Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T11:50:26.336Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 June 2020

Peter Joseph Rayer
Affiliation:
The Meteorological Office, UK
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Pressure Broadening of Spectral Lines
The Theory of Line Shape in Atmospheric Physics
, pp. 612 - 619
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, M. and Valk, H., Quantum Mechanics: Principles and Applications (Boston, MA: Addison-Wesley, 1973).Google Scholar
Anderson, P.W., ‘Pressure Broadening in the Microwave and Infra-Red Regions’, Phys. Rev., 76 (1949), 647661.Google Scholar
Arfken, G., Mathematical Methods for Physicists (3rd edn) (Academic Press, 1985).Google Scholar
Atkins, P.W., Molecular Quantum Mechanics (2nd edn) (Oxford University Press, 1983).Google Scholar
Banwell, C.N., Fundamentals of Molecular Spectroscopy (3rd edn) (New York: McGraw-Hill, 1983).Google Scholar
Baranger, M., ‘Simplified Quantum Mechanical Theory of Pressure Broadening’, Phys. Rev., 111 (1958a), 481493.Google Scholar
Baranger, M., ‘Problem of Overlapping Lines in the Theory of Pressure Broadening’, Phys. Rev., 111 (1958b), 494504.Google Scholar
Baranger, M., ‘General Impact Theory of Pressure Broadening’, Phys. Rev., 112 (1958c), 855865.Google Scholar
Bendat, J.S., Principles and Applications of Random Noise Theory (Hoboken, NJ: Wiley, 1958).Google Scholar
Bendat, J.S. and Piersol, A.G., Random Data: Analysis and Measurement Procedures (Hoboken, NJ: Wiley, 1971).Google Scholar
Ben-Reuven, A., ‘Symmetry Considerations in Pressure-Broadening Theory’, Phys. Rev., 141 (1966a), 3440.Google Scholar
Ben-Reuven, A., ‘Impact Broadening of Microwave Spectra’, Phys. Rev., 145 (1966b), 722.Google Scholar
Ben-Reuven, A., ‘Resonance Broadening of Spectral Lines’, Phys. Rev., 4 (1971), 21152120.Google Scholar
Ben-Reuven, A., ‘Spectral Line Shapes in Gases in the Binary Collision Approximation’ in Advances in Chemical Physics Vol. XXXIII, eds. Prigogine, I. and Rice, S.A. (Hoboken, NJ: Interscience, 1975).Google Scholar
Ben-Reuven, A. and Mukamel, S., ‘Comments on the Formal Theory of Scattering and Relaxation’, J. Phys: Math. Gen., 8 (1975), 13131327.Google Scholar
Birkhoff, G. and MaCLane, S., A Survey of Modern Algebra (revised edn) (London: Macmillan, 1953).Google Scholar
Birnbaum, G., ‘Theory of Microwave Nonresonant Absorption and Relaxation in Gases’, Phys. Rev., 150 (1966), 101109.#####Google Scholar
Birnbaum, G., ‘Microwave Pressure Broadening and Its Application to Intermolecular Forces’ in Intermolecular Forces, ed. J.O. Hirschfelder (Hoboken, NJ: Interscience, 1967), pp. 487–548.Google Scholar
Bleaney, B.I. and Bleaney, B., Electricity and Magnetism (2nd edn) (Oxford University Press, 1965).Google Scholar
Blum, K., Density Matrix Theory and Applications (Berlin: Plenum, 1981).Google Scholar
Bohm, A. (with M. Loewe), Quantum Mechanics: Foundations and Applications (2nd edn) (New York: Springer-Verlag, 1986).Google Scholar
Bohm, D., Quantum Theory (Mineola, NY: Dover, 1951).Google Scholar
Boissoles, J., Boulet, C., Robert, D. and Green, S., ‘State-to-State Rotational Phase Coherence Effect on the Vibration Rotation Band Shape: An Accurate Quantum Calculation for CO-He’, J. Chem. Phys., 90 (1989), 53925398.Google Scholar
