Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-20T02:48:25.006Z Has data issue: false hasContentIssue false

16 - Fetal programming of polycystic ovary syndrome

Published online by Cambridge University Press:  29 September 2009

David H. Abbott
Affiliation:
University of Wisconsin
Cristin M. Bruns
Affiliation:
Dean Clinic, USA
Deborah K. Barnett
Affiliation:
University of Alaska Southeast
Daniel A. Dumesic
Affiliation:
University of Wisconsin
Gabor T. Kovacs
Affiliation:
Monash University, Victoria
Robert Norman
Affiliation:
University of Adelaide
Get access

Summary

Introduction

Readily available, highly calorific foods (Briefel and Johnson 2004), together with an increasingly sedentary lifestyle (Winkleby and Cubbin 2004), are causing progressive detriments in human health (Mokdad et al. 1999, Katzmarzyk and Ardern 2004, Rigby et al. 2004). In the USA alone, overweight or obesity afflicts approximately one in three adult women and contributes to a rapidly increasing incidence of type 2 diabetes (NHANES 2006). The current epidemiological evidence suggests that such an escalating prevalence of obesity and diabetes will continue for the foreseeable future (Zimmet 1999, Zimmet et al. 2003). Such a prediction is of particular concern for women's reproductive health because obesity and diabetes contribute markedly to anovulatory infertility (Norman and Clark 1998, Norman et al. 2004), the most frequent cause of infertility in women (Abbott et al. 2004).

Metabolic dysfunction has considerable consequences for polycystic ovary syndrome (PCOS), a highly prevalent metabolic and infertility disorder of reproductive-aged women that is exacerbated by obesity (Ehrmann et al. 1995, Franks 1995, Dunaif 1997, Escobar-Morreale et al. 2004, Carmina et al. 2005). The syndrome has a highly heterogeneous presentation that can include androgen excess, amenorrhea, insulin resistance, and obesity, among other general health disorders (Abbott et al. 2002a, Dumesic et al. 2005). The most recent PCOS consensus diagnosis (The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group 2004), however, requires the presence of only two out of three specific androgenic and reproductive criteria: (1) hyperandrogenism, as determined biochemically from circulating total or unbound testosterone levels or clinical signs of hyperandrogenism, (2) intermittent or absent menstrual cycles, and (3) polycystic ovaries, as visualized by ultrasound.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott D. H., Dumesic D. A., Eisner J. W., Kemnitz J. W., and Goy R. W. (1997) The prenatally androgenized female rhesus monkey as a model for polycystic ovarian syndrome. In Azziz, R., Nestler, J. E., and Dewailly, D. (eds.) Androgen Excess Disorders in Women, pp. 369–382. Philadelphia, PA: Lippencott-Raven.Google Scholar
Abbott, D. H., Dumesic, D. A., Eisner, J. R., Colman, R. J., and Kemnitz, J. W. (1998) Insights into the development of PCOS from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol. Metab. 9:62–67.CrossRefGoogle ScholarPubMed
Abbott, D. H., Dumesic, D. A., and Franks, S. (2002a) Developmental origin of polycystic ovary syndrome: a hypothesis. J. Endocrinol. 174:1–5.CrossRefGoogle ScholarPubMed
Abbott D. H., Eisner J. R., Colman R. J., Kemnitz J. W., and Dumesic D. A. (2002b) Prenatal androgen excess programs for PCOS in female rhesus monkeys. In Chang, R. J., Dunaif, A., and Hiendel, J. (eds.) Polycystic Ovary Syndrome, pp. 119–133. New York: Marcel Dekker.Google Scholar
Abbott, D. H., Eisner, J. R., Goodfriend, T. L., et al. (2002c) Leptin and total free fatty acids are elevated in the circulation of prenatally androgenized female rhesus monkeys. 84th Annual Meeting of the Endocrine Society, San Francisco, CA, June 2002, Abstr. P2-329.Google Scholar
