecht, the Netherlands: Kluwer, pp. 201203.Google Scholar
Bertout, C. (1989). T Tauri stars: Wild as dust. Annual Review of Astronomy and Astrophysics, 27, 351395.CrossRefGoogle Scholar
Bjorkman, K. S. (2012). Polarimetry of binary stars and exoplanets. In Richards, M. T. and Hubeny, I., eds., From Interacting Binaries to Exoplanets: Essential Modeling Tools. IAU Symposium 282. Cambridge University Press, pp. 173180.Google Scholar
Bjorkman, K. S. and Schulte-Ladbeck, R. (1994). Ultraviolet and optical spectropolarimetry of Herbig Ae/Be stars. In Thé, P. S., Perez, M. R., and van den Heuvel, E. P. J., eds., The Nature and Evolutionary Status of Herbig Ae/Be Stars. ASP, Vol. 62. San Francisco, USA: Astronomical Society of the Pacific, pp. 7477.Google Scholar
Bouvier, J., Chelli, A., Allain, S.et al. (1999). Magnetospheric accretion onto the T Tauri star AA Tauri. I. Constraints from multisite spectrophotometric monitoring. Astronomy and Astrophysics, 349, 619635.Google Scholar
Bouvier, J., Grankin, K. N., Alencar, S. H. P.et al. (2003). Eclipses by circumstellar material in the T Tauri star AA Tau. II. Evidence for non-stationary magnetospheric accretion. Astronomy and Astrophysics, 409, 169192.CrossRefGoogle Scholar
Bouvier, J., Grankin, K., Ellerbroek, L. E., Bouy, H. and Barrado, D. (2013). AA Tauri’s sudden and long-lasting deepening: Enhanced extinction by its circumstellar disk. Astronomy and Astrophysics, 557, A77 (9p).CrossRefGoogle Scholar
Brown, J. C., McLean, I. S., and Emslie, A. G. (1978). Polarisation by Thomson scattering in optically thin stellar envelopes. II – Binary and multiple star envelopes and the determination of binary inclinations. Astronomy and Astrophysics, 68, 415427.Google Scholar
Campbell, B., Persson, S. E., and McGregor, P. J. (1986). Images of star-forming regions. I. Optical and radio morphology of the bipolar outflow source GL 490. The Astrophysical Journal, 305, 336352.CrossRefGoogle Scholar
Campbell, B., Persson, S. E., Strom, S. E., and Grasdalen, G. L. (1988). Images of star-forming regions. II. The circumstellar environment of L1551 IRS 5. The Astronomical Journal, 95, 11731184.CrossRefGoogle Scholar
Cantó, J., Rodriguez, L. F., Barral, J. F., and Carral, P. (1981). Carbon monoxide observations of R Monocerotis, NGC 2261, and Herbig-Haro 39 – The interstellar nozzle. The Astrophysical Journal, 244, 102114.CrossRefGoogle Scholar
Catala, C. (1989). Herbig Ae and Be stars. In Reipurth, B., ed., Proceedings of the ESO Workshop on Low Mass Star Formation and Pre-Main Sequence Objects. Garching bei München, Germany: ESO, pp. 471489.Google Scholar
Clarke, D., Naghizadeh-Khouei, J., Simmons, J. F. L. and Stewart, B. G. (1993). A statistical assessment of zero-polarization catalogues. Astronomy and Astrophysics, 269, 617626.Google Scholar
Close, L. M., Roddier, F., Hora, J. L.et al. (1997). Adaptive optics infrared imaging polarimetry and optical HST imaging of Hubble’s nebula (R Monocerotis/NGC 2261): A close look at a very young active Herbig Ae/Be star. The Astrophysical Journal, 489, 210221.CrossRefGoogle Scholar
Daniel, J.-Y. (1980). Monte Carlo analysis of polarization by Mie scattering in circumstellar envelopes. Astronomy and Astrophysics, 87, 204209.Google Scholar
de Winter, D. and van den Ancker, M. E. (1997). The peculiar B[e] star HD 45677. II. Photometric behaviour and spectroscopic properties. Astronomy and Astrophysics Supplement, 121, 275299.CrossRefGoogle Scholar
Duchêne, G., McCabe, C., Ghez, A. M., and Macintosh, B. A. (2004). A multiwavelength scattered light analysis of the dust grain population in the GG Tauri circumbinary ring. The Astrophysical Journal, 606, 969982.CrossRefGoogle Scholar
Dyck, H. M., Simon, T., and Zuckerman, B. (1982). Discovery of an infrared companion to T Tauri. The Astrophysical Journal, 225, L103L106.CrossRefGoogle Scholar
Fisher, O., Henning, Th., and Yorke, H. W. (1994). Simulation of polarization maps. I. Protostellar envelopes. Astronomy and Astrophysics, 284, 187209.Google Scholar
Garrison, L. M. and Anderson, C. M. (1978). Observational studies of the Herbig Ae/Be stars. II. Polarimetry. The Astrophysical Journal, 221, 601607.CrossRefGoogle Scholar
Grinin, V. P. (1994). Polarimetric activity of Herbig Ae/Be stars. In Thé, P. S., Perez, M. R., and van den Heuvel, E. P. J., eds., The Nature and Evolutionary Status of Herbig Ae/Be Stars. ASP conference Vol. 62. San Francisco, USA: Astronomical Society of the Pacific, pp. 6370.Google Scholar
Grinin, V. P. (2000). Photopolarimetric activity of pre-main-sequence stars. In Garzón, F., Eiroa, C., de Winter, D., and Mahoney, T. J., eds., Disks, Planetesimals, and Planets. ASP Conference, Vol. 219. San Francisco, USA: Astronomical Society of the Pacific, pp. 216230.Google Scholar
Hall, R. C. (1965). Polarization and color measures of NGC 2261. Publications of the Astronomical Society, 77, 158163.CrossRefGoogle Scholar
Harrington, D. M. and Kuhn, J. R. (2007). Spectropolarimetry of the Hα line in Herbig Ae/Be stars. The Astrophysical Journal, 667, L89L92.CrossRefGoogle Scholar
Harrington, D. M. and Kuhn, J. R. (2009a). Spectropolarimetric observations of Herbig Ae/Be stars. II. Comparison of spectropolarimetric surveys: HAEBE, Be and other emission-line stars. The Astrophysical Journal Supplement, 180, 138181.CrossRefGoogle Scholar
Harrington, D. M. and Kuhn, J. R. (2009b). Ubiquitous Hα-polarized line profiles: Absorptive spectropolarimetric effects and temporal variability in post-AGB, Herbig Ae/Be, and other stellar types. The Astrophysical Journal, 695, 238247.CrossRefGoogle Scholar
Herbig, G. H. (1968). The structure and spectrum of R Monocerotis. The Astrophysical Journal, 152, 439441.CrossRefGoogle Scholar
Herbig, G. (1994). The Ae/Be stars. In Thé, P. S., Pérez, M. R., and van den Heuvel, P. J., eds., The Nature and Evolutionary Status of Herbig Ae/Be Stars. ASP Conference, Vol. 62. San Francisco, USA: Astronomical Society of the Pacific, pp. 3–10.Google Scholar
Herbst, W., Herbst, D. K., Grossman, E. J., and Weinstein, D. (1994). Catalogue of UBVRI photometry of T Tauri stars and analysis of the causes of their variability. The Astronomical Journal, 108, 19061923.CrossRefGoogle Scholar
Hillenbrand, L. A., Strom, S. E., Vrba, F. J., and Keene, J. (1992). Herbig Ae/Be star: Intermediate-mass accretion stars surrounded by massive circumstellar accretion disks. The Astrophysical Journal, 397, 613643.CrossRefGoogle Scholar
Hioki, H., Itoh, Y., Oasa, Y., Fukagawa, M., and Hayashi, M. (2011). High-resolution optical and near-infrared images of the FS Tauri circumbinary disk. Publications of the Astronomical Society of Japan, 63, 543554.CrossRefGoogle Scholar
Hodapp, K.-W. (1984). Infrared polarization of sources with bipolar mass outflow. Astronomy and Astrophysics, 141, 255262.Google Scholar
Hoffman, J. L.Whitney, B. A., and Nordsieck, K. H. (2003). The effect of multiple scattering on the polarization from binary star envelopes. I. Self- and externally illuminated disks. The Astrophysical Journal, 598, 572587.CrossRefGoogle Scholar
Hough, J. H., Bailey, J., Cunningham, E. C., McCall, A., and Axon, D. J. (1981). Linear polarization of T Tauri stars. Monthly Notices of the Royal Astronomical Society, 195, 429436.CrossRefGoogle Scholar
Jain, S. K. and Bhatt, H. C. (1995). Study of variability of the polarization in Herbig Ae/Be stars. Astronomy and Astrophysics Supplement, 111, 399405.Google Scholar
Jain, S. K., Bhatt, H. C., and Sagar, R. (1990). Measurements of linear polarization of some Herbig Ae/Be stars. Astronomy and Astrophysics Supplement, 83, 237244.Google Scholar
Jolin, M.-A., Bastien, P., Denni, F.et al. (2010). Toward understanding the environment of R Monocerotis from high-resolution near-infrared polarimetric observations. The Astrophysical Journal, 721, 17481754.CrossRefGoogle Scholar
Jones, T. J. and Dick, H. M. (1978). Infrared polarimetry of three bipolar nebulae. The Astrophysical Journal, 220, 159164.CrossRefGoogle Scholar
Joshi, U. C., Deshpande, M. R., and Kulshreta, A. K. (1987). Polarization measurements of some T Tauri stars. In Appenzeller, I. and Jordan, C., eds., Circumstellar Matter, IAU Symposium, 122. Dordrecht, the Netherlands: D. Reidel Publishing Company, pp. 135138.CrossRefGoogle Scholar
Koerner, D. W. and Sargent, A. I. (1995). Imaging the small-scale circumstellar gas around T Tauri stars. The Astronomical Journal, 109, 2138–2145.CrossRefGoogle Scholar
Koresko, C. D. (2000). A third star in the T Tauri system. The Astrophysical Journal, 531, L147L149.CrossRefGoogle Scholar
Kuhn, J. R., Berdyugina, S. V., Fluri, D. M., Harrington, D. M., and Stenflo, J. O. (2007). A new mechanism for polarizing light from obscured stars. The Astrophysical Journal, 668, L63L66.CrossRefGoogle Scholar
Manset, N. (2005). Polarimetry of binary stars. In Adamson, A., Aspin, C. J., Davis, C. J., and Fujiyoshi, T., eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference, Vol. 343, San Francisco, USA: Astronomical Society of the Pacific, pp. 389400.Google Scholar
Manset, N. and Bastien, P. (2000). Polarimetric variations of binary stars. I. Numerical simulations for circular and eccentric binaries in Thomson scattering envelopes. The Astronomical Journal, 120, 413429.CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2001a). Polarimetric variations of binary stars. II. Numerical simulations for circular and eccentric binaries in Mie scattering envelopes. The Astronomical Journal, 122, 26922699.CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2001b). Polarimetric variations of binary stars. III. Periodic polarimetric variations of the Herbig Ae/Be star MWC 1080. The Astronomical Journal, 122, 34533465.CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2002). Polarimetric variations of binary stars. IV. Pre-main-sequence spectroscopic binaries located in Taurus, Auriga, and Orion. The Astronomical Journal, 124, 10891117.CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2003). Polarimetric variations of binary stars. V. Pre-main-sequence spectroscopic binaries located in Ophiuchus and Scorpius. The Astronomical Journal, 125, 32743301.CrossRefGoogle Scholar
Manset, N.Bastien, P., and Bertout, C. (2005). Polarimetric variations of binary stars. VI. Orbit-induced variations in the pre-main-sequence binary AK Scorpii. The Astronomical Journal, 129, 480491.CrossRefGoogle Scholar
Manset, N., Bastien, P., Ménard, F.et al. (2009). Photometric and polarimetric clues to the circumstellar environment of RY Lupi. Astronomy and Astrophysics, 499, 137148.CrossRefGoogle Scholar
Mathieu, R. D. (1994). Pre-main-sequence binary stars. Annual Review of Astronomy and Astrophysics, 32, 465530.CrossRefGoogle Scholar
Matsumura, M., Seki, M., and Kawabata, K. (1999). Simultaneous polarimetry and photometry of the young stellar object R Monocerotis. The Astronomical Journal, 117, 429438.CrossRefGoogle Scholar
McCabe, C., Duchêne, G., and Ghez, A. M. (2003). The first detection of spatially resolved mid-infrared scattered light from a protoplanetary disk. The Astrophysical Journal, 588, L113L116.CrossRefGoogle Scholar
McLean, I. S. and Brown, J. C. (1978). Polarisation by Thomson scattering in optically thin stellar envelopes. III. A statistical study of the oblateness and rotation of Be star envelopes. Astronomy and Astrophysics, 69, 291296.Google Scholar
Mekkaden, M. V. (1999). Polarimetric and spectroscopic study of the weak-emission T Tauri star V 410 Tauri. Astronomy and Astrophysics, 344, 111116.Google Scholar
Mekkaden, M. V., Muneer, S., and Raveendran, A. V. (2007). Photometric, spectroscopic and polarimetric variability of the weak-emission T Tauri star HD 288313. Monthly Notices of the Royal Astronomical Society, 378, 10791088.CrossRefGoogle Scholar
Ménard, F. (1989). Étude de la polarisation causée par des grains dans les enveloppes circumstellaires denses. Ph.D. thesis, Université de Montréal.Google Scholar
Ménard, F. (1991). Monte Carlo radiative transfer models of circumstellar disks. In Arcoragi, J.-P., Bastien, P., and Pudritz, R., eds., Graduate Workshop on Star Formation. Dép. de physique, Université de Montréal, pp. 161165.Google Scholar
Ménard, F. and Bastien, P. (1992). Linear polarization of T Tauri stars. II. A sample of objects fainter than 13th magnitude. The Astronomical Journal, 103, 564572.CrossRefGoogle Scholar
Ménard, F. and Bertout, C. (1999). The nature of young solar-type stars. In Lada, C. J. and Kylafis, N. D., eds., The Origin of Stars and Planetary Systems. NATO ASIC Proceedings 540. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 341374.Google Scholar
Ménard, F., Bastien, P., and Robert, C. (1988). Detection of circular polarization in R Monocerotis and NGC 2261 – Implications for the polarization mechanism. The Astrophysical Journal, 335, 290294.CrossRefGoogle Scholar
Ménard, F., Duchêne, G., Viard, É., and Colombet, L. (1996). Can the geometrical parameters of YSOs’ accretion disks be evaluated by polarimetry? In Roberge, W. G. and Whittet, D. C. B., eds., Polarimetry of the Interstellar Medium. ASP Conference, Vol. 97. San Francisco, USA: Astronomical Society of the Pacific, pp. 315320.Google Scholar
Ménard, F., Bouvier, J., Dougados, C., Mel’nikov, S. Y., and Grankin, K. N. (2003). Constraints on the disk geometry of the T Tauri star AA Tau from linear polarimetry. Astronomy and Astrophysics, 409, 163167.CrossRefGoogle Scholar
Minchin, N. R., Hough, J. H., McCall, A.et al. (1991). Near-infrared imaging polarimetry of bipolar nebulae – III. R Mon/NGC 2261. Monthly Notices of the Royal Astronomical Society, 249, 707715.CrossRefGoogle Scholar
Moneti, A., Pipher, J. L., Helfer, H. L., McMillan, R. S., and Perry, M. L. (1984). Magnetic field structure in the Taurus dark cloud. The Astrophysical Journal, 282, 508515.CrossRefGoogle Scholar
Monin, J.-L., Ménard, F., and Duchêne, G. (1998). Using polarimetry to check rotation alignment in PMS binary stars. Principles of the method and first results. Astronomy and Astrophysics, 339, 113122.Google Scholar
Monin, J.-L., Ménard, F., and Peretto, N. (2006). Disc orientations in pre-main-sequence multiple systems. A study in southern star formation regions. Astronomy and Astrophysics, 446, 201210.CrossRefGoogle Scholar
Mottram, J. C., Vink, J. S., Oudmaijer, R. D., and Patel, M. (2007). On the difference between Herbig Ae and Herbig Be stars. Astronomy and Astrophysics, 337, 13631374.Google Scholar
Mundt, R. and Fried, J. W. (1983). Jets from young stars. The Astrophysical Journal, 274, L83L86.CrossRefGoogle Scholar
Murakawa, K. (2010). Radiative transfer modeling of the dust disk of the Herbig Be star R Monocerotis. Astronomy and Astrophysics, 422(A46), 110.Google Scholar
Murakawa, K., Preibisch, T., Kraus, S.et al. (2008). VLT/NACO and Subaru/CIAO JHK-band high resolution imaging polarimetry of the Herbig Be star R Monocerotis. Astronomy and Astrophysics, 488, L75L78.CrossRefGoogle Scholar
Nadeau, R. and Bastien, P. (1986). Circular polarization in T Tauri stars. The Astrophysical Journal, 307, L5L8.CrossRefGoogle Scholar
O’Sullivan, M., Truss, M., Walker, C.et al. (2005). Modelling the photopolarimetric variability of AA Tau. Monthly Notices of the Royal Astronomical Society, 358(2), 632640.CrossRefGoogle Scholar
Oudmaijer, R. D. and Drew, J. E. (1999). Hα spectropolarimetry of B[e] and Herbig Be stars. Monthly Notices of the Royal Astronomical Society, 305, 166180.CrossRefGoogle Scholar