Boissoles, J., Boulet, C. and Bruet, X., ‘Ab-initio Line Space Cross Sections: On the Need of Off-the-Energy Shell Calculation’, J. Chem. Phys., 116 (2002), 75377543.Google Scholar
Breene, R.G., Jr, ‘Line Shape’, Rev. Mod. Phys., 29 (1957), 94143.Google Scholar
Breene, R.G., Jr, The Shift and Shape of Spectral Line (Oxford: Pergamon, 1961).Google Scholar
Breene, R.G., Jr, Theories of Spectral Line Shape (New York: Wiley, 1981).Google Scholar
Bremermann, H., Distributions, Complex Variables, and Fourier Transforms (Boston, MA: Addison-Wesley, 1965).Google Scholar
Brink, D.M. and Satchler, G.R., Angular Momentum (3rd edn) (Oxford University Press, 1993).Google Scholar
Bulanin, M.O., Dokuchaev, A.B., Tonkov, M. V. and Filippov, N.N., ‘Influence of Line Interference on the Vibration Rotation Band Shapes’, J. Quant. Spectrosc. Radiat. Transfer, 31 (1984), 521543.Google Scholar
Butkov, E., Mathematical Physics (Boston, MA: Addison-Wesley, 1968).Google Scholar
Byron, F.W. and Fuller, R.W., Mathematics of Classical and Quantum Physics (2 vols bound as one) (Mineola, NY: Dover, 1992).Google Scholar
Callen, H.B. and Welton, T.A., ‘Irreversibility and Generalized Noise’, Phys. Rev., 83 (1951), 3440.Google Scholar
Callen, H.B., ‘The Fluctuation–Dissipation Theorem and Irreversible Thermodynamics’ in Fluctuation, Relaxation and Resonance in Magnetic Systems, ed. Ter Haar, D. (Edinburgh: Oliver & Boyd, 1962), pp. 15–22.Google Scholar
Cannon, C.J., The Transfer of Spectral Line Radiation (Cambridge University Press, 1985).Google Scholar
Clemmow, P.C., An Introduction to Electromagnetic Theory (Cambridge University Press, 1973).Google Scholar
Clough, S.A., Kneizys, F.X. and Davies, R.W., ‘Line Shape and the Water Vapor Continuum’, Atmos. Res., 23 (1989), 229241.Google Scholar
Clough, S.A., Kneizys, F.X., Davies, R., Gamache, R. and Tipping, R., ‘Theoretical Line Shape for H2 O Vapor: Application to the Continuum’ in Atmospheric Water Vapor, eds. Deepak, A., Wilkerson, T.D., and Ruhnke, L.H. (Cambridge, MA: Academic Press, 1980), pp. 25–46.Google Scholar
Clough, S.A., Davies, R. and Tipping, R., ‘The Line Shape for Collisionally Broadened Molecular Transitions: A Quantum Theory Satisfying the Fluctuation Dissipation Theorem’ in Spectral Line Shapes Vol.2 (Berlin: Walter de Gruyter, 1983), pp. 553568.Google Scholar
Cohen-Tannoudji, C., Dupont-Roc, J. and Grynberg, G., Atom Photon Interactions (Hoboken, NJ: Wiley, 1992).Google Scholar
Condon, E.U. and Shortley, G.H., The Theory of Atomic Spectra (corrected edn) (Cambridge University Press, 1951).Google Scholar
Cook, R.L. and De Lucia, F.C., ‘Application of the Theory of Irreducible Tensor Operators to Molecular Hyperfine Structure’, Am. J. Phys, 39 (1971), 14331454.Google Scholar
Coombe, D.A., Snider, R.F. and Sanctuary, B.C., ‘Definitions and Properties of Generalized Collision Cross Sections’, J. Chem. Phys., 63 (1975), 30153030.Google Scholar
Courant, R., Differential and Integral Calculus (2nd English edn), trans. from German by E. J. McShane, (London: Blackie, 1937).Google Scholar