Abbott, D. H., Bruns, C. M., Barnett, D. K., et al. (2003) Metabolic and reproductive consequences of prenatal testosterone exposure. Program and Abstracts 85th Annual Meeting of the Endocrine Society, Abstr. S34–1.Google Scholar
Abbott, D. H., Foong, S. C., Barnett, D. K., and Dumesic, D. A. (2004) Nonhuman primates contribute unique understanding to anovulatory infertility in women. ILAR J. 45:116–131.CrossRefGoogle ScholarPubMed
Abbott, D. H., Barnett, D. K., Bruns, C. M., and Dumesic, D. A. (2005) Androgen excess fetal programming of female reproduction: a developmental etiology for polycystic ovary syndrome?Hum Reprod. Update 11:357–374.CrossRefGoogle ScholarPubMed
Adams, J. M., Taylor, A. E., Crowley, W. F. Jr., and Hall, J. E. (2004) Polycystic ovarian morphology with regular ovulatory cycles: insights into the pathophysiology of polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 89:4343–4350.CrossRefGoogle ScholarPubMed
Baillargeon, J. P., Jakubowicz, D. J., Iuorno, M. J., Jakubowicz, S., and Nestler, J. E. (2004) Effects of metformin and rosiglitazone, alone and in combination, in nonobese women with polycystic ovary syndrome and normal indices of insulin sensitivity. Fertil. Steril. 82:893–902.CrossRefGoogle ScholarPubMed
Barker, D. J. and Osmond, C. (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet i:1077–1081.CrossRefGoogle Scholar
Barker, D. J., Gluckman, P. D., Godfrey, K. M., et al. (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1994) Mothers, Babies and Health in Later Life. Edinburgh, UK: Churchill Livingstone.Google Scholar
Barker, D. J. P. (1995) Fetal origins of coronary heart disease. Br. Med. J. 311:171–174.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1998) In utero programming of chronic disease. Clin. Sci. (Lond.) 95:115–128.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (2004) The developmental origins of chronic adult disease. Acta Paediatr. Suppl. 93:26–33.CrossRefGoogle ScholarPubMed
Barnes, R. B., Rosenfield, R. L., Ehrmann, D. A., et al. (1994) Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J. Clin. Endocrinol. Metab. 79:1328–1333.Google ScholarPubMed
Beck-Peccoz, P., Padmanabhan, V., Baggiani, A. M., et al. (1991) Maturation of hypothalamic–pituitary–gonadal function in normal human fetuses: circulating levels of gonadotropins, their common alpha-subunit and free testosterone, and discrepancy between immunological and biological activities of circulating follicle-stimulating hormone. J. Clin. Endocrinol. Metab. 73:525–532.CrossRefGoogle ScholarPubMed
Bertram, C. E. and Hanson, M. A. (2001) Animal models and programming of the metabolic syndrome. Br. Med. Bull. 60:103–121.CrossRefGoogle ScholarPubMed
Birch, R. A., Padmanabhan, V., Foster, D. L., Unsworth, W. P., and Robinson, J. E. (2003) Prenatal programming of reproductive neuroendocrine function: fetal androgen exposure produces progressive disruption of reproductive cycles in sheep. Endocrinology 144:1426–1434.CrossRefGoogle Scholar
Brakefield, P. M., Gems, D., Cowen, T., et al. (2005) What are the effects of maternal and pre-adult environments on ageing in humans, and are there lessons from animal models?Mech. Ageing Dev. 126:431–438.CrossRefGoogle ScholarPubMed
Brettenthaler, N., Geyter, C., Huber, P. R., and Keller, U. (2004) Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 89:3835–3840.CrossRefGoogle ScholarPubMed
Briefel, R. R. and Johnson, C. L. (2004) Secular trends in dietary intake in the United States. Annu. Rev. Nutr. 24:401–431.CrossRefGoogle ScholarPubMed
Bruns, C. M., Baum, S. T., Colman, R. J., et al. (2004) Insulin resistance and impaired insulin secretion in prenatally androgenized male rhesus monkeys. J. Clin. Endocrinol. Metab. 89:6218–6223.CrossRefGoogle ScholarPubMed
Carmina, E., Longo, R. A., Rini, G. B., and Lobo, R. A. (2005) Phenotypic variation in hyperandrogenic women influences the findings of abnormal metabolic and cardiovascular risk parameters. J. Clin. Endocrinol. Metab. 90:2545–2549.CrossRefGoogle ScholarPubMed