Oudmaijer, R. D., Palacios, J., Eiroa, C., and the EXPORT collaboration (2001). EXPORT: Optical photometry and polarimetry of Vega-type and pre-main sequence stars. Astronomy and Astrophysics, 379, 564578.CrossRefGoogle Scholar
Oudmaijer, R. D., Drew, J. E., and Vink, J. S. (2005). Near-infrared spectropolarimetry of hot massive stars. Monthly Notices of the Royal Astronomical Society, 364, 725730.CrossRefGoogle Scholar
Pereyra, A., Magalhães, A. M., and Araújo, F. X. (2009a). Hα spectropolarimetry of RY Tauri and PX Vulpeculae. Astronomy and Astrophysics, 495, 195199.CrossRefGoogle Scholar
Pereyra, A., Girart, J. M., Magalhães, A. M., Rodrigues, C. V., and de Araújo, F. X. (2009b). Near infrared polarimetry of a sample of YSOs. Astronomy and Astrophysics, 501, 595607.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Kalas, P.et al. (2004). Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be stars. Science, 303, 13451348.CrossRefGoogle ScholarPubMed
Perrin, M. D., Duchêne, G., Kalas, P., and Graham, J. R. (2006). Discovery of an optically thick, edge-on disk around the Herbig Ae star PDS 144N. The Astrophysical Journal, 645, 12721282.CrossRefGoogle Scholar
Petrov, P. P., Zajtseva, G. V., Efimov, Yu. S.et al. (1999). Brightening of the T Tauri star RY Tauri in 1996. Photometry, polarimetry and high-resolution spectroscopy. Astronomy and Astrophysics, 341, 553559.Google Scholar
Petrova, N. N. and Shevchenko, V. S. (1987). Polarization in the light from Herbig Ae/Be stars. Soviet Astronomy Letters, 13, 289293.Google Scholar
Poeckert, R. (1982). Model atmospheres of Be Stars. In Jascheck, M. and Groth, H-G., eds., Be Stars. IAU Symposium, 98. Dordrecht, the Netherlands: Reidel, pp. 453481.CrossRefGoogle Scholar
Poeckert, R., Bastien, P., and Landstreet, J. D. (1979). Intrinsic polarization of Be stars. The Astronomical Journal, 84, 812830.CrossRefGoogle Scholar
Potter, D. E. (2003). A search for debris disks with a dual channel adaptive optics imaging polarimeter. Ph.D. thesis, University of Hawaii.Google Scholar
Quanz, S. P., Schmid, H. M., Geissler, K.et al. (2011). Very large telescope/NACO polarimetric differential imaging of HD 100546—disk structure and grain properties between 10 and 140 AU. The Astrophysical Journal, 738, 23 (20p).CrossRefGoogle Scholar
Rostopchina, A. N., Grinin, V. P., Okazaki, A.et al. (1997). Dust around young stars. Photopolarimetric activity of the classical Herbig Ae/Be star RR Tauri. Astronomy and Astrophysics, 327, 145154.Google Scholar
Rostopchina-Shakhovskaja, A. N., Grinin, V. P., and Shakhovskoi, D. N. (2012). Unusual recurrent eclipses of the UX Ori star WW Vul. Astrophysics, 55, 147155.CrossRefGoogle Scholar
Rudy, R. J. and Kemp, J. C. (1976). AO Cassiopeiae – Phase-locked polarization and the geometry of the gas stream. The Astrophysical Journal, 207, L125L128.CrossRefGoogle Scholar
Schulte-Ladbeck, R. (1983). Linear polarization variations of six T Tauri stars. Astronomy and Astrophysics, 120, 203214.Google Scholar
Schulte-Ladbeck, R., Shepherd, D. S., Nordsieck, K. H.et al. (1992). Evidence for a bipolar nebula around the peculiar B[e] star HD 45677 from ultraviolet spectropolarimetry. The Astrophysical Journal, 401, L105L108.CrossRefGoogle Scholar
Serkowski, K. (1969a). Changes in polarization of T Tauri stars. The Astrophysical Journal, 156, L55L57.CrossRefGoogle Scholar
Serkowski, K. (1969b). Polarization of reflection nebulae associated with VY Canis Majoris and R Coronae Austrinae. The Astrophysical Journal, 158, L107L110.CrossRefGoogle Scholar
Shawl, S. J. (1975). Wavelength dependence of polarization. XXIX. Observations of red variable stars. The Astronomical Journal, 80, 602624.CrossRefGoogle Scholar
Snell, R. L., Loren, R. B., and Plambeck, R. L. (1980). Observations of CO in L1551: Evidence for stellar wind driven shocks. The Astrophysical Journal, 239, L17L22.CrossRefGoogle Scholar
Stahler, S. W. and Palla, F. (2004). The Formation of Stars. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Stassun, K. and Wood, K. (1999). Magnetic accretion and photopolarimetric variability in classical T Tauri stars. The Astrophysical Journal, 510, 892904.CrossRefGoogle Scholar
St-Onge, G. and Bastien, P. (2008). A jet associated with the classical T Tauri star RY Tauri. The Astrophysical Journal, 674, 10321036.CrossRefGoogle Scholar
Tamura, M. and Fukagawa, M. (2005). Circumstellar disks in PMS and T Tauri stars—Herbig Ae/Be stars, Vega-like stars, and submillimeter polarizations. In Adamson, A., Aspin, C. J., Davis, C. J., and Fujiyoshi, T., eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, pp. 215226.Google Scholar
Tamura, M. and Sato, S. (1989). A two micron polarization survey of T Tauri stars. Astronomical Journal, 98, 13681381.CrossRefGoogle Scholar
Thé, P. S., Pérez, M. R., and van den Heuvel, P. J., eds. (1994). The Nature and Evolutionary Status of Herbig Ae/Be Stars. San Francisco, USA: Astronomical Society of the Pacific.Google Scholar
Vardanian, R. A. (1964). The polarization of T and RY Tau. Soobshcheniya Byurakanskoj Observatorii, 35, 323.Google Scholar
Vink, J. S., Drew, J. E., Harries, T. J., and Oudmaijer, R. D. (2002). Probing the circumstellar structure of Herbig Ae/Be stars. Monthly Notices of the Royal Astronomical Society, 337, 356368.CrossRefGoogle Scholar
Vink, J. S., Drew, J. E., Harries, T. J., Oudmaijer, R. D., and Unruh, Y. (2003). Resolved polarization changes across Hα in the classical T Tauri star RY Tauri. Astronomy and Astrophysics, 406, 703707.CrossRefGoogle Scholar
Vink, J. S., Drew, J. E., Harries, T. J., Oudmaijer, R. D., and Unruh, Y. (2005a). Probing the circumstellar structures of T Tauri stars and their relationship to those of Herbig stars. Monthly Notices of the Royal Astronomical Society, 359, 10491064.CrossRefGoogle Scholar
Vink, J. S., Harries, T. J., and Drew, J. E. (2005b). Polarimetric line profiles for scattering off rotating disks. Astronomy and Astrophysics, 430, 213222.CrossRefGoogle Scholar
Vrba, F. J. (1975). Polarization characteristics of Herbig Ae and Be stars. The Astrophysical Journal, 195, 101106.CrossRefGoogle Scholar
Vrba, F. J., Strom, S. E., and Strom, K. M. (1976). Magnetic field structure in the vicinity of five dark clouds complexes. The Astronomical Journal, 81, 958970.CrossRefGoogle Scholar
Vrba, F. J., Schmidt, G. D., and Hintzen, P. M. (1979). Observations and evaluation of the polarization in Herbig Ae/Be stars. The Astrophysical Journal, 227, 185196.CrossRefGoogle Scholar
Waters, L. B. F. M. and Waelkens, C. (1998). Herbig Ae/Be stars. Annual Review of Astronomy and Astrophysics, 36, 233266.CrossRefGoogle Scholar
Watson, A. M., Stapelfeldt, K. R., Wood, K., and Ménard, F. (2007). Multiwavelength imaging of young stellar object disks: Toward an understanding of disks structure and evolution. In Reipurth, B., Jewitt, D., and Keil, K., eds., Protostars and Planets V. Tucson, USA: University of Arizona Press and Lunar and Planetary Institute, pp. 523538.Google Scholar
Weintraub, D. A., Goodman, A. A., and Akeson, R. L. (2000). Polarized light from star-forming regions. In Manning, V., Boss, A. P., and Russell, S. S., eds., Protostars and Planets IV. Tucson, USA: University of Arizona Press, pp. 247271.Google Scholar
Wheelwright, H. E., Vink, J. S., Oudmaijer, R. D., and Drew, J. E. (2011). On the alignment between the circumstellar disks and orbital planes of Herbig Ae/Be binary systems. Astronomy and Astrophysics, 532, A28 (10p).CrossRefGoogle Scholar
Whitney, B. A. and Hartmann, L. (1992). Model scattering envelopes of young stellar objects. I. Method and application to circumstellar disks. The Astrophysical Journal, 395, 529539.CrossRefGoogle Scholar
Whitney, B. A. and Hartmann, L. (1993). Model scattering envelopes of young stellar objects. II. Infalling envelopes. The Astrophysical Journal, 402, 605622.CrossRefGoogle Scholar
Whitney, B. A., Kenyon, S. J., and Gómez, M. (1997). Near-infrared imaging polarimetry of embedded young stars in the Taurus–Auriga molecular clouds. The Astrophysical Journal, 485, 703734.CrossRefGoogle Scholar
Wolstencroft, R. D. and Simon, T. (1975). The variable circular polarization of V1057 Cygni. The Astrophysical Journal, 199, L169L171.CrossRefGoogle Scholar
Wood, K., Kenyon, S. J., Whitney, B. A., and Bjorkman, J. E. (1996). Magnetic accretion and photopolarimetric variability in T Tauri stars. The Astrophysical Journal, 458, L79L82.CrossRefGoogle Scholar
Yudin, R. V. (1988). Analysis of correlations between polarimetric and photometric characteristics of young stars. Soviet Astronomy AJ USSR, 32, 652659.Google Scholar
Yudin, R. V. (2000). Analysis of correlations between polarimetric and photometric characteristics of young stars. A new approach to the problem after eleven years’ study. Astronomy and Astrophysics Supplement, 144, 285306.CrossRefGoogle Scholar
Yudin, R. V. and Evans, A. (1998). Polarimetry of southern peculiar early—type stars. Astronomy and Astrophysics Supplement, 131, 401429.CrossRefGoogle Scholar
Zellner, B. H. (1970). Wavelength dependence of polarization XXI. R Monocerotis. The Astronomical Journal, 75, 182185.CrossRefGoogle Scholar

References

Bailey, J., Chrysostomou, A., Hough, J. H.et al. (1998). Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science, 281, 672674.CrossRefGoogle ScholarPubMed
Barvainis, R., Clemens, D. P., and Leach, R. (1988). Polarimetry at 1.3 mm using MILLIPOL – Methods and preliminary results for Orion. The Astronomical Journal, 95, 510515.CrossRefGoogle Scholar
Bastien, P. and Ménard, F. (1988). On the interpretation of polarization maps of young stellar objects. The Astrophysical Journal, 326, 334338.CrossRefGoogle Scholar
Bastien, P., Bissonnette, E., Simon, A.et al. (2012). POL-2: The SCUBA-2 Polarimeter. In Bastien, P., Manset, N., Clemens, D. P., and St-Louis, N., eds., Astronomical Polarimetry 2008: Science from Small to Large Telescopes. ASP Conference Series, Vol. 449. San Francisco, USA: Astronomical Society of the Pacific, p. 68.Google Scholar
Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., and Blitz, L. (2008). The resolved properties of extragalactic giant molecular clouds. The Astrophysical Journal, 686, 948.CrossRefGoogle Scholar
Chandrasekhar, S. and Fermi, E. (1953). Magnetic fields in spiral arms. The Astrophysical Journal, 118, 113.CrossRefGoogle Scholar
Chrysostomou, A., Hough, J. H., Aspin, C. A., and Bailey, J. A. (1994a). Dissecting the Bipolar Nebula in NGC6334V. Monthly Notices of the Royal Astronomical Society, 268, L63L67.CrossRefGoogle Scholar
Chrysostomou, A., Hough, J. H., Burton, M. G., and Tamura, M. (1994b). Twisting magnetic fields in the core region of Orion Molecular Cloud-1. Monthly Notices of the Royal Astronomical Society, 268, 325334.CrossRefGoogle Scholar
Chrysostomou, A., Ménard, F., Gledhill, T. M.et al. (1997). Polarimetry of young stellar objects—II. Circular polarization of GSS 30. Monthly Notices of the Royal Astronomical Society, 285, 750758.CrossRefGoogle Scholar
Chrysostomou, A., Lucas, P. W., and Hough, J. H. (2007). Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136. Nature, 450, 7173.CrossRefGoogle Scholar
Clark, S. and McCall, A. (1997). Polarization models of bipolar reflection nebulae—I. Monthly Notices of the Royal Astronomical Society, 284, 513526.CrossRefGoogle Scholar
Clark, S., McCall, A., Chrysostomou, A.et al. (2000). Polarization models of young stellar objects—II. Linear and circular polarimetry of R Coronae Australis. Monthly Notices of the Royal Astronomical Society, 319, 337349.Google Scholar
Clayton, G. C., Whitney, B. A., Wolff, M. J., Smith, P., and Gordon, K. D. (2005). Circular polarization mapping of protostellar environments: Searching for aligned grains. In Adamson, A., Aspin, C., Davis, C. J., and Fujiyoshi, T., eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. Proceedings of the Conference 15–19 March, 2004 in Waikoloa HI, USA. San Francisco, USA: Astronomical Society of the Pacific, p. 122.Google Scholar
Crutcher, R. M. (2012). Magnetic fields in molecular clouds. Annual Review of Astronomy and Astrophysics, 50, 2963.CrossRefGoogle Scholar
Crutcher, R. M., Nutter, D. J., Ward-Thompson, D., and Kirk, J. M. (2004). SCUBA polarization measurements of the magnetic field strengths in the L183, L1544, and L43 prestellar cores. The Astrophysical Journal, 600, 279285.CrossRefGoogle Scholar
Cudlip, W., Furniss, I., King, K. J., and Jennings, R. E. (1982). Far infrared polarimetry of W51A and M42. Monthly Notices of the Royal Astronomical Society, 200, 11691173.CrossRefGoogle Scholar
Curran, R. L. and Chrysostomou, A. (2007). Magnetic fields in massive star-forming regions. Monthly Notices of the Royal Astronomical Society, 382, 699716.CrossRefGoogle Scholar
Dennison, B., Ward, D. B., Gull, G. E., and Harwit, M. (1977). Far-infrared polarization of M42. The Astronomical Journal, 82, 3941.CrossRefGoogle Scholar
Dobbs, C. L., Krumholz, M. R., Ballesteros-Paredes, J.et al. (2014). Formation of molecular clouds and global conditions for star formation. Accepted for publication as a chapter in Beuther, H., Klessen, R., Dullemond, C., and Henning, Th., eds., Protostars and Planets VI. University of Arizona Press.Google Scholar
Dotson, J. L. (1996). Polarization of the far-infrared emission from M17. The Astrophysical Journal, 470, 566.CrossRefGoogle Scholar
Dowell, C. D., Hildebrand, R. H., Schleuning, D. A.et al. (1998). Submillimeter array polarimetry with Hertz. The Astrophysical Journal, 504, 588.CrossRefGoogle Scholar
Falceta-Gonçalves, D., Lazarian, A., and Kowal, G. (2008). Studies of regular and random magnetic fields in the ISM: Statistics of polarization vectors and the Chandrasekhar–Fermi technique. The Astrophysical Journal, 679, 537.CrossRefGoogle Scholar
Federrath, C. and Klessen, R. S. (2012). The star formation rate of turbulent magnetized clouds: Comparing theory, simulations, and observations. The Astrophysical Journal, 761, 156.CrossRefGoogle Scholar
Fiedler, R. A. and Mouschovias, T. C. (1993). Ambipolar diffusion and star formation: Formation and contraction of axisymmetric cloud cores. II. Results. The Astrophysical Journal, 415, 680.CrossRefGoogle Scholar
Fischer, O., Henning, T., and Yorke, H. W. (1996). Simulation of polarization maps. II. The circumstellar environment of pre-main sequence objects. Astronomy and Astrophysics, 308, 863885.Google Scholar
Flett, A. M. and Murray, A. G. (1991). First results from a submillimeter polarimeter on the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society, 249, 46.CrossRefGoogle Scholar
Franco, G. A., Alves, F. D. O., and Girart, J. M. (2010). Detailed interstellar polarimetric properties of the Pipe Nebula at core scales. The Astrophysical Journal, 723, 146.CrossRefGoogle Scholar
Frisch, U. (1995). Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Galli, D. and Shu, F. H. (1993). Collapse of magnetized molecular cloud cores. II. Numerical results. The Astrophysical Journal, 544, 243.CrossRefGoogle Scholar
Girart, J. M., Rao, R., and Marrone, D. P. (2006). Magnetic fields in the formation of sun-like stars. Science, 313, 812814.CrossRefGoogle ScholarPubMed
Girart, J. M., Frau, P., Zhang, Q.et al. (2013). DR 21 (OH): A highly fragmented, magnetized, turbulent dense core. The Astrophysical Journal, 772, 69.CrossRefGoogle Scholar
Gledhill, T. M. (1991). Linear polarization maps of bipolar and cometary nebulae – A polarized source interpretation. Monthly Notices of the Royal Astronomical Society, 252, 138150.CrossRefGoogle Scholar