Cowley, C.R., The Theory of Stellar Spectra (Gordon & Breach, 1970).Google Scholar
Crawford, F.S., Jr, Waves (Vol.3, Berkeley Physics Course) (New York: McGraw-Hill, 1968).Google Scholar
Cullum, J. and Willoughby, R.A., ‘A Practical Procedure for Computing Eigenvalues of Large Sparse Non-symmetric Matrices’ in Large Scale Eigenvalue Problems (North-Holland, 1986) pp. 193–240.Google Scholar
Davies, R.W., Tipping, R.H. and Clough, S.A., ‘Dipole Correlation Function for Molecular Pressure Broadening: A Quantum Theory which Satisfies the Fluctuation–Dissipation Theorem’, Phys. Rev. A, 26 (1982), 33783394.Google Scholar
Davies, R.W. and Oli, B.A., ‘Theoretical Calculations of H 2 O Linewidths and Pressure Shifts: Comparison of the Anderson Theory with Quantum Many-Body Theory for N2 and for Air-Broadened Lines’, J. Quant. Spectrosc. Radiat. Transfer, 20 (1978), 95120.Google Scholar
Debye, P., Polar Molecules (Mineola, NY: Dover, 1929).Google Scholar
D’Espagnat, B., Conceptual Foundations of Quantum Mechanics (2nd edn) (Boston, MA: Addison-Wesley, 1976).Google Scholar
Dicke, R.H. and Wittke, J.P., Introduction to Quantum Mechanics (Boston, MA: Addison-Wesley, 1960).Google Scholar
Dirac, P.A.M., The Principles of Quantum Mechanics (4th edn) (Oxford University Press, 1958).Google Scholar
Ditchburn, R.W., Light (Blackie, 1952).Google Scholar
Edmonds, A.R., Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University Press, 1957).Google Scholar
Einstein, A. (1917), ‘On the Quantum Theory of Radiation’, in Sources of Quantum Mechanics, ed. Van der Waerden, B.L. (North-Holland, 1967), pp. 63–77. From the German in Physik.Z., 18, 121.Google Scholar
Eisberg, R.M., Fundamentals of Modern Physics (Hoboken, NY: Wiley, 1961).Google Scholar
Fano, U., ‘Description of States in Quantum Mechanics by Density Matrix and Operator Techniques’, Rev. Mod. Phys., 29 (1957), 7493.Google Scholar
Fano, U., ‘Pressure Broadening as a Prototype of Relaxation’, Phys. Rev., Vol.131 (1963), 259268.Google Scholar
Fano, U., ‘Liouville Representation of Quantum Mechanics with Application to Relaxation Processes’, in Lectures on the Many-Body Problem Vol. 2, ed. E.R. Caianiello (Cambridge, MA: Academic Press, 1964), pp. 217–239.Google Scholar
Fano, U. and Racah, G., Irreducible Tensorial Sets (Cambridge. MA: Academic Press, 1959).Google Scholar
Fayyazuddin and Riazuddin, Quantum Mechanics (Singapore: World Scientific, 1990).Google Scholar
Fenn, R.W., Clough, S.A., Gallery, W.O., Good, R.E., Kneizys, F.X., Mill, J.D., Rothman, L.S., Shettle, E.P. and Volz, F.E., ‘Optical and Infrared Properties of the Atmosphere’, in Handbook of Geophysics and the Space Environment, eds. A.S. Jursa and M. Tschirch, Air Force GeoPhysics Laboratory, Air Force Systems Command USAF (1985), Ch.18, pp. 1–57.Google Scholar
Filippov, N.N., ‘Kinetic Approach in the Theory of the Infrared Band Contour and the Shape of Its Wings’, Sov. J. Chem. Phys., 10 (1992), 664669.Google Scholar
Foley, H.M., ‘The Pressure Broadening of Spectral Lines’, Phys. Rev., 69 (1946), 616628.Google Scholar
Freund, R.W., Golub, G.H. and Nachtigal, N.M., ‘Iterative Solution of Linear Systems’, in Acta Numerica 1992 (Cambridge University Press, 1992), pp. 57–100.Google Scholar