Chhabra, S., McCartney, C. R., Yoo, R. Y., et al. 2005. Progesterone inhibition of the hypothalamic GnRH pulse generator: Evidence for varied effects in hyperandrogenemic adolescent girls. J. Clin. Endocrinol. Metab. 90:2810–2815.CrossRefGoogle ScholarPubMed
Colilla, S., Cox, N. J., and Ehrmann, D. A. (2001) Heritability of insulin secretion and insulin action in women with polycystic ovary syndrome and their first degree relatives. J. Clin. Endocrinol. Metab. 86:2027–2031.Google ScholarPubMed
Cresswell, J. L., Barker, D. J., Osmond, C., et al. (1997) Fetal growth, length of gestation, and polycystic ovaries in adult life. Lancet 350:1131–1135.CrossRefGoogle ScholarPubMed
DeFronzo, R. A. (1992) Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview. Diabetologia 35:389–397.CrossRefGoogle ScholarPubMed
Dor, J., Shulman, A., Levran, D., et al. (1990) The treatment of patients with polycystic ovarian syndrome by in-vitro fertilization and embryo transfer: a comparison of results with those of patients with tubal infertility. Hum. Reprod. 5:816–818.CrossRefGoogle ScholarPubMed
Drake, A. J. and Walker, B. R. (2004) The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J. Endocrinol. 180:1–16.CrossRefGoogle ScholarPubMed
Drake, A. J., Walker, B. R., and Seckl, J. R. (2005) Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288:R34–R38.CrossRefGoogle ScholarPubMed
Dumesic, D. A., Abbott, D. H., Eisner, J. R., and Goy, R. W. (1997) Prenatal exposure of female rhesus monkeys to testosterone propionate increases serum luteinizing hormone levels in adulthood. Fertil. Steril. 67:155–163.CrossRefGoogle ScholarPubMed
Dumesic, D. A., Schramm, R. D., Peterson, E., et al. (2002) Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J. Clin. Endocrinol. Metab. 87:1111–1119.CrossRefGoogle ScholarPubMed
Dumesic, D. A., Schramm, R. D., Bird, I. M., et al. (2003) Reduced intrafollicular androstenedione and estradiol levels in early-treated prenatally androgenized female rhesus monkeys receiving FSH therapy for in vitro fertilization. Biol. Reprod. 69:1213–1219.CrossRefGoogle ScholarPubMed
Dumesic, D. A., Schramm, R. D., and Abbott, D. H. (2005) Early origins of polycystic ovary syndrome. Reprod. Fertil. Dev. 17:349–360.CrossRefGoogle ScholarPubMed
Dunaif, A. (1997) Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18:774–800.Google ScholarPubMed
Dunaif, A., Scott, D., Finegood, D., Quintana, B., and Whitcomb, R. (1996) The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 81:3299–3306.Google ScholarPubMed
Dunger, D. B., Ong, K. K., Huxtable, S. J., et al. (1998) Association of the INS VNTR with size at birth (Avon Longitudinal Study of Pregnancy and Childhood). Nat. Genet. 19:98–100.Google ScholarPubMed
Edwards, C. R., Benediktsson, R., Lindsay, R. S., and Seckl, J. R. (1993) Dysfunction of placental glucocorticoid barrier: link between fetal environment and adult hypertension?Lancet 341:355–357.CrossRefGoogle ScholarPubMed
Edwards R. G. (1997) The pre-implantation and implanting human embryo. In Jauniaux, E., Barnea, E., and Edwards, R. G. (eds.) Embryonic Medicine and Therapy, pp. 3–31. Oxford, UK: Oxford University Press.Google Scholar
Ehrmann, D. A., Barnes, R. B., and Rosenfield, R. L. (1995) Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr. Rev. 16:322–353.CrossRefGoogle ScholarPubMed
Eisner, J. R., Dumesic, D. A., Kemnitz, J. W., and Abbott, D. H. (2000) Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J. Clin. Endocrinol. Metab. 85:1206–1210.Google ScholarPubMed
Eisner, J. R., Barnett, M. A., Dumesic, D. A., and Abbott, D. H. (2002) Ovarian hyperandrogenism in adult female rhesus monkeys exposed to prenatal androgen excess. Fertil. Steril. 77:167–172.CrossRefGoogle ScholarPubMed