Gledhill, T. M. and McCall, A. (2000). Circular polarization by scattering from spheroidal dust grains. Monthly Notices of the Royal Astronomical Society, 314, 123137.CrossRefGoogle Scholar
Gledhill, T. M., Chrysostomou, A., and Hough, J. H. (1996). Linear and circular imaging polarimetry of the Chamaeleon infrared nebula. Monthly Notices of the Royal Astronomical Society, 282, 14181436.CrossRefGoogle Scholar
Gull, G. E., Houck, J. R., McCarthy, J. F., Forrest, W. G., and Harwit, M. (1978). Far-infrared polarization of the Kleinmann-Low Nebula in Orion. The Astronomical Journal, 83, 14401444.CrossRefGoogle Scholar
Gull, G. E., Russell, R. W., and Harwit, M. (1980). Far-infrared polarization of the Kleinmann-Low Nebula. The Astronomical Journal, 85, 13791381.CrossRefGoogle Scholar
Hartmann, L., Ballesteros-Paredes, J., and Bergin, E. A. (2001). Rapid formation of molecular clouds and stars in the solar neighborhood. The Astrophysical Journal, 562, 852.CrossRefGoogle Scholar
Heitsch, F., Mac Low, M. M., and Klessen, R. S. (2001). Gravitational collapse in turbulent molecular clouds. II. Magnetohydrodynamical turbulence. The Astrophysical Journal, 547, 280.CrossRefGoogle Scholar
Heyer, M., Krawczyk, C., Duval, J., and Jackson, J. M. (2009). Re-examining Larson’s scaling relationships in galactic molecular clouds. The Astrophysical Journal, 699, 1092.CrossRefGoogle Scholar
Hildebrand, R. H., Dragovan, M., and Novak, G. (1984). Detection of submillimeter polarization in the Orion nebula. The Astrophysical Journal, 284, L51L54.CrossRefGoogle Scholar
Hildebrand, R. H., Davidson, J. A., Dotson, J. L.et al. (2000). A primer on far-infrared polarimetry. Publications of the Astronomical Society of the Pacific, 112, 12151235.CrossRefGoogle Scholar
Hildebrand, R. H., Kirby, L., Dotson, J. L., Houde, M., and Vaillancourt, J. E. (2009). Dispersion of magnetic fields in molecular clouds. I. The Astrophysical Journal, 696, 567.CrossRefGoogle Scholar
Houde, M. (2004). Evaluating the magnetic field strength in molecular clouds. The Astrophysical Journal Letters, 616, L111.CrossRefGoogle Scholar
Houde, M., Akeson, R. L., Carlstrom, J. E.et al. (2001). Polarizing grids, their assemblies, and beams of radiation. The Publications of the Astronomical Society of the Pacific, 113, 622638.CrossRefGoogle Scholar
Houde, M., Dowell, C. D., Hildebrand, R. H.et al. (2004). Tracing the magnetic field in Orion A. The Astrophysical Journal, 604, 717740.CrossRefGoogle Scholar
Houde, M., Vaillancourt, J. E., Hildebrand, R. H., Chitsazzadeh, S., and Kirby, L. (2009). Dispersion of magnetic fields in molecular clouds. II. The Astrophysical Journal, 706, 1504.CrossRefGoogle Scholar
Houde, M., Rao, R., Vaillancourt, J. E., and Hildebrand, R. H. (2011a). Dispersion of magnetic fields in molecular clouds. III. The Astrophysical Journal, 733, 109.CrossRefGoogle Scholar
Houde, M., Hezareh, T., Li, H., and Phillips, T. G. (2011b). Ambipolar diffusion and turbulent magnetic fields in molecular clouds. Modern Physics Letters A, 26, 235249.CrossRefGoogle Scholar
Houde, M., Fletcher, A., Beck, R.et al. (2013). Characterizing magnetized turbulence in M51. The Astrophysical Journal, 766, 49.CrossRefGoogle Scholar
Hough, J. (2011). High sensitivity polarimetry: techniques and applications. In Polarimetric Detection, Characterization and Remote Sensing. The Netherlands: Springer, pp. 177204.CrossRefGoogle Scholar
Hough, J. H., Chrysostomou, A., and Bailey, J. A. (1994). A new imaging infrared polarimeter. In McLean, Ian S., ed., Infrared Astronomy with Arrays, The Next Generation. Astrophysics and Space Science Library, Vol. 190. Springer, p. 287.CrossRefGoogle Scholar
Jiang, Z., Tamura, M., Fukagawa, M.et al. (2005). A circumstellar disk associated with a massive protostellar object. Nature, 437, 112115.CrossRefGoogle ScholarPubMed
Kawamura, A., Mizuno, Y., Minamidani, T.et al. (2009). The second survey of the molecular clouds in the Large Magellanic Cloud by NANTEN. II. Star formation. The Astrophysical Journal Supplement Series, 184, 1.CrossRefGoogle Scholar
Kemp, J. C. (1972). Circular polarization of Omicron Scorpii: Possible interstellar origin. The Astrophysical Journal, 175, 35.CrossRefGoogle Scholar
Koda, J., Scoville, N., Sawada, T.et al. (2009). Dynamically driven evolution of the interstellar medium in M51. The Astrophysical Journal Letters, 700, L132.CrossRefGoogle Scholar
Lada, C. J. and Lada, E. A. (2003). Embedded clusters in molecular clouds. Annual Review of Astronomy and Astrophysics, 4, 57115.CrossRefGoogle Scholar
Lai, S. P., Crutcher, R. M., Girart, J. M., and Rao, R. (2001). Interferometric mapping of magnetic fields in star-forming regions. I. W51 e1/e2 molecular cores. The Astrophysical Journal, 561, 864.CrossRefGoogle Scholar
Lai, S. P., Crutcher, R. M., Girart, J. M., and Rao, R. (2002). Interferometric mapping of magnetic fields in star-forming regions. II. NGC 2024 FIR 5. The Astrophysical Journal, 566, 925930.CrossRefGoogle Scholar
Lai, S. P., Girart, J. M., and Crutcher, R. M. (2003). Interferometric mapping of magnetic fields in star-forming regions. III. Dust and CO polarization in DR 21 (OH). The Astrophysical Journal, 598, 392.CrossRefGoogle Scholar
Larson, R. B. (1981). Turbulence and star formation in molecular clouds. Monthly Notices of the Royal Astronomical Society, 194, 809826.CrossRefGoogle Scholar
Leisawitz, D., Bash, F. N., and Thaddeus, P. (1989). A CO survey of regions around 34 open clusters. The Astrophysical Journal Supplement, 70, 731812.CrossRefGoogle Scholar
Li, H. B. and Houde, M. (2008). Probing the turbulence dissipation range and magnetic field strengths in molecular clouds. The Astrophysical Journal, 677, 1151.CrossRefGoogle Scholar
Li, H., Attard, M., Dowell, C. D.et al. (2006). SHARP: The SHARC-II polarimeter for CSO, millimeter and submillimeter detectors and instrumentation for astronomy III. In Zmuidzinas, J., Holland, W. S., Withington, S., and Duncan, W. D., eds., Proceedings of the SPIE, Vol. 6275. Bellingham WA: International Society for Optics and Photonics, p. 48.Google Scholar
Lonsdale, C. J., Dyck, H. M., Capps, R. W., and Wolstencroft, R. D. (1980). Near-infrared circular polarization observations of molecular cloud sources. The Astrophysical Journal, 238, L31L35.CrossRefGoogle Scholar
Lucas, P. W. and Roche, P. F. (1998). Imaging polarimetry of class I young stellar objects. Monthly Notices of the Royal Astronomical Society, 299, 699722.CrossRefGoogle Scholar
Lucas, P. W., Hough, J. H., Bailey, J.et al. (2005). UV circular polarisation in star formation regions: The origin of homochirality?Origins of Life and Evolution of Biospheres, 35, 2960.CrossRefGoogle ScholarPubMed
Matthews, B. C., McPhee, C. A., Fissel, L. M., and Curran, R. L. (2009). The legacy of SCUPOL: 850 μm imaging polarimetry from 1997 to 2005. The Astrophysical Journal Supplement Series, 182, 143.CrossRefGoogle Scholar
McKee, C. F. and Ostriker, E. C. (2007). Theory of star formation. Annual Review of Astronomy and Astrophysics, 45, 565687.CrossRefGoogle Scholar
Ménard, F., Bastien, P., and Robert, C. (1988). Detection of circular polarization in R Monocerotis and NGC 2261 – Implications for the polarization mechanism. The Astrophysical Journal, 335, 290294.CrossRefGoogle Scholar
Mouschovias, T. C. (1987). Star Formation in Magnetic Interstellar Clouds: I. Interplay between Theory and Observations. The Netherlands: Springer, pp. 453489.Google Scholar
Myers, P. C. and Goodman, A. A. (1991). On the dispersion in direction of interstellar polarization. The Astrophysical Journal, 373, 509524.CrossRefGoogle Scholar
Novak, G., Dotson, J. L., Dowell, C. D.et al. (1997). Polarized far-infrared emission from the core and envelope of the Sagittarius B2 molecular cloud. The Astrophysical Journal, 487, 320.CrossRefGoogle Scholar
Novak, G., Chuss, D. T., Davidson, J. A. et al. (2004). A polarimetry module for CSO/SHARC-II. In Astronomical Telescopes and Instrumentation. Bellingham WA: International Society for Optics and Photonics, pp. 278289.Google Scholar
Packham, C., Hough, J., and Telesco, C. M. (2005). CanariCam-Polarimetry: A dual-beam 10μm polarimeter for the GTC. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, pp. 3842.Google Scholar
Padoan, P. and Nordlund, Å. (1999). A super-alfvenic model of dark clouds. The Astrophysical Journal, 526, 279.CrossRefGoogle Scholar
Sakamoto, K., Ho, P. T., Mao, R. Q., Matsushita, S., and Peck, A. B. (2007). Detection of CO hot spots associated with young clusters in the southern starburst galaxy NGC 1365. The Astrophysical Journal, 654, 782.CrossRefGoogle Scholar
Sandstrom, K. M., Peek, J. E. G., Bower, G. C., Bolatto, A. D., and Plambeck, R. L. (2007). A parallactic distance of 389-21+ 24 parsecs to the Orion Nebula Cluster from very long baseline array observations. The Astrophysical Journal, 667, 1161.CrossRefGoogle Scholar
Sato, S., Nagata, T., Nakajima, T.et al. (1985). Polarimetry of infrared sources in bipolar CO flows. The Astrophysical Journal, 291, 708715.CrossRefGoogle Scholar
Scarrott, S. M., Draper, P. W., and Warren-Smith, R. F. (1989). The origin of the “polarization disc” in NGC2261/R Mon. Monthly Notices of the Royal Astronomical Society, 237, 621634.CrossRefGoogle Scholar
Schleuning, D. A. (1998). Far-infrared and submillimeter polarization of OMC-1: Evidence for magnetically regulated star formation. The Astrophysical Journal, 493, 811.CrossRefGoogle Scholar
Scoville, N. Z., Solomon, P. M., and Sanders, D. B. (1979). CO observations of spiral structure and the lifetime of giant molecular clouds. In Burton, W. B., ed., The Large-Scale Characteristics of the Galaxy. Proceedings of the IAU Symposium, Vol. 84, pp. 277282.CrossRefGoogle Scholar
Shu, F. H., Adams, F. C., and Lizano, S. (1987). Star formation in molecular clouds – Observation and theory. Annual Review of Astronomy and Astrophysics, 25, 2381.CrossRefGoogle Scholar
Stone, J. M., Ostriker, E. C., and Gammie, C. F. (1998). Dissipation in compressible magnetohydrodynamic turbulence. The Astrophysical Journal Letters, 508, L99.CrossRefGoogle Scholar
Tan, J., Beltran, M. T., Caselli, P.et al. (2014). Massive star formation. Accepted for publication as a chapter in Beuther, H., Klessen, R., Dullemond, C., and Henning, Th., eds., Protostars and Planets VI. University of Arizona Press.Google Scholar
Vaillancourt, J. E., Dowell, C. D., Hildebrand, R. H.et al. (2008). New results on the submillimeter polarization spectrum of the Orion molecular cloud. The Astrophysical Journal, 679, L25L28.CrossRefGoogle Scholar
Walther, D. M., Robson, E. I., Aspin, C., and Dent, W. R. F. (1993). JHKL imaging and K polarimetry of the bipolar outflow NGC 2071. The Astrophysical Journal, 418, 310.CrossRefGoogle Scholar
Warren-Smith, R. F., Draper, P. W., and Scarrott, S. M. (1987). Magnetic fields and star formation – Evidence from imaging polarimetry of the Serpens Reflection Nebula. Monthly Notices of the Royal Astronomical Society, 227, 749771.CrossRefGoogle Scholar
Whitney, B. A. and Hartmann, L. (1993). Model scattering envelopes of young stellar objects. II – Infalling envelopes. The Astrophysical Journal, 402, 605622.CrossRefGoogle Scholar
Whitney, B. A. and Wolff, M. J. (2002). Scattering and absorption by aligned grains in circumstellar environments. The Astrophysical Journal, 574, 205.CrossRefGoogle Scholar
Wilson, C. D., Scoville, N., Madden, S. C., and Charmandaris, V. (2000). High-resolution imaging of molecular gas and dust in the Antennae (NGC 4038/39): Super giant molecular complexes. The Astrophysical Journal, 542, 120.CrossRefGoogle Scholar
Wong, T., Hughes, A., Jürgen, O.et al. (2011). The Magellanic Mopra assessment (MAGMA). I. The molecular cloud population of the Large Magellanic Cloud. The Astrophysical Journal Supplement, 197, 16.CrossRefGoogle Scholar

References

Aitken, D. K., Smith, C. H., Moore, T. J., and Roche, P. F. (1995). Mid-infrared studies of Eta Carinae-II. Polarimetric imaging at 12.5 μm and the magnetic field structure. Monthly Notices of the Royal Astronomical Society, 273, 359366.CrossRefGoogle Scholar
Assaf, K. A., Diamond, P. J., Richards, A. M. S., and Gray, M. D. (2013). Polarization morphology of SiO masers in the circumstellar envelope of the asymptotic giant branch star R Cassiopeiae. Monthly Notices of the Royal Astronomical Society, 431(2), 10771089.CrossRefGoogle Scholar
Bains, I., Gledhill, T. M., Yates, J. A., and Richards, A. M. S. (2003). MERLIN polarimetry of the OH masers in OH17. 7–2.0. Monthly Notices of the Royal Astronomical Society, 338(2), 287302.CrossRefGoogle Scholar
Bains, I., Richards, A. M. S., Gledhill, T. M., and Yates, J. A. (2004). MERLIN polarimetry of the OH masers in IRAS 20406+ 2953. Monthly Notices of the Royal Astronomical Society, 354(2), 529542.CrossRefGoogle Scholar
Bains, I., Richards, A. M. S., and Szymczak, M. (2009). MERLIN polarimetry of OH masers in post-AGB stars. In The Eighth Pacific Rim Conference on Stellar Astrophysics: A Tribute to Kam-Ching Leung, Vol. 404. San Francisco CA: Astronomical Society of the Pacific, p. 368.Google Scholar
Balick, B. and Frank, A. (2002). Shapes and shaping of planetary nebulae. Annual Review of Astronomy and Astrophysics, 40(1), 439486.CrossRefGoogle Scholar
Balick, B., Gomez, T., Vinković, D.et al. (2012). The illumination and growth of CRL 2688: An analysis of new and archival Hubble Space Telescope observations. The Astrophysical Journal, 745(2), 188.CrossRefGoogle Scholar
Blackman, E. G., Frank, A., Markiel, J. A., Thomas, J. H., and Van Horn, H. M. (2001). Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae. Nature, 409(6819), 485487.CrossRefGoogle ScholarPubMed
Claussen, M. J., Sahai, R., and Morris, M. R. (2009). The motion of water masers in the pre-planetary nebula IRAS 16342-3814. The Astrophysical Journal, 691(1), 219.CrossRefGoogle Scholar
DavisJr, L. and Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. The Astrophysical Journal, 114, 206.CrossRefGoogle Scholar
Delgado, D. G., Olofsson, H., Schwarz, H. E.et al. (2003). Imaging polarimetry of stellar light scattered in detached shells around the carbon stars R Scl and U Ant. Astronomy and Astrophysics, 399(3), 10211036.CrossRefGoogle Scholar
De Marco, O. (2009). The origin and shaping of planetary nebulae: Putting the binary hypothesis to the test. Publications of the Astronomical Society of the Pacific, 121(878), 316342.CrossRefGoogle Scholar
De Marco, O., Passy, J. C., Frew, D. J., Moe, M., and Jacoby, G. H. (2013). The binary fraction of planetary nebula central stars–I. A high-precision, I-band excess search. Monthly Notices of the Royal Astronomical Society, 428(3), 21182140.CrossRefGoogle Scholar
Diamond, P. J. and Kemball, A. J. (2003). A movie of a star: Multiepoch very long baseline array imaging of the SiO masers toward the Mira variable TX Cam. The Astrophysical Journal, 599(2), 1372.CrossRefGoogle Scholar
Dolginov, A. Z. and Mytrophanov, I. G. (1976). Orientation of cosmic dust grains. Astrophysics and Space Science, 43(2), 291317.CrossRefGoogle Scholar
Draine, B. T. and Weingartner, J. C. (1996). Radiative torques on interstellar grains: I. Superthermal spinup. The Astrophysical Journal, 470, 551565.CrossRefGoogle Scholar
Elitzur, M. (2002). Astronomical masers and their polarization. In Trujillo Bueno, J., Moreno-Insertis, F., and Sánchez, F., eds., Astrophysical Spectropolarimetry. Cambridge University Press, pp. 255264.Google Scholar
Forbes, F. F. (1967). The infrared polarization of the infrared star in Cygnus. The Astrophysical Journal, 147, 1226.CrossRefGoogle Scholar