Eisner, J. R., Dumesic, D. A., Kemnitz, J. W., Colman, R. J., and Abbott, D. H. (2003) Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. Obes. Res. 11:279–286.CrossRefGoogle ScholarPubMed
Ellison, P. T. (2005) Evolutionary perspectives on the fetal origins hypothesis. Am. J. Hum. Biol. 17:113–118.CrossRefGoogle ScholarPubMed
Eppig, J. J., O'Brien, M. J., Pendola, F. L., and Watanabe, S. (1998) Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle-stimulating hormone and insulin. Biol. Reprod. 59:1445–1453.CrossRefGoogle ScholarPubMed
Escobar-Morreale, H. F., Botella-Carretero, J. I., Villuendas, G., Sancho, J., and Millan, San J. L. (2004) Serum interleukin-18 concentrations are increased in the polycystic ovary syndrome: relationship to insulin resistance and to obesity. J. Clin. Endocrinol. Metab. 89:806–811.CrossRefGoogle ScholarPubMed
Escobar-Morreale, H. F., Luque-Ramirez, M., and San Millan, J. L. (2005) The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr. Rev. 26:251–282.CrossRefGoogle ScholarPubMed
Fox, R. (1999) Prevalence of a positive family history of type 2 diabetes in women with polycystic ovarian disease. Gynecol. Endocrinol. 13:390–393.CrossRefGoogle ScholarPubMed
Franks, S. (1995) Polycystic ovary syndrome. N. Engl. J. Med. 333:853–861.CrossRefGoogle ScholarPubMed
Franks, S., Robinson, S., and Willis, D. S. (1996) Nutrition, insulin and polycystic ovary syndrome. Rev. Reprod. 1:47–53.CrossRefGoogle ScholarPubMed
Gaasenbeek, M., Powell, B. L., Sovio, U., et al. (2004) Large-scale analysis of the relationship between CYP11A promoter variation, polycystic ovarian syndrome, and serum testosterone. J. Clin. Endocrinol. Metab. 89:2408–2413.CrossRefGoogle ScholarPubMed
Gilling-Smith, C., Story, H., Rogers, V., and Franks, S. (1997) Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clin Endocrinol. (Oxf.) 47:93–99.CrossRefGoogle ScholarPubMed
Goy R. W. and Kemnitz J. W. (1983) Early, persistent, and delayed effects of virilizing substances delivered transplacentally to female rhesus fetuses. In Weiss, B. (ed.) Application of Behavioral Pharmacology in Toxicology, pp.303–314. New York: Raven Press.Google Scholar
Goy, R. W. and Robinson, J. A. (1982) Prenatal exposure of rhesus monkeys to patent androgens: morphological, behavioral, and physiological consequences. Banbury Rep. 11:355–378.Google Scholar
Goy R. W., Wolf J. E., and Eisele S. G. (1977) Experimental female hermaphroditism in rhesus monkeys: anatomical and psychological characteristics. In Money, J. and Musaph, H. (eds.) Handbook of Sexology, pp. 139–156. Amsterdam the Netherlands: Elsevier.Google Scholar
Goy R. W., Uno H., and Sholl S. A. (1988) Psychological and anatomical consequences of prenatal exposure to androgens in female rhesus. In Mori, T. and Nagasawa, H. (eds.) Toxicity of Hormones in Perinatal Life, pp. 127–142. Boca Raton, FL: CRC Press.Google Scholar
Hales, C. N. and Barker, D. J. (2001) The thrifty phenotype hypothesis. Br. Med. Bull. 60:5–20.CrossRefGoogle ScholarPubMed
Hales, C. N., Barker, D. J., Clark, P. M., et al. (1991) Fetal and infant growth and impaired glucose tolerance at age 64. Br. Med. J. 303:1019–1022.CrossRefGoogle ScholarPubMed
Hattersley, A. T., Beards, F., Ballantyne, E., et al. (1998) Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat. Genet. 19:268–270.CrossRefGoogle ScholarPubMed
Hautanen, A., Raikkonen, K., and Adlercreutz, H. (1997) Associations between pituitary–adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J. Intern. Med. 241:451–461.CrossRefGoogle ScholarPubMed
Herman, R. A., Jones, B., Mann, D. R., and Wallen, K. (2000) Timing of prenatal androgen exposure: anatomical and endocrine effects on juvenile male and female rhesus monkeys. Horm. Behav. 38:52–66.CrossRefGoogle ScholarPubMed
Hokken-Koelega, A. C. (2002) Timing of puberty and fetal growth. Best Pract. Res. Clin. Endocrinol. Metab. 16:65–71.CrossRefGoogle ScholarPubMed
Holte, J. (1996) Disturbances in insulin secretion and sensitivity in women with the polycystic ovary syndrome. Baillière's Clin. Endocrinol. Metab. 10:221–247.CrossRefGoogle ScholarPubMed
Holte, J. (1998) Polycystic ovary syndrome and insulin resistance: thrifty genes struggling with over-feeding and sedentary life style?J. Endocrinol. Invest. 21:589–601.CrossRefGoogle ScholarPubMed
Homburg, R. (2005) Polycystic ovary syndrome in adolescence. Endocr. Dev. 8:137–149.CrossRefGoogle ScholarPubMed
Homburg, R., Armar, N. A., Eshel, A., Adams, J., and Jacobs, H. S. (1988) Influence of serum luteinising hormone concentrations on ovulation, conception, and early pregnancy loss in polycystic ovary syndrome. Br. Med. J. 297:1024–1026.CrossRefGoogle ScholarPubMed
Hopkinson, Z. E., Sattar, N., Fleming, R., and Greer, I. A. (1998) Polycystic ovarian syndrome: the metabolic syndrome comes to gynaecology. Br. Med. J. 317:329–332.CrossRefGoogle ScholarPubMed
Hotta, K., Funahashi, T., Bodkin, N. L., et al. (2001) Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50:1126–1133.CrossRefGoogle ScholarPubMed
Hwang, J. L., Seow, K. M., Lin, Y. H., et al. (2005) IVF versus ICSI in sibling oocytes from patients with polycystic ovarian syndrome: a randomized controlled trial. Hum. Reprod. 20:1261–1265.CrossRefGoogle ScholarPubMed
Ibañez, L. and Zegher, F. (2005) Flutamide-metformin plus ethinylestradiol-drospirenone for lipolysis and antiatherogenesis in young women with ovarian hyperandrogenism: the key role of metformin at the start and after more than one year of therapy. J. Clin. Endocrinol. Metab. 90:39–43.CrossRefGoogle Scholar
Ibañez, L., Potau, N., Zampolli, M., et al. (1996) Hyperinsulinemia in postpubertal girls with a history of premature pubarche and functional ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 81:1237–1243.Google ScholarPubMed
Ibañez, L., Potau, N., François, I., and Zegher, F. (1998) Pubarche, hyperinsulinism, and ovarian hyperandrogenism in girls: relation to reduced fetal growth. J. Clin. Endocrinol. Metab. 83:3558–3562.CrossRefGoogle ScholarPubMed
Jonard, S. and Dewailly, D. (2004) The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum. Reprod. Update 10:107–117.CrossRefGoogle ScholarPubMed
Katzmarzyk, P. T. and Ardern, C. I. (2004) Overweight and obesity mortality trends in Canada, 1985–2000. Can. J. Public Health 95:16–20.Google Scholar
Kaushal, R., Parchure, N., Bano, G., Kaski, J. C., and Nussey, S. S. (2004) Insulin resistance and endothelial dysfunction in the brothers of Indian subcontinent Asian women with polycystic ovaries. Clin. Endocrinol. 60:322–328.CrossRefGoogle ScholarPubMed
Kemnitz, J. W., Sladky, K. K., Flitsch, T. J., Pomerantz, S. M., and Goy, R. W. (1988) Androgenic influences on body size and composition of adult rhesus monkeys. Am. J. Physiol. 255:E857–E864.Google ScholarPubMed
Kreiner, D., Liu, H. C., Itskovitz, J., Veeck, L., and Rosenwaks, Z. (1987) Follicular fluid estradiol and progesterone are markers of preovulatory oocyte quality. Fertil. Steril. 48:991–994.CrossRefGoogle ScholarPubMed
Laitinen, J., Taponen, S., Martikainen, H., et al. (2003) Body size from birth to adulthood as a predictor of self-reported polycystic ovary syndrome symptoms. Int. J. Obes. Relat. Metab. Disord. 27:710–715.CrossRefGoogle ScholarPubMed
Legro, R. S. (1998) Insulin resistance in polycystic ovary syndrome: treating a phenotype without a genotype. Mol. Cell. Endocrinol. 145:103–110.CrossRefGoogle ScholarPubMed
Legro, R. S. (2003) Diagnostic criteria in polycystic ovary syndrome. Semin. Reprod. Med. 21:267–275.Google ScholarPubMed
Legro, R. S., Kunselman, A. R., Dodson, W. C., and Dunaif, A. (1999) Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J. Clin. Endocrinol. Metab. 84:165–169.Google ScholarPubMed