Girart, J. M., Patel, N., Vlemmings, W. H. T., and Rao, R. (2012). Mapping the linearly polarized spectral line emission around the evolved star IRC+ 10216. The Astrophysical Journal Letters, 751(1), L20.CrossRefGoogle Scholar
Gledhill, T. M. (2005). Axisymmetry in protoplanetary nebulae–II. A near-infrared imaging polarimetric survey. Monthly Notices of the Royal Astronomical Society, 356(3), 883898.CrossRefGoogle Scholar
Gledhill, T. M., Chrysostomou, A., Hough, J. H., and Yates, J. A. (2001). Axisymmetry in protoplanetary nebulae: Using imaging polarimetry to investigate envelope structure. Monthly Notices of the Royal Astronomical Society, 322(2), 321342.CrossRefGoogle Scholar
Glenn, J., Walker, C. K., Bieging, J. H., and Jewell, P. R. (1997). Millimeter-wave spectropolarimetry of evolved stars: Evidence for polarized molecular line emission. The Astrophysical Journal Letters, 487(1), L89.CrossRefGoogle Scholar
Goldreich, P. and Kylafis, N. D. (1981). On mapping the magnetic field direction in molecular clouds by polarization measurements. The Astrophysical Journal, 243, L75L78.CrossRefGoogle Scholar
Goldreich, P. and Kylafis, N. D. (1982). Linear polarization of radio frequency lines in molecular clouds and circumstellar envelopes. The Astrophysical Journal, 253, 606621.CrossRefGoogle Scholar
Greaves, J. S. (2002). Toroidal magnetic fields around planetary nebulae. Astronomy and Astrophysics, 392(1), L1L4.CrossRefGoogle Scholar
Habing, H. J. (1996). Circumstellar envelopes and asymptotic giant branch stars. The Astronomy and Astrophysics Review, 7(2), 97207.CrossRefGoogle Scholar
Herpin, F., Baudry, A., Thum, C., Morris, D., and Wiesemeyer, H. (2006). Full polarization study of SiO masers at 86 GHz. Astronomy and Astrophysics, 450, 667680.CrossRefGoogle Scholar
Herpin, F., Baudy, A., Josselin, E., Thum, C., and Wiesemeyer, H. (2008). Magnetic fields in AGB stars and (proto-) planetary nebulae. Proceedings of the International Astronomical Union, 4(S259), 4752.CrossRefGoogle Scholar
Hiltner, W. A. (1951). Polarization of stellar radiation. III. The polarization of 841 stars. The Astrophysical Journal, 114, 241.CrossRefGoogle Scholar
Hrivnak, B. J., Lu, W., Bohlender, D. et al. (2011). Are proto-planetary nebulae shaped by a binary? Results of a long-term radial velocity study. The Astrophysical Journal, 734(1), 25.CrossRefGoogle Scholar
Huggins, P. J. (2007). Jets and tori in proto-planetary nebulae. The Astrophysical Journal, 663(1), 342.CrossRefGoogle Scholar
Ireland, M. J., Tuthill, P. G., Davis, J., and Tango, W. (2005). Dust scattering in the Miras R Car and RR Sco resolved by optical interferometric polarimetry. Monthly Notices of the Royal Astronomical Society, 361(1), 337344.CrossRefGoogle Scholar
Johnson, J. J., and Jones, T. J. (1991). From red giant to planetary nebula – Dust, asymmetry, and polarization. The Astronomical Journal, 101, 17351751.CrossRefGoogle Scholar
Jordan, S., Werner, K., and O’Toole, S. J. (2005). Discovery of magnetic fields in central stars of planetary nebulae. Astronomy and Astrophysics, 432, 273279.CrossRefGoogle Scholar
Jurgenson, C. A., Stencel, R. E., Theil, D. S., Klebe, D. I., and Ueta, T. (2003). Mid-infrared imaging polarimetry of NGC 7027. The Astrophysical Journal Letters, 582(1), L35.CrossRefGoogle Scholar
Kastner, J. H. and Weintraub, D. (1993). Dust envelopes of post-AGB stars and supergiants – A near infrared polarimetric imaging survey. In Luminous High-Latitude Stars. ASP Conference Series, Vol. 45. San Francisco, USA: Astronomical Society of the Pacific, p. 151.Google Scholar
Kastner, J. H., Li, J., Siebenmorgen, R., and Weintraub, D. A. (2002). Infrared space observatory polarimetric imaging of the Egg Nebula (RAFGL 2688). The Astronomical Journal, 123(5), 2658.CrossRefGoogle Scholar
Kemball, A. J. and Diamond, P. J. (1997). Imaging the magnetic field in the atmosphere of TX Camelopardalis. The Astrophysical Journal Letters, 481(2), L111.CrossRefGoogle Scholar
King, D. J., Perkins, H. G., Scarrott, S. M., and Taylor, K. N. R. (1981). Optical polarization in the bipolar nebula M2-9. Monthly Notices of the Royal Astronomical Society, 196, 45.CrossRefGoogle Scholar
Königl, A. and Pudritz, R. E. (2000). Disk winds and the accretion-outflow connection. In Protostars and Planets IV. Tuscon: University of Arizona Press, p. 759.Google Scholar
Kwok, S. (2000). The Origin and Evolution of Planetary Nebulae. Cambridge University Press.CrossRefGoogle Scholar
Kylafis, N. D. (1983). Linear polarization of interstellar radio-frequency absorption lines and magnetic field direction. The Astrophysical Journal, 275, 135144.CrossRefGoogle Scholar
Lagadec, E., Verhoelst, T., Mékarnia, D.et al. (2011). A mid-infrared imaging catalogue of post-asymptotic giant branch stars. Monthly Notices of the Royal Astronomical Society, 417(1), 3292.CrossRefGoogle Scholar
Lazarian, A. (2007). Tracing magnetic fields with aligned grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 106(1), 225256.CrossRefGoogle Scholar
Matt, S., Balick, B., Winglee, R., and Goodson, A. (2000). Disk formation by asymptotic giant branch winds in dipole magnetic fields. The Astrophysical Journal, 545(2), 965.CrossRefGoogle Scholar
McCall, A. and Hough, J. H. (1980). Near infrared polarimetry of cool stars. Astronomy and Astrophysics Supplement Series, 42, 141154.Google Scholar
Meixner, M., Ueta, T., Dayal, A.et al. (1999). A mid-infrared imaging survey of proto-planetary nebula candidates. The Astrophysical Journal Supplement Series, 122(1), 221.CrossRefGoogle Scholar
Michalsky, J. J., Stokes, R. A., and Ekstrom, P. A. (1976). Polarization studies of the infrared source CRL 2688 at visible wavelengths. The Astrophysical Journal, 203, L43.CrossRefGoogle Scholar
Min, M., Jeffers, S. V., Canovas, H.et al. (2013). The color dependent morphology of the post-AGB star HD 161796. Astronomy and Astrophysics, 554, 1525.CrossRefGoogle Scholar
Morris, M. (1975). The IRC +10216 molecular envelope. The Astrophysical Journal, 197, 603610.CrossRefGoogle Scholar
Murakawa, K. and Izumiura, H. (2012). Dust shell model of the water fountain source IRAS 16342–3814. Astronomy and Astrophysics, 544(A58), 17.CrossRefGoogle Scholar
Murakawa, K., Ohnaka, K., Driebe, T.et al. (2008). Near-IR bispectrum speckle interferometry, AO imaging polarimetry, and radiative transfer modeling of the proto-planetary nebula Frosty Leonis. Astronomy and Astrophysics, 489(1), 195206.CrossRefGoogle Scholar
Murakawa, K., Izumiura, H., Oudmaijer, R. D., and Maud, L. T. (2013). Investigation of dust properties of the proto-planetary nebula IRAS 18276-1431. Monthly Notices of the Royal Astronomical Society, 430(4), 31123119.CrossRefGoogle Scholar
Ney, E. P., Merrill, K. M., Becklin, E. E., Neugebauer, G., and Wynn-Williams, C. G. (1975). Studies of the infrared source CRL 2688. The Astrophysical Journal, 198, L129L131.CrossRefGoogle Scholar
Norris, B. R., Tuthill, P. G., Ireland, M. J. et al. (2012). A close halo of large transparent grains around extreme red giant stars. Nature, 484(7393), 220222.CrossRefGoogle ScholarPubMed
Oppenheimer, B. D., Bieging, J. H., Schmidt, G. D.et al. (2005). Spectropolarimetry and radiative transfer modeling of three proto-planetary nebulae. The Astrophysical Journal, 624(2), 957.CrossRefGoogle Scholar
Parthasarathy, M., Jain, S. K., and Sarkar, G. (2005). Polarization measurements of post-asymptotic giant branch candidates and related stars. The Astronomical Journal, 129(5), 2451.CrossRefGoogle Scholar
Pérez-Sánchez, A. F. and Vlemmings, W. H. T. (2013). Linear polarization of submillimetre masers. Tracing magnetic fields with ALMA. Astronomy and Astrophysics, 551, A1524.CrossRefGoogle Scholar
Pérez-Sánchez, A. F., Vlemmings, W. H. T., and Chapman, J. M. (2011). Water maser polarization of the water fountains IRAS 15445-5449 and IRAS 18043-2116. Monthly Notices of the Royal Astronomical Society, 418(2), 14021407.CrossRefGoogle Scholar
Perkins, H. G., Scarrott, S. M., Murdin, P., and Bingham, R. G. (1981). The Red Rectangle – Its polarization and structure. Monthly Notices of the Royal Astronomical Society, 196, 635639.CrossRefGoogle Scholar
Ramstedt, S., Maercker, M., Olofsson, G., Olofsson, H., and Schoeier, F. L. (2011). Imaging the circumstellar dust distribution around AGB stars with the NOT/PolCor instrument. In Asymmetric Planetary Nebulae 5 Conference, Vol. 1. San Francisco CA: Astronomical Society of the Pacific.Google Scholar
Renzini, A. (1981). Red giants as precursors of planetary nebulae. In Physical Processes in Red Giants. The Netherlands: Springer, pp. 431446.CrossRefGoogle Scholar
Sabin, L., Zijlstra, A. A., and Greaves, J. S. (2007). Magnetic fields in planetary nebulae and post-AGB nebulae. Monthly Notices of the Royal Astronomical Society, 376(1), 378386.CrossRefGoogle Scholar
Sabin, L., Zhang, Q., Zijlstra, A. A.et al. (2014). Submillimetre polarization and magnetic field properties in the envelopes of protoplanetary nebulae CRL 618 and OH 231.8+ 13.2. Monthly Notices of the Royal Astronomical Society, 438(2), 17941804.CrossRefGoogle Scholar
Sahai, R. and Trauger, J. T. (1998). Multipolar bubbles and jets in low-excitation planetary nebulae: Toward a new understanding of the formation and shaping of planetary nebulae. The Astronomical Journal, 116(3), 1357.CrossRefGoogle Scholar
Sahai, R., Hines, D. C., Kastner, J. H.et al. (1998). The structure of the prototype bipolar protoplanetary nebula CRL 2688 (Egg Nebula): Broadband, polarimetric, and H2 line imaging with NICMOS on the Hubble Space Telescope. The Astrophysical Journal Letters, 492(2), L163.CrossRefGoogle Scholar
Schmidt, G. D., Angel, J. R. P., and Beaver, E. A. (1978). Photoelectric polarization maps of two bipolar reflection nebulae. The Astrophysical Journal, 219, 477479.CrossRefGoogle Scholar
Shu, F. H., Najita, J. R., Shang, H., and Li, Z.-Y. (2000). X-Winds Theory and Observations. Protostars and Planets IV. Tuscon: University of Arizona Press.Google Scholar
Smith, C. H., Wright, C. M., Aitken, D. K., Roche, P. F., and Hough, J. H. (2000). Studies in mid-infrared spectropolarimetry–II. An atlas of spectra. Monthly Notices of the Royal Astronomical Society, 312(2), 327361.CrossRefGoogle Scholar
Soker, N. (2001). Extrasolar planets and the rotation and axisymmetric mass-loss of evolved stars. Monthly Notices of the Royal Astronomical Society, 324(3), 699704.CrossRefGoogle Scholar
Soker, N. (2002). Why every bipolar planetary nebula is “unique.”Monthly Notices of the Royal Astronomical Society, 330(2), 481486.CrossRefGoogle Scholar
Steffen, M., Szczerba, R., and Schönberner, D. (1998). Hydrodynamical models and synthetic spectra of circumstellar dust shells around AGB stars. Astronomy and Astrophysics, 337, 149177.Google Scholar
Su, K. Y., Hrivnak, B. J., Kwok, S., and Sahai, R. (2003). High-resolution near-infrared imaging and polarimetry of four proto-planetary nebulae. The Astronomical Journal, 126(2), 848.CrossRefGoogle Scholar
Taylor, K. N. R. and Scarrott, S. M. (1980). The Boomerang Nebula – A highly polarized bipolar. Monthly Notices of the Royal Astronomical Society, 193, 321327.CrossRefGoogle Scholar
Trammell, S. R., Dinerstein, H. L., and Goodrich, R. W. (1994). Evidence for the early onset of aspherical structure in the planetary nebula formation process: Spectropolarimetry of post-AGB stars. The Astronomical Journal, 108, 984997.CrossRefGoogle Scholar
Tuthill, P. G., Monnier, J. D., Danchi, W. C., Wishnow, E. H., and Haniff, C. A. (2000). Michelson interferometry with the Keck I telescope. Publications of the Astronomical Society of the Pacific, 112(770), 555565.CrossRefGoogle Scholar
Tuthill, P., Lacourb, S., Amicoc, P.et al. (2010). Sparse aperture masking (SAM) at NAOS/CONICA on the VLT. In Proceedings of the International Society for Optics and Photonics, Vol. 7735. Bellingham WA: International Society for Optics and Photonics, p. 77351O.Google Scholar
Ueta, T., Meixner, M., and Bobrowsky, M. (2000). A Hubble Space Telescope snapshot survey of proto-planetary nebula candidates: Two types of axisymmetric reflection nebulosities. The Astrophysical Journal, 528(2), 861.CrossRefGoogle Scholar
Ueta, T., Murakawa, K., and Meixner, M. (2005). Hubble Space Telescope NICMOS imaging polarimetry of proto-planetary nebulae: Probing the dust shell structure via polarized light. The Astronomical Journal, 129(3), 1625.CrossRefGoogle Scholar
Ueta, T., Murakawa, K., and Meixner, M. (2007). Hubble Space Telescope NICMOS imaging polarimetry of proto-planetary nebulae. II. Macromorphology of the dust shell structure via polarized light. The Astronomical Journal, 133(4), 1345.CrossRefGoogle Scholar
Van Winckel, H. (2003). Post-AGB stars. Annual Review of Astronomy and Astrophysics, 41(1), 391427.CrossRefGoogle Scholar
Vlemmings, W. (2011). Magnetic fields around (post-) AGB stars and (pre-) planetary nebulae. In Asymmetric Planetary Nebulae 5 Conference, Vol. 1. San Francisco, USA: Astronomical Society of the Pacific. arXiv preprint arXiv:1009.4067.Google Scholar
Vlemmings, W. H. T. and Diamond, P. J. (2006). Intrinsic properties of the magnetically collimated H2O maser jet of W43A. The Astrophysical Journal Letters, 648(1), L59.CrossRefGoogle Scholar
Vlemmings, W. H. T., Ramstedt, S., Rao, R., and Maercker, M. (2012). Polarization of thermal molecular lines in the envelope of IK Tauri. Astronomy and Astrophysics, 540, L3L8.CrossRefGoogle Scholar
Warren-Smith, R. F., Scarrott, S. M., Murdin, P., and Bingham, R. G. (1979). Optical polarization map of Eta Carinae and the nature of its outburst. Monthly Notices of the Royal Astronomical Society, 187, 761768.CrossRefGoogle Scholar
Waters, L. B. F. M., Waelkens, C., Van Winckel, H.et al. (1998). An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle. Nature, 391(6670), 868871.CrossRefGoogle Scholar
Weintraub, D. A., Kastner, J. H., Hines, D. C., and Sahai, R. (2000). Pinpointing the position of the post-asymptotic giant branch star at the core of RAFGL 2688 using polarimetric imaging with NICMOS. The Astrophysical Journal, 531(1), 401.CrossRefGoogle Scholar
Zijlstra, A. A., te Lintel Hekkert, P., Pottasch, S. R., Caswell, J. L., Ratag, M., and Habing, H. J. (1989). OH maser emission from young planetary nebulae. Astronomy and Astrophysics, 217, 157178.Google Scholar
Zuckerman, B., Gilra, D. P., Turner, B. E., Morris, M., and Palmer, P. (1976). CRL 2688 – A post-carbon-star object and probable planetary nebula progenitor. The Astrophysical Journal, 205, L15L19.CrossRefGoogle Scholar

References

Adelman, S. J., Gulliver, A. F., Kochukhov, O. P., and Ryabchikova, T. A. (2002). The variability of the Hg II λ3984 line of the mercury–manganese star α Andromedae. The Astrophysical Journal, 575, 449460.CrossRefGoogle Scholar
Alecian, G., Stift, M. J., and Dorfi, E. A. (2011). Time-dependent diffusion in stellar atmospheres. Monthly Notices of the Royal Astronomical Society, 418, 986997.CrossRefGoogle Scholar
Alecian, E., Wade, G. A., Catala, C.et al. (2013). A high-resolution spectropolarimetric survey of Herbig Ae/Be stars – I. Observations and measurements. Monthly Notices of the Royal Astronomical Society, 429, 10011026.CrossRefGoogle Scholar
Anderson, R. J., Reiners, A., and Solanki, S. K. (2010). On detectability of Zeeman broadening in optical spectra of F- and G-dwarfs. Astronomy and Astrophysics, 522, A81 (17pp).CrossRefGoogle Scholar
Angel, J. R. P. and Landstreet, J. D. (1970). Magnetic observations of white dwarfs. The Astrophysical Journal, 160, L147L152.CrossRefGoogle Scholar