Legro, R. S., Kunselman, A. R., Demers, L., et al. (2002) Elevated dehydroepiandrosterone sulfate levels as the reproductive phenotype in the brothers of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87:2134–2138.CrossRefGoogle ScholarPubMed
Levine, J. E., Terasawa, E., Hoffmann, S. M., et al. (2005) Luteinizing hormone (LH) hypersecretion and diminished LH Responses to RU486 in a nonhuman primate model for polycystic ovary syndrome (PCOS). 87th Annual Meeting of the Endocrine Society, San Diego, CA, June 2005, Abstr. P62-1.Google Scholar
Ludwig, M., Finas, D. F., al-Hasani, S., Diedrich, K., and Ortmann, O. (1999) Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients. Hum. Reprod. 14:354–358.CrossRefGoogle ScholarPubMed
Manikkam, M., Crespi, E. J., Doop, D. D., et al. (2004) Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 145:790–798.CrossRefGoogle Scholar
McCartney, C. R., Eagleson, C. A., and Marshall, J. C. (2002) Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin. Reprod. Med. 20:317–326.CrossRefGoogle ScholarPubMed
McCartney, C. R., Bellows, A. B., Gingrich, M. B., et al. (2004) Exaggerated 17-hydroxyprogesterone response to intravenous infusions of recombinant human LH in women with polycystic ovary syndrome. Am. J. Physiol. Endocrinol. Metab. 286:E902–E908.CrossRefGoogle ScholarPubMed
Merke, D. P. and Cutler, G. B. Jr. (2001) New ideas for medical treatment of congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 30:121–135.CrossRefGoogle ScholarPubMed
Mishell, D. R. Jr, Dvajan, V., and Lobo, R. A. (1991) Infertility, Contraception and Reproductive Endocrinology, 3rd edn. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Mokdad, A. H., Serdula, M. K., Dietz, W. H., et al. (1999) The spread of the obesity epidemic in the United States, 1991–1998. J. Am. Med. Assoc. 282:1519–1522.CrossRefGoogle ScholarPubMed
Neel, J. V. (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?Am. J. Hum. Genet. 14:353–362.Google ScholarPubMed
Nestler, J. E. and Jakubowicz, D. J. (1996) Decreases in ovarian cytochrome P450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N. Engl. J. Med. 335:617–623.CrossRefGoogle ScholarPubMed
NHANES (2006) National Health and Nutrition Examination Survey (NHANES III). Available online at www.cdc.gov/nchs/about/major/nhanes/datatblelink.htm
Norman, R. J. and Clark, A. M. (1998) Obesity and reproductive disorders: a review. Reprod. Fertil. Dev. 10:55–63.CrossRefGoogle ScholarPubMed
Norman, R. J., Noakes, M., Wu, R., et al. (2004) Improving reproductive performance in overweight/obese women with effective weight management. Hum. Reprod. Update 10:267–280.CrossRefGoogle ScholarPubMed
Ong, K. K. and Dunger, D. B. (2002) Perinatal growth failure: the road to obesity, insulin resistance and cardiovascular disease in adults. Best Pract. Res. Clin. Endocrinol. Metab. 16:191–207.CrossRefGoogle ScholarPubMed
Ong, K. K., Ahmed, M. L., Emmett, P. M., Preece, M. A., and Dunger, D. B. (2000) Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. Br. Med. J. 320:967–971.Google ScholarPubMed
Phipps, K., Barker, D. J., Hales, C. N., et al. (1993) Fetal growth and impaired glucose tolerance in men and women. Diabetologia 36:225–228.CrossRefGoogle ScholarPubMed
Phocas, I., Chryssikopoulos, A., Sarandakou, A., Rizos, D., and Trakakis, E. (1995) A contribution to the classification of cases of non-classic 21-hydroxylase-deficient congenital adrenal hyperplasia. Gynecol. Endocrinol. 9:229–238.CrossRefGoogle ScholarPubMed
Powell, B. L., Haddad, L., Bennett, A., et al. (2005) Analysis of multiple data sets reveals no association between the insulin gene variable number tandem repeat element and polycystic ovary syndrome or related traits. J. Clin. Endocrinol. Metab. 90:2988–2993.CrossRefGoogle ScholarPubMed