Angel, J. R. P. and Landstreet, J. D. (1971). Discovery of periodic variations in the circular polarization of the white dwarf G195-19. The Astrophysical Journal, 165, L71L75.CrossRefGoogle Scholar
Angel, J. R. P., Borra, E., and Landstreet, J. D. (1981). The magnetic fields of white dwarfs. The Astrophysical Journal Supplement Series, 45, 457474.CrossRefGoogle Scholar
Appenzeller, I., Fricke, K., Fürtig, W.et al. (1998). Successful commissioning of FORS1 − the first optical instrument on the VLT. Messenger, 94, 16.Google Scholar
Aurière, M., Wade, G. A., Silvester, J.et al. (2007). Weak magnetic fields in Ap/Bp stars: Evidence for a dipole field lower limit and a tentative interpretation of the magnetic dichotomy. Astronomy and Astrophysics, 475, 10531065.CrossRefGoogle Scholar
Aurière, M., Konstantinova-Antova, R., Petit, P.et al. (2008). EK Eridani: The tip of the iceberg of giants which have evolved from magnetic Ap. Astronomy and Astrophysics, 491, 499505.CrossRefGoogle Scholar
Aurière, M., Wade, G. A., Konstantinova-Antova, R.et al. (2009). Discovery of a weak magnetic field in the photosphere of the single giant Pollux. Astronomy and Astrophysics, 504, 231237.CrossRefGoogle Scholar
Babcock, H. W. (1947). Zeeman effect in stellar spectra. The Astrophysical Journal, 105, 105119.CrossRefGoogle Scholar
Babcock, H. W. (1951). The magnetically variable star HD 125248. The Astrophysical Journal, 114, 136.CrossRefGoogle Scholar
Babcock, H. W. (1958). A catalogue of magnetic stars. The Astrophysical Journal Supplement Series, 3, 141210.CrossRefGoogle Scholar
Babcock, H. W. (1960). The 30 kilogauss magnetic field of HD 215441. The Astrophysical Journal, 132, 521532.CrossRefGoogle Scholar
Bagnulo, S., Landi Degl’Innocenti, E., Landolfi, M., and Leroy, J. L. (1995). Linear polarimetry of AP stars. 3: A diagnostic method for the magnetic structure of rotating stars. Astronomy and Astrophysics, 295, 459470.Google Scholar
Bagnulo, S., Landi Degl’Innocenti, M., Landolfi, M., and Mathys, G. (2002a). A statistical analysis of the magnetic structure of CP stars. Astronomy and Astrophysics, 394, 10231037.CrossRefGoogle Scholar
Bagnulo, S., Szeifert, T., Wade, G. A., Landstreet, J. D., and Mathys, G. (2002b). Measuring magnetic fields of early-type stars with FORS1 at the VLT. Astronomy and Astrophysics, 389, 191201.CrossRefGoogle Scholar
Bagnulo, S., Landstreet, J. D., Mason, E.et al. (2006). Searching for links between magnetic fields and stellar evolution. I. A survey of magnetic fields in open cluster A- and B-type stars with FORS1. Astronomy and Astrophysics, 450, 777791.CrossRefGoogle Scholar
Bagnulo, S., Landolfi, M., Landstreet, J. D.et al. (2009). Stellar spectropolarimetry with retarder waveplate and beam splitter devices. Publications of the Astronomical Society of the Pacific, 121, 9931015.CrossRefGoogle Scholar
Bagnulo, S., Fossati, L., Kochukhov, O., and Landstreet, J. D. (2012). Magnetic field measurements and their uncertainties: The FORS1 legacy. Astronomy and Astrophysics, 538, A129 (22pp).CrossRefGoogle Scholar
Bagnulo, S., Landstreet, J. D., Fossati, L., and Kochukhov, O. (2013). The importance of non-photon noise in stellar spectropolarimetry. The spurious detection of a non-existing magnetic field in the A0 supergiant HD 92207. Astronomy and Astrophysics, 559, A103 (10pp).CrossRefGoogle Scholar
Balick, B. and Frank, A. (2002). Shapes and shaping of planetary nebulae. Annual Review of Astronomy and Astrophysics, 40, 439486.CrossRefGoogle Scholar
Basri, G., Marcy, G., and Valenti, J. A. (1992). Limits on the magnetic flux of pre-main-sequence stars. The Astrophysical Journal, 390, 622633.CrossRefGoogle Scholar
Bohlender, D. A. and Landstreet, J. D. (1990). A search for magnetic fields in Lambda Bootis stars. Monthly Notices of the Royal Astronomical Society, 247, 606610.Google Scholar
Bohlender, D. A., Landstreet, J. D., Brown, D. N., and Thompson, I. B. (1987). Magnetic field measurements of helium-strong stars. The Astrophysical Journal, 323, 325337.CrossRefGoogle Scholar
Bohlender, D. A., Landstreet, J. D., and Thompson, I. B. (1993). A study of magnetic fields in AP SI and He weak stars. Astronomy and Astrophysics, 269, 355376.Google Scholar
Bommier, V. A. (2012). Hanle effect from a dipolar magnetic structure: The case of the solar corona and the case of a star. Astronomy and Astrophysics, 539, 122, 7 pp.CrossRefGoogle Scholar
Borra, E. and Landstreet, J. D. (1980). The magnetic fields of the Ap stars. The Astrophysical Journal Supplement Series, 42, 421445.CrossRefGoogle Scholar
Borra, E., Landstreet, J. D., and Thompson, I. (1983). The magnetic fields of the helium-weak B stars. The Astrophysical Journal Supplement Series, 53, 151167.CrossRefGoogle Scholar
Braithwaite, J. and Spruit, H. C. (2004). A fossil origin for the magnetic field in A stars and white dwarfs. Nature, 431, 819821.CrossRefGoogle Scholar
Brown, S., Donati, J.-F., Rees, D. E., and Semel, M. (1991). Zeeman Doppler imaging of solar-type and AP stars. IV − Maximum entropy reconstruction of 2D magnetic topologies. Astronomy and Astrophysics, 250, 463474.Google Scholar
Carroll, T. A., Kopf, M., Ilyin, I., and Strassmeier, K. G. (2007). Zeeman-Doppler imaging of late-type stars: The surface magnetic field of II Peg. Astronomische Nachrichten, 328, 10431046.CrossRefGoogle Scholar
Carter, B., Brown, S., Donati, J.-F., Rees, D. E., and Semel, M. (1996). Zeeman Doppler imaging of stars with the AAT. Publications of the Astronomical Society of Australia, 13, 150155.CrossRefGoogle Scholar
Cowling, T. T. (1945). On the Sun’s general magnetic field. Monthly Notices of the Royal Astronomical Society, 105, 166174.CrossRefGoogle Scholar
Donati, J.-F. (2001). Imaging the magnetic topologies of cool active stars. Lecture Notes in Physics, 573, 207231.CrossRefGoogle Scholar
Donati, J.-F. and Brown, S. F. (1997). Zeeman−Doppler imaging of active stars. V. Sensitivity of maximum entropy magnetic maps to field orientation. Astronomy and Astrophysics, 326, 11351142.Google Scholar
Donati, J.-F. and Landstreet, J. D. (2009). Magnetic fields of nondegenerate stars. Annual Review of Astronomy and Astrophysics, 47, 333370.CrossRefGoogle Scholar
Donati, J.-F., Semel, M., Rees, D. E., Taylor, K., and Robinson, R. D. (1990). Detection of a magnetic region on HR 1099. Astronomy and Astrophysics, 232, L1L4.Google Scholar
Donati, J.-F., Brown, S. F., Semel, M., and Rees, D. E. (1992). Mapping magnetic fields on rapidly rotating stars: Application to the RS CVn System HR 1099. In Cool Stars, Stellar Systems, and the Sun. ASP Conference Series, Vol. 26. San Francisco: Astronomical Society of the Pacific, pp. 353355.Google Scholar
Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., and Collier Cameron, A. (1997). Spectropolarimetric observations of active stars. Monthly Notices of the Royal Astronomical Society, 291, 658682.CrossRefGoogle Scholar
Donati, J.-F., Babel, J., Harries, T. J. et al. (2002). The magnetic field and wind confinement of θ1 Orionis C. Monthly Notices of the Royal Astronomical Society, 333, 5570.CrossRefGoogle Scholar
Donati, J.-F., Gregory, S. G., Alencar, S. H. P. et al. (2012). Magnetometry of the classical T Tauri star GQ Lup: Non-stationary dynamos and spin evolution of young Suns. Monthly Notices of the Royal Astronomical Society, 425, 29482963.CrossRefGoogle Scholar
Eisberg, R. and Resnick, R. (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles. New York: Wiley.Google Scholar
Fares, R., Donati, J.-F., Moutout, C.et al. (2009). Magnetic cycles of the planet-hosting star τ Bootis – II. A second magnetic polarity reversal. Monthly Notices of the Royal Astronomical Society, 398, 13831391.CrossRefGoogle Scholar
Fares, R., Donati, J.-F., Moutout, C.et al. (2012). Magnetic field, differential rotation and activity of the hot-Jupiter-hosting star HD 179949. Monthly Notices of the Royal Astronomical Society, 423, 10061017.CrossRefGoogle Scholar
Gregory, S. G., Donati, J.-F., Morin, J.et al. (2012). Can we predict the global magnetic topology of a pre-main-sequence star from its position in the Hertzsprung-Russell Diagram?The Astrophysical Journal, A97, 755797.Google Scholar
Grunhut, J. H. and Wade, G. A. (2012). The incidence of magnetic fields in massive stars: An overview of the MiMeS survey component. In Hoffman, J. L., Bjorkman, J., and Whitney, B., eds., Stellar Polarimetry: From birth to death. AIP Conference Proceedings, Vol. 1429. Melville NY: AIP Publishing, pp. 6774.Google Scholar
Grunhut, J. H., Wade, G. A., Hanes, D. A., and Alecian, E. (2010). Systematic detection of magnetic fields in massive, late-type supergiants. Monthly Notices of the Royal Astronomical Society, 408, 22902297.CrossRefGoogle Scholar
Hale, G. E. (1908). Solar vortices and the Zeeman effect. Publications of the Astronomical Society of the Pacific, 20, 220224.CrossRefGoogle Scholar
Hanle, W. (1924). Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszen. Zeitschrift fuer Physik, 30, 93105.CrossRefGoogle Scholar
Henrichs, H. F., de Jong, J. A., Donati, J.-F.et al. (2000). Detection of a weak magnetic field in the pulsating Be star β Cephei. In Glagolevskij, Yu. V. and Romanyuk, I. I., eds., Magnetic Fields of Chemically Peculiar and Related Stars. Proceedings of the International Meeting, held at the Special Astrophysical Observatory of Russian AS, September 23–27, 1999, pp. 5760.Google Scholar
Henrichs, H. F., de Jong, J. A., Verdugo, E.et al. (2013). Discovery of the magnetic field in the pulsating B star beta Cephei. Astronomy and Astrophysics, 555, A46.CrossRefGoogle Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Collins, R. A. (1968). Observation of a rapidly pulsating radio source. Nature, 217, 743753.CrossRefGoogle Scholar
Houk, N. and Swift, C. (1999). Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars, Vol. 5. Department of Astronomy, University of Michigan.Google Scholar
Hubrig, S., Briquet, M., Schöller, M.et al. (2006). Discovery of magnetic fields in the β Cephei star ξ1 CMa and in several slowly pulsating B stars. Monthly Notices of the Royal Astronomical Society, 369, L61L65.CrossRefGoogle Scholar
Hubrig, S., Yudin, R. V., Pogodin, M., Schoeller, M., and Peters, G. J. (2007). Evidence for weak magnetic fields in early-type emission stars. Astronomische Nachrichten, 328, 11331136.CrossRefGoogle Scholar
Hubrig, S., Briquet, M., De Cat, P.et al. (2009). New magnetic field measurements of β Cephei stars and slowly pulsating B stars. Astronomische Nachrichten, 330, 317329.CrossRefGoogle Scholar
Hubrig, S., Schoeller, M., Savanov, I. et al. (2010). The exceptional Herbig Ae star HD 101412: The first detection of resolved magnetically split lines and the presence of chemical spots in a Herbig star. Astronomische Nachrichten, 331, 361367.CrossRefGoogle Scholar
Hubrig, S., Ilyin, I., Schoeller, M.et al. (2011). First magnetic field models for recently discovered magnetic β Cephei and slowly pulsating B stars. The Astrophysical Journal, 726, L5L9.CrossRefGoogle Scholar
Hubrig, S., Gonzalez, J. F., Ilyin, I.et al. (2012). Magnetic fields of HgMn stars. Astronomy and Astrophysics, 547, A90 (24pp).CrossRefGoogle Scholar
Hubrig, S., Schoeller, M., Kholtygin, A. F.et al. (2012). Magnetic field detection in the bright A0-type supergiant HD 92207. Astronomy and Astrophysics, 546, L6 (4pp).CrossRefGoogle Scholar
Hussain, G. A. J. (2012). T Tauri stars magnetic fields and magnetospheres. Astronomische Nachrichten, 333, 419.CrossRefGoogle Scholar
Hussain, G. A. J., Collier Cameron, A., Jardine, M. M.et al. (2009). Surface magnetic fields on two accreting T Tauri stars: CVCha and CVCha. Monthly Notices of the Royal Astronomical Society, 398, 198200.CrossRefGoogle Scholar
Ignace, R. (2010). The Hanle effect as a diagnostic of magnetic fields in stellar envelopes. V. Thin lines from Keplerian disks. The Astrophysical Journal, 725, 10401052.CrossRefGoogle Scholar
Johns-Krull, C. M. (2007). The magnetic fields of classical T Tau stars. The Astrophysical Journal, 664, 975985.CrossRefGoogle Scholar
Johns-Krull, C. M., Valenti, F. A., and Koresko, C. (1999). Measuring the magnetic field on the classical T Tauri star BP Tauri. The Astrophysical Journal, 516, 900915.CrossRefGoogle Scholar
Jordan, S., Werner, K., and O’Toole, S. J. (2005). Discovery of magnetic fields in central stars of planetary nebulae. Astronomy and Astrophysics, 432, 273279.CrossRefGoogle Scholar
Jordan, S., Bagnulo, S., Werner, K., and O’Toole, S. J. O. (2012). Magnetic fields in central stars of planetary nebulae?The Astrophysical Journal, 542, A64, 4 pp.Google Scholar
Kemp, J. C. and Wolstencroft, R. D. (1974). The intrinsic linear polarization of 53 Camelopardalis and α2 Canum Venaticorum. Monthly Notices of the Royal Astronomical Society, 166, 118.CrossRefGoogle Scholar
Kemp, J. C., Swedlund, J. B., Landstreet, J. D., and Angel, J. R. P. (1970). Discovery of circularly polarized light from a white dwarf. The Astrophysical Journal, 161, L77L79.CrossRefGoogle Scholar
Kepler, S. O., Pelisoli, I., Jordan, S.et al. (2013). Magnetic white dwarf stars in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 429, 29342944.CrossRefGoogle Scholar
Kochukhov, O. and Piskunov, N. (2002). Doppler imaging of stellar magnetic fields. II. Numerical experiments. Astronomy and Astrophysics, 388, 868888.CrossRefGoogle Scholar
Kochukhov, O. and Wade, G. A. (2010). Magnetic Doppler imaging of α2 Canum Venaticorum in all four Stokes parameters. Unveiling the hidden complexity of stellar magnetic fields. Astronomy and Astrophysics, 513, A13.CrossRefGoogle Scholar
Kochukhov, O., Bagnulo, S., Wade, G. A.et al. (2004). Magnetic Doppler imaging of 53 Camelopardalis in all four Stokes parameters. Astronomy and Astrophysics, 414, 613632.CrossRefGoogle Scholar
Kochukhov, O., Makaganiuk, V., and Piskunov, N. (2010). Least-squares deconvolution of the stellar intensity and polarization spectra. Astronomy and Astrophysics, 524, A5.CrossRefGoogle Scholar
Kochukhov, O., Wade, G. A., and Shulyak, D. (2012). Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: A luxury or a necessity?Monthly Notices of the Royal Astronomical Society, 421, 30043018.CrossRefGoogle Scholar
Kochukhov, O., Makaganiuk, V., Piskunov, N.et al. (2013). Are there tangled magnetic fields on HgMn stars?Astronomy and Astrophysics, 554, A61 (12pp).CrossRefGoogle Scholar
Kolenberg, K. and Bagnulo, S. (2009). Observational constraints on the magnetic field of RR Lyrae stars. Astronomy and Astrophysics, 498, 543550.CrossRefGoogle Scholar
Konstantinova-Antova, R., Aurière, M., Charbonnel, C.et al. (2010). Direct detection of a magnetic field in the photosphere of the single M giant EK Bootis. How common is magnetic activity among M giants?Astronomy and Astrophysics, 524, id. A57 (9pp).CrossRefGoogle Scholar
Konstantinova-Antova, R., Aurière, M., Petit, P.et al. (2012). Magnetic field structure in single late-type giants: The effectively single giant V390 Aurigae. Astronomy and Astrophysics, 541, A44 (7pp).CrossRefGoogle Scholar
Kudryavtsev, D. O., Romanyuk, I. I., Elkin, V. G., and Paunzen, E. (2006). New magnetic chemically peculiar stars. Monthly Notices of the Royal Astronomical Society, 421, 18041828.CrossRefGoogle Scholar
Landi Degl'Innocenti, E. (1992). Magnetic field measurements. In Sanchez, F., Collados, M., and Vazquez, M., eds., Solar Observations: Techniques and Interpretation: First Canary Islands Winter School of Astrophysics (A93-53183 23-92). Cambridge University Press, pp. 71, 73–143.Google Scholar