Reinhardt, V., Reinhardt, A., and Houser, D. (1986) Hair pulling and eating in captive rhesus monkey troops. Folia Primatol. 47:158–164.CrossRefGoogle ScholarPubMed
Resko, J. A., Buhl, A. E., and Phoenix, C. H. (1987) Treatment of pregnant rhesus macaques with testosterone propionate: observations on its fate in the fetus. Biol. Reprod. 37:1185–1191.CrossRefGoogle ScholarPubMed
Rhind, S. M., Rae, M. T., and Brooks, A. N. (2001) Effects of nutrition and environmental factors on the fetal programming of the reproductive axis. Reproduction 122:205–214.CrossRefGoogle ScholarPubMed
Rigby, N. J., Kumanyika, S., and James, W. P. (2004) Confronting the epidemic: the need for global solutions. J. Public Health Policy 25:418–434.CrossRefGoogle ScholarPubMed
Rom, E., Reich, R., Laufer, N., et al. (1987) Follicular fluid contents as predictors of success of in-vitro fertilization-embryo transfer. Hum. Reprod. 2:505–510.CrossRefGoogle ScholarPubMed
Rosenfield, R. L., Barnes, R. B., and Ehrmann, D. A. (1994) Studies of the nature of 17-hydroxyprogesterone hyperresonsiveness to gonadotropin-releasing hormone agonist challenge in functional ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 79:1686–1692.Google ScholarPubMed
Sadrzadeh, S., Klip, W. A., Broekmans, F. J., et al. (OMEGA Project Group) (2003) Birth weight and age at menarche in patients with polycystic ovary syndrome or diminished ovarian reserve, in a retrospective cohort. Hum. Reprod. 18:2225–2230.CrossRefGoogle ScholarPubMed
Sagle, M., Bishop, K., Ridley, N., et al. (1988) Recurrent early miscarriage and polycystic ovaries. Br. Med. J. 297:1027–1028.CrossRefGoogle ScholarPubMed
Millan, San J. L., Corton, M., Villuendas, G., et al. (2004) Association of the polycystic ovary syndrome with genomic variants related to insulin resistance, type 2 diabetes mellitus, and obesity. J. Clin. Endocrinol. Metab. 89:2640–2646.CrossRefGoogle Scholar
Seckl, J. R. and Meaney, M. J. (2004) Glucocorticoid programming. Ann. N. Y. Acad. Sci. 1032:63–84.CrossRefGoogle ScholarPubMed
Sir-Petermann, T., Maliqueo, M., Angel, B., et al. (2002a) Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum. Reprod. 17:2573–2579.CrossRefGoogle ScholarPubMed
Sir-Petermann, T., Angel, B., Maliqueo, M., et al. (2002b) Prevalence of Type II diabetes mellitus and insulin resistance in parents of women with polycystic ovary syndrome. Diabetologia 45:959–964.CrossRefGoogle Scholar
Slob, A. K., Hamer, R., Woutersen, P. J., and Bosch, Werff ten J. J. (1983) Prenatal testosterone propionate and postnatal ovarian activity in the rat. Acta Endocrinol (Copenh.) 103:420–427.Google ScholarPubMed
Steiner, R. A., Clifton, D. K., Spies, H. G., and Resko, J. A. (1976) Sexual differentiation and feedback control of luteinizing hormone secretion in the rhesus monkey. Biol. Reprod. 15:206–212.CrossRefGoogle ScholarPubMed
Stikkelbroeck, N. M., Hermus, A. R., Braat, D. D., and Otten, B. J. (2003) Fertility in women with congenital adrenal hyperplasia due to Zl-hydroxylase deficiency. Obstet. Gynecol. Surv. 58:275–284.CrossRefGoogle ScholarPubMed
Strauss, J. F. III. (2003) Some new thoughts on the pathophysiology and genetics of polycystic ovary syndrome. Ann. N. Y. Acad. Sci. 997:42–48.CrossRefGoogle ScholarPubMed
Tarlatzis, B. C., Grimbizis, G., Pournaropoulos, F., et al. (1995) The prognostic value of basal luteinizing hormone : follicle-stimulating hormone ratio in the treatment of patients with polycystic ovarian syndrome by assisted reproduction techniques. Hum. Reprod. 10:2545–2549.CrossRefGoogle ScholarPubMed
Tesarik, J. and Mendoza, C. (1995) Nongenomic effects of 17β-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J. Clin. Endocrinol. Metab. 80:1438–1443.Google ScholarPubMed
The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risk related to polycystic ovary syndrome (POCS). Hum. Reprod. 19:41–47.
Tucci, S., Futterweit, W., Concepción, E. S., et al. (2001) Evidence for association of polycystic ovary syndrome in caucasian women with a marker at the insulin receptor gene locus. J. Clin. Endocrinol. Metab. 86:446–449.CrossRefGoogle ScholarPubMed
Urbanek, M., Legro, R. S., Driscoll, D. A., et al. (1999) Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc. Natl. Acad. Sci. U.S.A. 96:8573–8578.CrossRefGoogle ScholarPubMed
Urbanek, M., Wu, X., Vickery, K. R., et al. (2000) Allelic variants of the follistatin gene in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 85:4455–4461.Google ScholarPubMed
Urman, B., Tiras, B., and Yakin, K. (2004) Assisted reproduction in the treatment of polycystic ovarian syndrome. Reprod. Biomed. Online 8:419–430.CrossRefGoogle ScholarPubMed
Veldhuis, J. D., Zhang, G., and Garmey, J. C. (2002) Troglitazone, an insulin-sensitizing thiazolidinedione, represses combined stimulation by LH and insulin of de novo androgen biosynthesis by thecal cells in vitro. J. Clin. Endocrinol. Metab. 87:1129–1133.CrossRefGoogle ScholarPubMed
Villuendas, G., Escobar-Morreale, H. F., Tosi, F., et al. (2003) Association between the D19S884 marker at the insulin receptor gene locus and polycystic ovary syndrome. Fertil. Steril. 79:219–220.CrossRefGoogle ScholarPubMed
Wagenknecht, L. E., Langefeld, C. D., Scherzinger, A. L., et al. (2003) Insulin sensitivity, insulin secretion, and abdominal fat: the Insulin Resistance Atherosclerosis Study (IRAS) Family Study. Diabetes 52:2490–2496.CrossRefGoogle ScholarPubMed
West, C., Foster, D. L., Evans, N. P., Robinson, J., and Padmanabhan, V. (2001) Intra-follicular activin availability is altered in prenatally androgenized lambs. Mol. Cell. Endocrinol. 185:51–59.CrossRefGoogle ScholarPubMed
Wilen, R., Goy, R. W., Resko, J. A., and Naftolin, F. (1977) Pubertal body weight and growth in the female rhesus pseudohermaphrodite. Biol. Reprod. 16:470–473.Google ScholarPubMed
Willis, D. and Franks, S. (1995) Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-1 insulin-like growth factor receptor. J. Clin. Endocrinol. Metab. 80:3788–3790.CrossRefGoogle ScholarPubMed
Willis, D., Mason, H., Gilling-Smith, C., and Franks, S. (1996) Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J. Clin. Endocrinol. Metab. 81:302–309.Google ScholarPubMed
Willis, D. S., Watson, H., Mason, H. D., et al. (1998) Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation. J. Clin. Endocrinol. Metab. 83:3984–3991.Google ScholarPubMed
Winkleby, M. A. and Cubbin, C. (2004) Changing patterns in health behaviors and risk factors related to chronic diseases, 1990–2000. Am. J. Health Promot. 19:19–27.CrossRefGoogle ScholarPubMed
Yildiz, B. O., Yarali, H., Oguz, H., and Bayraktar, M. (2003) Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88:2031–2036.CrossRefGoogle ScholarPubMed
Young, A. A., Gedulin, B. R., Bhavsar, S., et al. (1999) Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes 48:1026–1034.CrossRefGoogle Scholar
Zawadzki J. A., and Dunaif A. (1992) Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In Dunaif, A., Givens, J. R., Haseltine, F. P., and Merriam, G. R. (eds.) Polycystic Ovary Syndrome, pp.377–384. Boston, MA: Blackwell Scientific.Google ScholarPubMed
Zheng, P., Wei, S., Bavister, B. D., et al. (2003) 17ββ-estradiol and progesterone improve in-vitro cytoplasmic maturation of oocytes from unstimulated prepubertal and adult rhesus monkeys. Hum. Reprod. 18:2137–2144.CrossRefGoogle ScholarPubMed
Zimmet, P. T., Shaw, J., Murray, S., and Sicree, R. (2003) The diabetes epidemic in full flight: forecasting the future. Diabetes Voice 48:12–16.Google Scholar
Zimmet, P. Z. (1999) Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia 42:499–518.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×