Landi Degl’Innocenti, E. and Landolfi, M. (2004). Polarization in Spectral Lines. Dordrecht: J. Kluwer Academic Publishers.CrossRefGoogle Scholar
Landi Degl’Innocenti, M., Calamai, G., Landi Degl’Innocenti, E., and Patriarchi, P. (1981). Broad-band linear polarization and magnetic intensification in rotating magnetic stars. The Astrophysical Journal, 249, 228237.CrossRefGoogle Scholar
Landolfi, M. and Landi Degl’Innocenti, E. (1982). Magneto-optical effects and the determination of vector magnetic fields from Stokes profiles. Solar Physics, 78, 355364.CrossRefGoogle Scholar
Landolfi, M., Bagnulo, S., Landi Degl’Innocenti, M., and Landi Degl’Innocenti, E. (2001). The Paschen-Back effect on fine and hyperfine structure: Impact on polarized spectra of Ap and Bp stars. In Mathys, G., Solanki, S. K., and Wickramasinghe, D. T., eds., Magnetic Fields across the Hertzsprung-Russell Diagram, ASP Conference Series, Vol. 248. San Francisco: Astronomical Society of the Pacific, pp. 239352.Google Scholar
Landstreet, J. D. (1982). A search for magnetic fields in normal upper-main-sequence stars. The Astrophysical Journal, 258, 639650.CrossRefGoogle Scholar
Landstreet, J. D. (1988). The magnetic field and abundance distribution geometry of the peculiar A star 53 Camelopardalis. The Astrophysical Journal, 326, 967987.CrossRefGoogle Scholar
Landstreet, J. D. (1992). Magnetic fields at the surfaces of stars. Astronomy and Astrophysics Review, 4, 3577.CrossRefGoogle Scholar
Landstreet, J. D. (2007a). Observing and modeling stellar magnetic fields: Basic physics and simple models. In Neiner, C. and Zahn, J.-P., eds., Stellar Magnetism. EAS (European Astronomical Society) Publications Series, pp. 120.Google Scholar
Landstreet, J. D. (2007b). Observing and modeling stellar magnetic fields: Models. In Neiner, C. and Zahn, J.-P., eds., Stellar Magnetism. EAS (European Astronomical Society) Publications Series, pp. 2154.Google Scholar
Landstreet, J. D. and Borra, E. (1978). The magnetic field of Sigma Orionis. The Astrophysical Journal, 224, L5L8.CrossRefGoogle Scholar
Landstreet, J. D. and Mathys, G. (2000). Magnetic models of slowly rotating magnetic Ap stars: Aligned magnetic and rotation axes. Astronomy and Astrophysics, 359, 213226.Google Scholar
Landstreet, J. D., Barker, P. K., Bohlender, D. A., and Jewison, M. S. (1989). The magnetic field and abundance distribution geometry of the peculiar B star HD 215441. The Astrophysical Journal, 344, 876888.CrossRefGoogle Scholar
Landstreet, J. D., Silaj, J., Andretta, S.et al. (2008). Searching for links between magnetic fields and stellar evolution. III. Measurement of magnetic fields in open cluster Ap stars with ESPaDOnS. Astronomy and Astrophysics, 481, 465480.CrossRefGoogle Scholar
Landstreet, J. D., Bagnulo, S., Fossati, L., Jordan, S., and O’Toole, S. J. O. (2012). The magnetic fields of hot subdwarf stars. Astronomy and Astrophysics, 541, A100, 5 pp.CrossRefGoogle Scholar
Leone, F., Martínez González, M. J., Corradi, R., Privitera, G., and Manso Sainz, R. (2011). Non-detection of magnetic fields in the central stars of the planetary nebulae NGC 1360 and LSS 1362. The Astrophysical Journal, 731, L33, 4 pp.CrossRefGoogle Scholar
Leone, F., Corradi, R. L. M., González, M. M., Ramos, A. A., and Sainz, R. M. (2014). A search for magnetic fields on central stars in planetary nebulae. Astronomy and Astrophysics, 563, id.A43, 5 pp.CrossRefGoogle Scholar
Leroy, J.-L. (1962). Contributions a l’etude de la polarization de la lumiere solaire. Annales d’Astrophysique, 25, 127164.Google Scholar
Leroy, J.-L. (1995). Linear polarimetry of AP stars. V. A general catalogue of measurements. Astronomy and Astrophysics Supplement Series, 114, 79104.Google Scholar
Leroy, J.-L., Landolfi, M., and Landi Degl’Innocenti, M. (1996). Linear polarimetry of AP stars. VI. A modified dipolar model consistent with the observations. Astronomy and Astrophysics, 311, 513522.Google Scholar
Lueftinger, T., Kochukhov, O., Ryabchikova, T.et al. (2010). Magnetic Doppler Imaging of the roAp star HD 24712. Astronomy and Astrophysics, 509, A71 (12pp).CrossRefGoogle Scholar
Makaganiuk, V., Kochukhov, O., Piskunov, N.et al. (2011). The search for magnetic fields in mercury–manganese stars. Astronomy and Astrophysics, 525, A97 (12pp).CrossRefGoogle Scholar
Manso Sainz, R. and Martinez Gonzalez, M. J. (2012). Hanle effect for stellar dipole and quadrupole. The Astrophysical Journal, 760, id. 7, 10 pp.CrossRefGoogle Scholar
Marsden, S., Petit, P., Jeffers, S.et al. (2014). A Bcool magnetic snapshot survey of cool stars. Monthly Notes of the Royal Astronomical Society, 444(4), 35173536.CrossRefGoogle Scholar
Mathys, G. (1989). The observation of magnetic fields in nondegenerate stars. Fundamentals of Cosmic Physics, 13, 143308.Google Scholar
Mathys, G. (1990). Ap stars with resolved Zeeman split lines. Astronomy and Astrophysics, 236, 151172.Google Scholar
Mathys, G. (1991). Spectropolarimetry of magnetic stars. II – The mean longitudinal magnetic field. Astronomy and Astrophysics Supplement Series, 89, 121157.Google Scholar
Mathys, G. (1994). Spectropolarimetry of magnetic stars. III – Measurement uncertainties. Astronomy and Astrophysics Supplement Series, 108, 547560.Google Scholar
Mathys, G. (1995a). Spectropolarimetry of magnetic stars. IV – The crossover effect. Astronomy and Astrophysics, 293, 733745.Google Scholar
Mathys, G. (1995b). Spectropolarimetry of magnetic stars. V – The mean quadratic magnetic field. Astronomy and Astrophysics, 293, 746763.Google Scholar
Mathys, G. (2004). Magnetic fields of A-type stars. In Zverko, J., Ziznovsky, J., Adelman, S. J., and Weiss, W. W., eds., The A-Star Puzzle. IAU Symposium, No. 224. Cambridge University Press, pp. 224234.Google Scholar
Mathys, G. and Lanz, T. (1992). AP stars with resolved magnetically split lines. Astronomy and Astrophysics, 256, 169184.Google Scholar
Mathys, G., Hubrig, S., Landstreet, J. D., Lanz, T., and Manfroid, J. (1997). The mean magnetic field modulus of AP stars. Astronomy and Astrophysics Supplement Series, 123, 353402.CrossRefGoogle Scholar
Mathys, G., Hubrig, S., Mason, E.et al. (2012). A search for magnetic fields in cool sdB stars. Astronomische Nachrichten, 333, 3033.CrossRefGoogle Scholar
Mestel, L. (2012). Stellar Magnetism, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Mestel, L. and Landstreet, J. D. (2005). Stellar magnetic fields. Lecture Notes in Physics, 664, 183218.CrossRefGoogle Scholar
Michaud, G., Charland, Y., Vauclair, S., and Vauclair, G. (1976). Diffusion in main-sequence stars – Radiation forces, time scales, anomalies. The Astrophysical Journal, 210, 447465.CrossRefGoogle Scholar
Morin, J., Donati, J.-F., Petit, P.et al. (2008). Large-scale magnetic topologies of mid M dwarfs. Monthly Notices of the Royal Astronomical Society, 390, 567581.CrossRefGoogle Scholar
Morin, J., Donati, J.-F., Petit, P.et al. (2010). Large-scale magnetic topologies of late M dwarfs. Monthly Notices of the Royal Astronomical Society, 407, 22692286.CrossRefGoogle Scholar
Morin, J., Donati, J.-F., Petit, P.et al. (2011). Exploring the magnetic topologies of cool stars. In Choudhary, D. and Strassmeier, K., eds., The Physics of Sun and Star Spots. IAU Symposium, No. 273. Cambridge University Press, pp. 181187.Google Scholar
Muzerolle, J., Calvet, N., and Hartmann, L. (1998). Magnetospheric accretion models for the hydrogen emission lines of T Tauri Stars. The Astrophysical Journal, 492, 709713.CrossRefGoogle Scholar
Neiner, C., Geers, V. C., Henrichs, H. F.et al. (2003). Discovery of a magnetic field in the slowly pulsating B star Zeta Cassiopeiae. Astronomy and Astrophysics, 406, 10191031.CrossRefGoogle Scholar
Paletou, F. (2012). A critical evaluation of the principal component analysis detection of polarized signatures using real stellar data. Astronomy and Astrophysics, 544, A4 (5pp).CrossRefGoogle Scholar
Petit, P., Donati, J.-F., and Aurière, M. (2005). Large-scale magnetic field of the G8 dwarf ξ Bootis A. Monthly Notices of the Royal Astronomical Society, 361, 837849.CrossRefGoogle Scholar
Petit, P., Lignières, F., Wade, G. A.et al. (2010). The rapid rotation and complex magnetic field geometry of Vega. Astronomy and Astrophysics, 523, A41.CrossRefGoogle Scholar
Petit, P., Van Grootel, V., Bagnulo, S. et al. (2012). High-resolution spectropolarimetric observations of hot subdwarfs. In Proceedings of the Fifth Meeting on Hot Subdwarf Stars and Related Objects. ASP Conference Series, Vol. 452. San Francisco: Astronomical Society of the Pacific, pp. 8790.Google Scholar
Petit, V., Owocky, S. P., Wade, G. A.et al. (2013). A magnetic confinement versus rotation classification of massive-star magnetospheres. Monthly Notices of the Royal Astronomical Society, 429, 398422.CrossRefGoogle Scholar
Piskunov, N. and Kochukhov, O. (2002). Doppler imaging of stellar magnetic fields. I. Techniques. Astronomy and Astrophysics, 381, 736756.CrossRefGoogle Scholar
Piskunov, N., Snik, F., Dolgopolov, A.et al. (2011). HARPSpol – The new polarimetric mode for HARPS. The Messenger, 143, 710.Google Scholar
Preston, G. W. (1971). The mean surface fields of magnetic stars. The Astrophysical Journal, 164, 309315.CrossRefGoogle Scholar
Putney, A. (1997). Surveying DC white dwarfs for magnetic fields. The Astrophysical Journal Supplement Series, 112, 527556.CrossRefGoogle Scholar
Rachkovsky, D. N. (1962). Magnetic rotation effects in spectral lines. Crimean Astrophysical Observatory, 28, 259270.Google Scholar
Reiners, A. (2012). Observations of cool-star magnetic fields. Living Reviews in Solar Physics, 9(1), 773.CrossRefGoogle Scholar
Reiners, A. and Basri, G. (2010). A volume-limited sample of 63 M7-M9.5 dwarfs. II. Activity, magnetism, and the fade of the rotation-dominated dynamo. The Astrophysical Journal, 710, 924935.CrossRefGoogle Scholar
Renson, P. and Manfroid, J. (2009). Catalogue of Ap, HgMn, and Am stars. Astronomy and Astrophysics, 498, 961966.CrossRefGoogle Scholar
Robinson Jr., R. D. (1980). Magnetic field measurements on stellar sources − A new method. The Astrophysical Journal, 239, 961967.CrossRefGoogle Scholar
Robinson Jr., R. D., Wordern, S. P., and Harvey, J. W. (1980). Observations of magnetic fields on two late-type dwarf stars. The Astrophysical Journal, 236, L155L158.CrossRefGoogle Scholar
Saar, S. H. and Linsky, J. L. (1985). The photospheric magnetic field of the dM3.5e flare star AD Leonis. The Astrophysical Journal, 299, L47L50.CrossRefGoogle Scholar
Schmidt, G. D. (2004). Polarized emission and the discovery of new magnetic CVs. In Vrielmann, S. and Cropper, M., eds., Magnetic Cataclysmic Variable. IAU Colloquium, 190, ASP Conference Proceedings, Vol. 315. San Francisco: Astronomical Society of the Pacific, pp. 2232.Google Scholar
Schmidt, G. D. (2005). The highs and lows of it: Magnetic accretion at all rates. In Hameury, J. M. and Lasota, J.-P., eds., The Astrophysics of Cataclysmic Variables and Related Objects. ASP Conference, Vol. 330. San Francisco: Astronomical Society of the Pacific, pp. 125136.Google Scholar
Schmidt, G. and Norsworthy, J. E. (1991). Rotation and magnetism in white dwarfs. The Astrophysical Journal, 366, 270276.CrossRefGoogle Scholar
Semel, M. (1967). Contribution à l’étude des champs magnétiques dans les régions actives solaires. Annales d’Astrophysique, 30, 513551.Google Scholar
Semel, M. (1989). Zeeman-Doppler imaging of active stars: Basic principles. Astronomy and Astrophysics, 225, 456466.Google Scholar
Semel, M. and Li, J. (1996). Zeeman-Doppler imaging of solar-type stars: Multi line technique. Solar Physics, 164, 417428.CrossRefGoogle Scholar
Shibahashi, H. (2000). The oblique pulsator model for the Blazhko effect in RR Lyrae stars. Theory of amplitude modulation I. In Szabados, L. and Kurtz, D., eds., The Impact of Large-Scale Surveys on Pulsating Star Research. ASP Conference Series, Vol. 203. San Francisco: Astronomical Society of the Pacific, pp. 299306.Google Scholar
Shorlin, S. L. S., Wade, G. A., Donati, J.-F.et al. (2002). A highly sensitive search for magnetic fields in B, A and F stars. Astronomy and Astrophysics, 392, 637652.CrossRefGoogle Scholar
Shultz, M., Wade, G. A., Grunhut, J.et al. (2013). Critical evaluation of magnetic field detections reported for pulsating B-type stars in light of ESPaDOnS, Narval, and reanalyzed FORS1/2 observations. The Astrophysical Journal, 750, id. 2 (10pp).Google Scholar
Silvester, J., Neiner, C., Henrichs, H. F.et al. (2009). On the incidence of magnetic fields in slowly pulsating B, β Cephei and B-type emission-line stars. Monthly Notices of the Royal Astronomical Society, 398, 15051511.CrossRefGoogle Scholar
Stępień, K. (2000). Loss of angular momentum of magnetic Ap stars in the pre-main sequence phase. Astronomy and Astrophysics, 353, 227238.Google Scholar
Stibbs, D. W. N. (1950). A study of the spectrum and magnetic variable star HD 125248. Monthly Notices of the Royal Astronomical Society, 110, 395404.CrossRefGoogle Scholar
Stift, M. J., Leone, F., and Landi Degl’Innocenti, E. (2008). Modelling the incomplete Paschen-Back effect in the spectra of magnetic Ap stars. Monthly Notices of the Royal Astronomical Society, 385, 18131819.CrossRefGoogle Scholar
Stift, M. J., Leone, F., and Cowley, C. R. (2012). The recondite intricacies of Zeeman Doppler mapping. Monthly Notices of the Royal Astronomical Society, 419, 29122920.CrossRefGoogle Scholar
Townsend, R. H. D., Owocki, S. P., and Groote, D. (2005). The rigidly rotating magnetosphere of σ Orionis E. The Astrophysical Journal, 630, L81L84.CrossRefGoogle Scholar
Unno, W. (1956). Line formation of a normal Zeeman triplet. Publications of the Astronomical Society of Japan, 8, 108125.Google Scholar
Valyavin, G. and Fabrika, S. (1999). White dwarfs magnetic fields evolution. In Solheim, S. E. and Meistas, E. G., eds., 11th European Workshop on White Dwarfs. ASP Conference Series, Vol. 169. San Francisco: Astronomical Society of the Pacific, pp. 206213.Google Scholar
Valyavin, G., Wade, G. A., Bagnulo, S.et al. (2008). The peculiar magnetic field morphology of the white dwarf WD 1953-011: Evidence for a large-scale magnetic flux tube?The Astrophysical Journal, 683, 466478.CrossRefGoogle Scholar
Vauclair, S. (1983). Atomic diffusion and abundance grandients in stellar atmospheres. In Hauck, B. and Maeder, A., eds., Astrophysical Processes in Upper Main Sequence Stars. Geneva: Geneva Observatory, Switzerland, p. 167.Google Scholar
Wade, G. A., Donati, J.-F., Landstreet, J. D., and Shorlin, S. L. S. (2000a). Spectropolarimetric measurements of magnetic Ap and Bp stars in all four Stokes parameters. Monthly Notices of the Royal Astronomical Society, 314, 823850.CrossRefGoogle Scholar
Wade, G. A., Donati, J.-F., Landstreet, J. D., and Shorlin, S. L. S. (2000b). High-precision magnetic field measurements of Ap and Bp stars. Monthly Notices of the Royal Astronomical Society, 314, 851867.CrossRefGoogle Scholar
Wade, G. A., Bagnulo, S., Kochukhov, O.et al. (2001). LTE spectrum synthesis in magnetic stellar atmospheres. The interagreement of three independent polarised radiative transfer codes. Astronomy and Astrophysics, 374, 265279.CrossRefGoogle Scholar
Wade, G. A., Drouin, D., Bagnulo, S.et al. (2005). Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars?Astronomy and Astrophysics, 442, L31L34.CrossRefGoogle Scholar
Wade, G. A., Bagnulo, S., Drouin, D.et al. (2007). A search for strong, ordered magnetic fields in Herbig Ae/Be stars. Monthly Notices of the Royal Astronomical Society, 376, 11451161.CrossRefGoogle Scholar
Wunner, G., Roesner, W., Herold, H., and Ruder, H. (1985). Stationary hydrogen lines in white dwarf magnetic field and the spectrum of the magnetic degenerate Grw+70°8247. Astronomy and Astrophysics, 149, 102108.Google Scholar
Zeeman, P. (1897). On the influence of magnetism on the nature of the light emitted by a substance. Nature, 55, 347351.CrossRefGoogle Scholar

References

Apai, D., Pascucci, I., Brandner, W.et al. (2004). NACO polarimetric differential imaging of TW Hya. A sharp look at the closest T Tauri disk. Astronomy and Astrophysics, 415, 671.CrossRefGoogle Scholar
Ardila, D. R., Golimowski, D. A., Krist, J. E.et al. (2007). Hubble Space Telescope advanced camera for surveys coronagraphic observations of the dust surrounding HD 100546. The Astrophysical Journal, 665(1), 512534.CrossRefGoogle Scholar
Batcheldor, D., Schneider, G., Hines, D. C.et al. (2009). High-accuracy near-infrared imaging polarimetry with NICMOS. Publications of the Astronomical Society of the Pacific, 121, 153.CrossRefGoogle Scholar
Bazzon, A., Gisler, D., Roelfsema, R. et al. (2012). SPHERE/ ZIMPOL: Characterization of the FLC polarization modulator. In Ground-Based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics, p. 93.Google Scholar
Beuzit, J.-L., Feldt, M., Dohlen, K.et al. (2008). SPHERE: A planet finder instrument for the VLT. In McLean, I. S., ed., Ground-Based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics, p. 41.Google Scholar
Biller, B., Lacour, S., Juh asz, A.et al. (2012). A likely close-in low-mass stellar companion to the transitional disk star HD 142527. The Astrophysical Journal Letters, 753, L38.CrossRefGoogle Scholar
Breckinridge, J. B. and Oppenheimer, B. R. (2004). Polarization effects in reflecting coronagraphs for white-light applications in astronomy. The Astrophysical Journal, 600, 10911098.CrossRefGoogle Scholar
Burrows, C. J., Stapelfeldt, K. R., Watson, A. M.et al. (1996). Hubble Space Telescope observations of the disk and jet of HH 30. The Astrophysical Journal, 473, 437.CrossRefGoogle Scholar
Canovas, H., Rodenhuis, M., Jeffers, S. V., Min, M., and Keller, C. U. (2011). Data-reduction techniques for high-contrast imaging polarimetry. Applications to ExPo. Astronomy and Astrophysics, 531, 102.CrossRefGoogle Scholar
Canovas, H., Min, M., Jeffers, S. V., Rodenhuis, M., and Keller, C. U. (2012). Constraining the circumbinary envelope of Z Canis Majoris via imaging polarimetry. Astronomy and Astrophysics, 543, A70.CrossRefGoogle Scholar
Canovas, H., Ménard, F., Hales, A.et al. (2013). Near-infrared imaging polarimetry of HD 142527. Astronomy and Astrophysics, 556, 123.CrossRefGoogle Scholar
Carson, J., Thalmann, C., Janson, M.et al. (2013). Direct imaging discovery of a “Super-Jupiter” around the late B-type star κ And. The Astrophysical Journal Letters, 763, L32.CrossRefGoogle Scholar
Cellino, A., di Martino, M., Levasseur-Regourd, A.-C.et al. (2007). Asteroids compositions: Some evidence from Polarimetry. Advances in Geosciences, 7, 2132.CrossRefGoogle Scholar
Cho, J. and Lazarian, A. (2007). Grain alignment and polarized emission from magnetized T Tauri disks. The Astrophysical Journal, 669, 1085.CrossRefGoogle Scholar
Close, L. M., Roddier, F., Northcott, M., Roddier, C., and Elon Graves, J. (1997). Adaptive optics 0.2" resolution infrared images of HL Tauri: Direct images of an active accretion disk around a protostar. The Astrophysical Journal, 478(2), 766777.CrossRefGoogle Scholar
Close, L., Males, J., Morzinski, K.et al. (2013). Diffraction-limited visible light images of Orion Trapezium Cluster with the Magellan Adaptive Secondary Adaptive Optics System (MagAO). The Astrophysical Journal, 774, 94.CrossRefGoogle Scholar
Cotera, A., Schneider, G., Hines, D. C.et al. (2004). Imaging polarimetry of young stellar objects with ACS and NICMOS: A study in dust grain evolution. Bulletin of the American Astronomical Society, 36(136), 1568.Google Scholar
Dollfus, A. (1996). Saturn’s rings: Optical reflectance polarimetry. Icarus, 124, 237261.CrossRefGoogle Scholar
Dong, R., Rafikov, R., Zhu, Z.et al. (2012). The missing cavities in the SEEDS polarized scattered light images of transitional protoplanetary disks: A generic disk model. The Astrophysical Journal, 750, 161.CrossRefGoogle Scholar
Duchene, G., Silber, J., Menard, F., and Gledhill, T. (2000). Circumbinary disks around T Tauri Stars: HST/NICMOS near-infrared images and polarimetric maps. In Garzón, F., Eiroa, C., de Winter, D., and Mahoney, T. J., eds., Disks, Planetesimals, and Planets. ASP Conference Proceedings, Vol. 219. San Francisco: Astronomical Society of the Pacific, p. 169.Google Scholar
Esposito, T., Fitzgerald, M., Kalas, P., and Graham, J. R. (2012). Modeling self-subtraction of extended emission in angular differential imaging: Application to the HD 32297 debris disk. American Astronomical Society Meeting Abstracts, 219.Google Scholar
Follette, K. B., Tamura, M., Hashimoto, J.et al. (2013a). Mapping H-band scattered light emission in the mysterious SR21 transitional disk. The Astrophysical Journal, 767, 10.CrossRefGoogle Scholar
Follette, K. B., Close, L. M., Males, J. R. et al. (2013b). The first circumstellar disk imaged in silhouette at visible wavelengths with adaptive optics: MagAO imaging of Orion 218–354. The Astrophysical Journal Letters, 775, L13.CrossRefGoogle Scholar
Fukagawa, M., Hayashi, M., Tamura, M.et al. (2004). Spiral structure in the circumstellar disk around AB Aurigae. The Astrophysical Journal Letters, 605, L53L56.CrossRefGoogle Scholar
Fukagawa, M., Wisniewski, J. P., Hashimoto, J.et al. (2011). High-contrast polarimetric imaging of the protoplanetary disk around AB Aurigae. In The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution. Proceedings of the International Astronomical Union Symposium, Vol. 276. Cambridge University Press, pp. 420421.Google Scholar
Garrison, L. M. and Anderson, C. M. (1978). Observational studies of the Herbig Ae/Be stars. II – Polarimetry. The Astrophysical Journal, 221, 601.CrossRefGoogle Scholar
Gledhill, T., Scarrott, S., and Wolstencroft, R. (1991). Optical polarization in the disc around Beta Pictoris. Monthly Notices of the Royal Astronomical Society, 252, 5054.CrossRefGoogle Scholar
Grady, C., Woodgate, B., Bruhweiler, F. C.et al. (1999). Hubble Space Telescope space telescope imaging spectrograph coronagraphic imaging of the Herbig Ae star AB Aurigae. The Astrophysical Journal, 523, L151.CrossRefGoogle Scholar
Grady, C. A., Muto, T., Hashimoto, J.et al. (2013). Spiral arms in the asymmetrically illuminated disk of MWC 758 and constraints on giant planets. The Astrophysical Journal, 762, 48.CrossRefGoogle Scholar
Graham, J. R., Kalas, P. G., and Matthews, B. C. (2007). The signature of primordial grain growth in the polarized light of the AU Microscopii debris disk. The Astrophysical Journal, 654, 595.CrossRefGoogle Scholar
Guyon, O., Schneider, G., Belikov, R., and Tenerelli, D. J. (2012). The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8442. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Hales, A. S., Gledhill, T. M., Barlow, M. J., and Lowe, K. T. E. (2006). Near-infrared imaging polarimetry of dusty young stars. Monthly Notices of the Royal Astronomical Society, 365, 1348.CrossRefGoogle Scholar
Hardy, J. W. (1998). Adaptive Optics for Astronomical Telescopes. New York: Oxford University Press.CrossRefGoogle Scholar
Hasegawa, H., Ichikawa, T., Abe, S. et al. (1997). Near-infrared photometric and polarimetric observations of comet Hale–Bopp. Earth, 78, 353.Google Scholar
Hashimoto, J., Tamura, M., Muto, T.et al. (2011). Direct imaging of fine structures in giant planet-forming regions of the protoplanetary disk around AB Aurigae. The Astrophysical Journal Letters, 729, L17.CrossRefGoogle Scholar
Hashimoto, J., Dong, R., Kudo, T.et al. (2012). Polarimetric imaging of large cavity structures in the pre-transitional protoplanetary disk around PDS 70: Observations of the disk. The Astrophysical Journal Letters, 758, L19.CrossRefGoogle Scholar
Hines, D. C. and Schneider, G. (2004). NICMOS coronagraphic polarimetry: A new observing mode for HST. Bulletin of the American Astronomical Society, 205, 1341.Google Scholar
Hines, D. C., Schmidt, G. D., and Schneider, G. (2000). Analysis of polarized light with NICMOS. Publications of the Astronomical Society of the Pacific, 112, 983.CrossRefGoogle Scholar
Hines, D. C., Schneider, G., Hollenbach, D.et al. (2007). The moth: An unusual circumstellar structure associated with HD 61005. The Astrophysical Journal Letters, 671, L165L168.CrossRefGoogle Scholar
Hines, D. C., Videen, G., Zubko, E.et al. (2014). Hubble Space Telescope pre-perihelion ACS/WFC imaging polarimetry of comet ISON (c/2012 s1) at 3.81 AU. The Astrophysical Journal, 780, L32.CrossRefGoogle Scholar
Hinkley, S., Oppenheimer, B. R., Soummer, R.et al. (2009). Speckle suppression through dual imaging polarimetry, and a ground-based image of the HR 4796A circumstellar disk. The Astrophysical Journal, 701, 804.CrossRefGoogle Scholar
Hioki, T., Itoh, Y., Oasa, Y., Fukagawa, M., and Hayashi, M. (2011). High-resolution optical and near-infrared images of the FS Tauri circumbinary disk. Publications of the Astronomical Society of Japan, 63, 543.CrossRefGoogle Scholar
Hodapp, K. W., Tamura, M., Suzuki, R.et al. (2006). Design of the HiCIAO instrument for the Subaru Telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269. Bellingham WA: International Society for Optics and Photonics, p. 123.Google Scholar
Hughes, A. M., Hull, C. L. H., Wilner, D. J., and Plambeck, R. L. (2013). Interferometric upper limits on millimeter polarization of the disks around DG Tau, GM Aur, and MWC 480. The Astronomical Journal, 145, 115.CrossRefGoogle Scholar
Jeffers, S., Min, M., Waters, L.et al. (2012). Direct imaging of a massive dust cloud around R Coronae Borealis. Astronomy and Astrophysics, 539, A56.CrossRefGoogle Scholar
Kalas, P., Liu, M. C., and Matthews, B. C. (2004). Discovery of a large dust disk around the nearby star AU Microscopii. Science, 303, 1990.CrossRefGoogle ScholarPubMed
Kolokolova, L. and Mackowski, D. (2012). Polarization of light scattered by large aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 25672572.CrossRefGoogle Scholar
Kolokolova, L., Hanner, M., Levasseur-Regourd, A., and Gustafson, B. (2004). Physical properties of cometary dust from light scattering and thermal emission. In Comets II. Tucson AZ: University of Arizona Press, pp. 577604.CrossRefGoogle Scholar
Kóspál, A., Ábrahám, P., Apai, D. et al. (2008). High-resolution polarimetry of Parsamian 21: Revealing the structure of an edge-on FUOri disc. Monthly Notices of the Royal Astronomical Society, 383, 1015.CrossRefGoogle Scholar
Kowalski, A. F., Wisniewski, J. P., Clampin, M.et al. (2009). Diagnosing the structure of the HD 163296 protoplanetary disk via coronagraphic imaging polarimetry. In Stempels, E., ed., 15th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun. American Institute of Physics Conference Series, Vol. 1094. Melville NY: AIP Publishing, pp. 393396.Google Scholar
Krejny, M., Matthews, T. G., Novak, G.et al. (2009). Polarimetry of DG TAU at 350 μm. The Astrophysical Journal, 705, 717722.CrossRefGoogle Scholar
Krivova, N. A., Krivov, A. V., and Mann, I. (2000). The disk of Pictoris in the light of polarimetric data. The Astrophysical Journal, 539, 424.CrossRefGoogle Scholar
Kuhn, J. R., Potter, D., and Parise, B. (2001). Imaging polarimetric observations of a new circumstellar disk system. The Astrophysical Journal, 553, L189.CrossRefGoogle Scholar
Kusakabe, N., Grady, C. A., Sitko, M. L.et al. (2012). High-contrast near-infrared polarization imaging of MWC480. The Astrophysical Journal, 753, 153.CrossRefGoogle Scholar
Kuzuhara, M., Tamura, M., Kudo, T.et al. (2013). Direct imaging of a cold Jovian exoplanet in orbit around the Sun-like star GJ 504. The Astrophysical Journal, 774, 11.CrossRefGoogle Scholar
Lafrenière, D., Marois, C., Doyon, R., Nadeau, D., and Artigau, E. (2007). A new algorithm for point-spread function subtraction in high-contrast imaging: A demonstration with angular differential imaging. The Astrophysical Journal, 660, 770.CrossRefGoogle Scholar
Langlois, M., Dohlen, K., Augereau, J.-C.et al. (2010). High contrast imaging with IRDIS near infrared polarimeter. In McLean, I., ed., Ground- based and Airborne Instrumentation for Astronomy III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735, Bellingham WA: International Society for Optics and Photonics, p. 97.Google Scholar
Langlois, M., Vigan, A., Moutou, C.et al. (2012). Infrared differential imager and spectrograph for SPHERE: Performance status with extreme adaptive optics before shipment to ESO/VLT. In Adaptive Optics Systems III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8447. Bellingham WA: International Society for Optics and PhotonicsGoogle Scholar
Levasseur-Regourd, A. C., Mukai, T., Lasue, J., and Okada, Y. (2007). Physical properties of cometary and interplanetary dust. Planetary and Space Science, 55, 10101020.CrossRefGoogle Scholar
Lucas, P. W., Fukagawa, M., Tamura, M.et al. (2004). High-resolution imaging polarimetry of HL Tau and magnetic field structure. Monthly Notices of the Royal Astronomical Society, 352, 1347.CrossRefGoogle Scholar
Macintosh, B. A., Graham, J. R., Palmer, D. W.et al. (2008). The Gemini Planet Imager: From science to design to construction. In Society of Photo- Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7015. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Macintosh, B., Anthony, A., Atwood, J. et al. (2012). The Gemini Planet Imager: Integration and status. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Maness, H. (2009) HST-NICMOS coronagraphic polarimetry of the Beta Pic debris disk. Bulletin of the American Astronomical Society, 41, 501.Google Scholar
Maness, H. L., Kalas, P., Peek, K. M. G.et al. (2009). Hubble Space Telescope optical imaging of the eroding debris disk HD 61005. The Astrophysical Journal, 707, 1098.CrossRefGoogle Scholar
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B. A., and Nadeau, D. (2006). Angular differential imaging: A powerful high-contrast imaging technique. The Astrophysical Journal, 641, 556.CrossRefGoogle Scholar
Masiero, J., Hartzell, C., and Scheeres, D. J. (2009). The effect of the dust size distribution on asteroid polarization. The Astronomical Journal, 138, 15571562.CrossRefGoogle Scholar
Mayama, S., Hashimoto, J., Muto, T.et al. (2012). Subaru imaging of asymmetric features in a transitional disk in Upper Scorpius. The Astrophysical Journal Letters, 760, L26.CrossRefGoogle Scholar
Meakin, C. A., Hines, D. C., and Thompson, R. I. (2005). Young stars and dust in AFGL 437: Hubble Space Telescope NICMOS polarimetric imaging of an outflow source. The Astrophysical Journal, 634, 1146.CrossRefGoogle Scholar
Ménard, F. (2005). Polarimetry of circumstellar disks around T Tauri stars. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco: Astronomical Society of the Pacific, p. 128.Google Scholar
Milli, J., Mouillet, D., Mawet, D.et al. (2013). Prospects of detecting the polarimetric signature of the Earth-mass planet Centauri B b with SPHERE/ZIMPOL. Astronomy and Astrophysics, 556, 64.CrossRefGoogle Scholar
Muto, T., Grady, C. A., Hashimoto, J.et al. (2012). Discovery of small-scale spiral structures in the disk of SAO 206462 (HD 135344B): Implications for the physical state of the disk from spiral density wave theory. The Astrophysical Journal Letters, 748, L22.CrossRefGoogle Scholar
Norris, B. R. M, Tuthill, P. G., Ireland, M. J.et al. (2012). Probing dusty circumstellar environments with polarimetric aperture-masking interferometry. In Optical and Infrared Interferometry III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8445. Bellingham WA: International Society for Optics and Photonics, p. 3.Google Scholar
Olofsson, G., Nilsson, R., Florén, H.-G., Djupvik, A., and Aberasturi, M. (2012). Polarimetric coronagraphy of BD + 31 643. Astronomy and Astrophysics, 544, 43.CrossRefGoogle Scholar
Oppenheimer, B. R., Brenner, D., Hinkley, S.et al. (2008). The solar-system-scale disk around AB Aurigae. The Astrophysical Journal, 679, 1574.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Kalas, P.et al. (2004). Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be stars. Science, 303, 1345.CrossRefGoogle ScholarPubMed
Perrin, M. D., Graham, J. R., Kalas, P. et al. (2005). Adaptive optics polarimetry of Herbig Ae/Be stars. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, p. 379.Google Scholar
Perrin, M. D., Duchene, G., Kalas, P., and Graham, J. R. (2006). Discovery of an optically thick, edge-on disk around the Herbig Ae star PDS 144N. The Astrophysical Journal, 645, 1272.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., and Lloyd, J. P. (2008). The IRCAL polarimeter: Design, calibration, and data reduction for an adaptive optics imaging polarimeter. Publications of the Astronomical Society of the Pacific, 120, 555.CrossRefGoogle Scholar
Perrin, M. D., Vacca, W. D., and Graham, J. R. (2009a). Evidence for an edge-on disk around the young star MWC 778 from infrared imaging and polarimetry. The Astronomical Journal, 137, 4468.CrossRefGoogle Scholar
Perrin, M. D., Duchene, G., Graham, J. R.et al. (2009b). Investigating circumstellar disk geometry and dust properties with coronagraphic polarimetry. In Exoplanets and Disks: Their Formation and Diversity: Proceedings of the International Conference. AIP Conference Proceedings, Vol. 1158. American Institute of Physics, p. 17.Google Scholar
Perrin, M. D., Schneider, G., Duchene, G.et al. (2009c). The case of AB Aurigae’s disk in polarized light: Is there truly a gap?The Astrophysical Journal, 707, L132L136.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Larkin, J. E.et al. (2010). Imaging polarimetry with the Gemini Planet Imager. In Ellerbroek, B., ed., Imaging Polarimetry with the Gemini Planet Imager. Adaptive Optics Systems II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7736. Bellingham WA: International Society for Optics and Photonics, p. 192.Google Scholar
Perrin, M. D., Graham, J. R., Macintosh, B.et al. (2015). Gemini planet imager polarimetry of the circumstellar disk around HR 4796A. The Astrophysical Journal, 799, 182208. Available online at: http://adsabs.harvard.edu/abs/2014arXiv1407.2495P (accessed January 26, 2015).CrossRefGoogle Scholar
Piirola, V., Scaltriti, F., and Coyne, G. V. (1992). Circumstellar disks deduced from sub-arcsecond polarization observations of two young stars. Nature, 359, 399.CrossRefGoogle Scholar
Pinte, C., Menard, F., Duchene, G., and Bastien, P. (2006). Monte Carlo radiative transfer in protoplanetary disks. Astronomy and Astrophysics, 459, 797.CrossRefGoogle Scholar
Pinte, C., Harries, T. J., Min, M.et al. (2009). Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation. Astronomy and Astrophysics, 498, 967.CrossRefGoogle Scholar
Postman, M. (2009). ATLAST Concept Study Team: The Science Case for an 8-m to 16-m advanced technology UVOIR Space Telescope. American Astronomical Society, AAS Meeting #213, #450.01. Bulletin of the American Astronomical Society, 41, 342.Google Scholar
Potter, D. (2003). A search for debris disks with a dual channel adaptive optics imaging polarimeter. Ph. D. thesis, University of Hawaii.Google Scholar
Potter, D. E. (2005). A dual imaging polarimetric survey of YSO environments using Gemini/Hokupa’a. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, p. 143.Google Scholar
Potter, D. E., Close, L. M., Roddier, F.et al. (2000). A high-resolution polarimetry map of the circumbinary disk around UY Aurigae. The Astrophysical Journal, 540, 422.CrossRefGoogle Scholar
Quanz, S. P., Schmid, H. M., Geissler, K.et al. (2011). Very Large Telescope/NACO polarimetric differential imaging of HD 100546—Disk structure and dust grain properties between 10 and 140 AU. The Astrophysical Journal, 738, 23.CrossRefGoogle Scholar
Quanz, S. P., Birkmann, S. M., Apai, D., Wolf, S., and Henning, T. (2012). Resolving the inner regions of the HD 97048 circumstellar disk with VLT/NACO polarimetric differential imaging. Astronomy and Astrophysics, 538, 92.CrossRefGoogle Scholar
Quanz, S. P., Avenhaus, H., Buenzli, E.et al. (2013a). Gaps in the HD 169142 protoplanetary disk revealed by polarimetric imaging: Signs of ongoing planet formation?The Astrophysical Journal Letters, 766, L2.CrossRefGoogle Scholar
Quanz, S. P., Amara, A., Meyer, M. R.et al. (2013b). A young protoplanet candidate embedded in the circumstellar disk of HD 100546. The Astrophysical Journal Letters, 766, L1.CrossRefGoogle Scholar
Robitaille, T. (2012). HYPERION: An open-source parallelized three-dimensional dust continuum radiative transfer code. Astronomy and Astrophysics, 536, 79.CrossRefGoogle Scholar
Rodenhuis, M., Canovas, H., Jeffers, S.et al. (2012). The extreme polarimeter: Design, performance, first results and upgrades. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Rodenhuis, M., Canovas, H., Jeffers, S. V., Min, M., and Keller, C. U. (2013). Observing circumstellar neighbourhoods with the extreme polarimeter. In Wijburg, M., ed., 370 Years of Astronomy in Utrecht. Proceedings of a conference held 2–5 April, Vol. 470. San Francisco: Astronomical Society of the Pacific, p. 407.Google Scholar
Rodgers, E., Cotera, A., Whitney, B., and Robitaille, T. (2013). Probing the evolution of dust grains through detailed modeling of nearby YSOs. American Astronomical Society Meeting Abstracts, 221, #256.12.Google Scholar
Rodriguez, D., Perrin, M., and Macintosh, B. (2009). HST NICMOS and WFPC2 imaging of BP Piscium. Bulletin of the American Astronomical Society, 41, 208.Google Scholar
Roelfsema, R., Gisler, D., Pragt, J.et al. (2013). SPHERE-ZIMPOL system testing: Status report on polarimetric high contrast results. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8864. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Ruiz, M. T., Blanco, V., Maza, J.et al. (1987). IRAS 18059-3211 – Optically known as “Gomez’s Hamburger.”The Astrophysical Journal, 316, L21.CrossRefGoogle Scholar
Safonov, B. S. (2013). Performance analysis of differential speckle polarimetry. Astronomy Letters, 39, 237.CrossRefGoogle Scholar
Sauvage, J.-F., Beuzit, J.-L., Roelfsema, R.et al. (2013). SPHERE: Complete laboratory performance and prediction for on-sky first light. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8864, Bellingham WA: International Society for Optics and Photonics, p. 88640B.Google Scholar
Schmid, H. M., Beuzit, J., Mouillet, D.et al. (2010). Polarimetry of extra-solar planets and circumstellar disks with ZIMPOL/ SPHERE. In Boccaletti, A., ed., Proceedings of the Conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks. October 25–29, 2010. University of Paris Diderot, Paris, France, p. 49.Google Scholar
Schneider, G. and Hines, D. C. (2007). High contrast imaging with NICMOS – I: Teaching an old dog new tricks with coronagraphic polarimetry. In Kalas, P., ed., Proceedings of the conference In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century. June 4–8, 2007. University of California, Berkeley CA, USA, p. 22.Google Scholar
Schneider, G., Smith, B. A., Becklin, E. E.et al. (1999). NICMOS imaging of the HR 4796A circumstellar disk. The Astrophysical Journal Letters, 513, L127L130.CrossRefGoogle Scholar
Seager, S. and Deming, D. (2010). Exoplanet atmospheres. Annual Review of Astronomy and Astrophysics, 48, 631672.CrossRefGoogle Scholar
Seager, S., Whitney, B. A., and Sasselov, D. D. (2000). Photometric light curves and polarization of close-in extrasolar giant planets. The Astrophysical Journal, 540, 504520.CrossRefGoogle Scholar
Silber, J., Gledhill, T. M., Duchene, G., and Menard, F. (2000). Near-infrared imaging polarimetry of the GG Tauri circumbinary ring. The Astrophysical Journal, 536, L89.CrossRefGoogle ScholarPubMed
Simpson, J. P., Whitney, B. A., Hines, D. C.et al. (2013). Aligned grains and inferred toroidal magnetic fields in the envelopes of massive young stellar objects. Monthly Notices of the Royal Astronomical Society, 435, 34193436.CrossRefGoogle Scholar
Sitko, M. L., Carpenter, W. J., Kimes, R. L.et al. (2008). Variability of disk emission in pre-main-sequence and related stars. I. HD 31648 and HD 163296: Isolated Herbig Ae stars driving Herbig-Haro flows. The Astrophysical Journal, 678, 1070.CrossRefGoogle Scholar
Smith, B. (1994). 10 years of Beta Pictoria – A personal reminiscence. In Circumstellar Dust Disks and Planet Formation. Proceedings of the 10th IAP Astrophysics Meeting, Institut D’Astrophysique de Paris, July 4–8, 1994, Editions Frontieres, p. 1.Google Scholar
Smith, B. and Terrile, R. (1984). A circumstellar disk around Beta Pictoris. Science, 226, 14211424.CrossRefGoogle Scholar
Soummer, R., Pueyo, L., and Larkin, J. (2012). Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages. The Astrophysical Journal Letters, 755(2), 15.CrossRefGoogle Scholar
Sparks, W. B. and Axon, D. J. (1999). Panoramic polarimetry data analysis. Publications of the Astronomical Society of the Pacific, 111, 12981315.CrossRefGoogle Scholar
Spergel, D., Gehrels, N., Breckinridge, J.et al. (2013). Wide-field infrared survey telescope – Astrophysics focused telescope assets WFIRST-AFTA final report. Available online at: http://arxiv.org/abs/1305.5422 (accessed January 8, 2015).Google Scholar
Strubbe, L. E. and Chiang, E. I. (2006). Dust dynamics, surface brightness profiles, and thermal spectra of debris disks: The case of AU Microscopii. The Astrophysical Journal, 648, 652.CrossRefGoogle Scholar
Takami, M., Karr, J. L., Hashimoto, J.et al. (2013). High-contrast near-infrared imaging polarimetry of the protoplanetary disk around RY TAU. The Astrophysical Journal, 772, 145.CrossRefGoogle Scholar
Tamura, M. (2009). Subaru strategic exploration of exoplanets and disks with HiCIAO/AO188 (SEEDS). In Exoplanets and Disks: Their formation and Diversity. Proceedings of the International Conference. AIP Conference Proceedings, Vol. 1158. American Institute of Physics, p. 11.Google Scholar
Tamura, M. and Fukagawa, M. (2005). Circumstellar disks in PMS and T Tauri stars—Herbig Ae/Be Stars, Vega-like stars, and submillimeter polarizations. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, p. 215.Google Scholar
Tamura, M., Hough, J. H., and Hayashi, S. S. (1995). 1 millimeter polarimetry of young stellar objects: Low-mass protostars and T Tauri stars. The Astrophysical Journal, 448, 346.CrossRefGoogle Scholar
Tamura, M., Suto, H., Itoh, Y.et al. (2000). Coronagraph imager with adaptive optics (CIAO): Description and first results. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4008. Bellingham WA: International Society for Optics and Photonics, pp. 11531161.Google Scholar
Tamura, M., Fukagawa, M., Murakawa, K.et al. (2003). Near-infrared polarimeter for the Subaru telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4843. Bellingham WA: International Society for Optics and Photonics, pp. 190195.Google Scholar
Tamura, M., Fukagawa, M., Hayashi, M., and the Sdps/Ciao Teams. (2004). Subaru AO coronagraphic and direct imaging of YSOs. In Burton, M. G., Jayawardhana, R., and Bourke, T. L., eds., Star Formation at High Angular Resolution. Proceedings of the IAU Symposium, Vol. 221. Dordrecht, The Netherlands: Kluwer Academic Publisher, p. 313.Google Scholar
Tamura, M., Fukagawa, M., Kimura, H.et al. (2006) First two-micron imaging polarimetry of Pictoris. The Astrophysical Journal, 641, 1172.CrossRefGoogle Scholar
Tanii, R., Itoh, Y., Kudo, T.et al. (2012). High-resolution near-infrared polarimetry of a circumstellar disk around UX Tau A. Publications of the Astronomical Society of Japan, 64(6), 110.CrossRefGoogle Scholar
Thalmann, C., Grady, C. A., Goto, M.et al. (2010). Imaging of a transitional disk gap in reflected light: Indications of planet formation around the young solar analog LkCa 15. The Astrophysical Journal Letters, 718, L87.CrossRefGoogle Scholar
Thalmann, C., Janson, M., Buenzli, E.et al. (2013). Imaging discovery of the debris disk around HIP 79977. The Astrophysical Journal Letters, 763, L29.CrossRefGoogle Scholar
Voshchinnikov, N. and Krügel, E. (1999). Circumstellar disc of Beta Pictoris: Constraints on grain properties from polarization. Astronomy and Astrophysics, 352, 508516.Google Scholar
Vrba, F. J., Schmidt, G. D., and Hintzen, P. M. (1979). Observations and evaluation of the polarization in Herbig Ae/Be stars. The Astrophysical Journal, 227, 185.CrossRefGoogle Scholar
Weintraub, D. A., Kastner, J. H., Zuckerman, B., and Gatley, I. (1992). Near-infrared polarized images of a nebula around T Tauri. The Astrophysical Journal, 391, 784.CrossRefGoogle Scholar
Whitney, B. A. and Wolff, M. J. (2002). Scattering and absorption by aligned grains in circumstellar environments. The Astrophysical Journal, 574, 205231.CrossRefGoogle Scholar
Whitney, B. A., Kenyon, S. J., and Gomez, M. (1997). Near-infrared imaging polarimetry of embedded young stars in the Taurus-Auriga molecular cloud. The Astrophysical Journal, 485, 703.CrossRefGoogle Scholar
Whitney, B. A., Robitaille, T. P., Bjorkman, J. E.et al. (2013). Three-dimensional radiation transfer in young stellar objects. The Astrophysical Journal Supplement, 207, 30.CrossRefGoogle Scholar
Wiktorowicz, S. (2013). Direct detection of exoplanets with polarimetry. American Astronomical Society Meeting Abstracts, 221.Google Scholar
Wiktorowicz, S., Duchene, G., Graham, J. R., and Kalas, P. (2010). Direct polarimetric detection of scattered, optical light from debris disks. In Boccaletti, A., ed., Proceedings of the Conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks. October 25–29, 2010. University of Paris Diderot, Paris, France, p. 30.Google Scholar
Wiktorowicz, S., Millar-Blanchaer, M., Perrin, M. D.et al. (2012). Polarimetric performance of the Gemini Planet Imager. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics, p. 91.Google Scholar
Wisniewski, J. P., Clampin, M., Grady, C. A.et al. (2008). The HD 163296 circumstellar disk in scattered light: Evidence of time-variable self-shadowing. The Astrophysical Journal, 682, 548.CrossRefGoogle Scholar
Wisniewski, J., Fukagawa, M., Grady, C. et al. (2010). SEEDS J-band polarimetric imagery of the AB Aur protoplanetary disk. In: Boccaletti, A., ed., Proceedings of the Conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks. October 25–29, 2010. University of Paris Diderot, Paris, France, p. 36.Google Scholar
Wolstencroft, R. D., Scarrott, S. M., and Gledhill, T. M. (1995). Properties of the Beta Pictoris disc deduced from optical imaging polarimetry. Astrophysics and Space Science, 224, 395.CrossRefGoogle Scholar
Zubko, E., Muinonen, K., Shkuratov, Y. et al. (2012) Evaluating the carbon depletion found by the Stardust mission in Comet 81P/Wild 2. Astronomy and Astrophysics, 544, L8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×