Gamache, R.R. and Rothman, L.S., ‘Extension of the HITRAN Database to Non-LTE Applications’, J. Quant. Spectrosc. Radiat. Transfer, 48 (1992), 519525.Google Scholar
Gasiorowicz, S., Quantum Physics (New York: Wiley, 1974).Google Scholar
Goldberger, M.L. and Watson, K.M., Collision Theory (New York: Wiley, 1964).Google Scholar
Goody, R.M. and Yung, Y.L., Atmospheric Radiation (2nd edn) (Oxford University Press, 1989).Google Scholar
Gordon, R.G., ‘Theory of the Width and Shift of Molecular Spectral Lines in Gases’, J. Chem. Phys., 44 (1966a), 30833089.Google Scholar
Gordon, R.G., ‘Semiclassical Theory of Spectra and Relaxation in Molecular Gases’, J. Chem. Phys., Vol.45 (1966b), 16491655.Google Scholar
Gordon, R.G., ‘On the Pressure Broadening of Molecular Multiplet Spectra’, J. Chem. Phys., 46 (1967), 448455.Google Scholar
Gordon, R.G., ‘Correlation Functions for Molecular Motion’, in Advances in Magnetic Resonance Vol. 3, (1968), pp. 1–42.Google Scholar
Gordon, R.G. and McGinnis, R.P., ‘Line Shapes in Molecular Spectra’, J. Chem. Phys. (Letters), 49 (1968), 24552456.Google Scholar
Gordy, W., Smith, W.V. and Trambarulo, R.F., Microwave Spectroscopy (New York: Wiley, 1953).Google Scholar
Gottfried, K., Quantum Mechanics Vol. I (San Francisco: W.A. Benjamin, 1966).Google Scholar
Griem, H.R., Plasma Spectroscopy (New York: McGraw-Hill, 1964).Google Scholar
Gross, E.P., ‘Shape of Collision-Broadened Spectral lines’, Phys. Rev, 97 (1955), 395403.Google Scholar
Haag, R., ‘Quantum Theory of Collision Processes’, in Lectures in Theoretical Physics Vol.III, eds. Brittin, W.E., Downs, B.W., and Downs, J. (Hoboken, NJ: Interscience, 1961), pp. 326–352.Google Scholar
Hamilton, J., The Theory of Elementary Particles (Oxford: Clarendon Press, 1959).Google Scholar
Hartmann, J.M., Boulet, C. and Robert, D., Collisional Effects on Molecular Spectra (Amsterdam/Oxford: Elsevier, 2008).Google Scholar
Heitler, W., The Quantum Theory of Radiation (3rd edn) (Oxford: Clarendon Press, 1954).Google Scholar
Hinchliffe, A. and Munn, R.W., Molecular Electromagnetism (New York: Wiley, 1985).Google Scholar
Hindmarsh, W.R., Atomic Spectra (Oxford: Pergamon, 1967).Google Scholar
Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B., Molecular Theory of Gases and Liquids (corrected edn) (New York: Wiley, 1964).Google Scholar
Huber, D.L. and Van Vleck, J. H., ‘The Role of Boltzmann Factors in Line Shape’, Rev. Mod. Phys., 38 (1966), 187204.Google Scholar
Huhtanen, M. and Ruotsalainen, S., ‘Real Linear Operator Theory and its Applications’, Integral Equations and Operator Theory, 69 (2011), 113132.Google Scholar
Jeans, J.H., An Introduction to the Kinetic Theory of Gases (Cambridge University Press, 1959).Google Scholar
Jefferies, J.T., Spectral Line Formation (Waltham, MA: Blaisdell, 1968).Google Scholar
Jeffreys, H., Cartesian Tensors (Cambridge University Press, 1931).Google Scholar
Jeffreys, H. and Jeffreys, B.S., Methods of Mathematical Physics (2nd edn) (Cambridge University Press, 1950).Google Scholar
Joos, G. (with I.M. Freeman), Theoretical Physics (2nd edn) (Blackie, 1951).Google Scholar
Kaempffer, F.A., Concepts in Quantum Mechanics (Cambridge, MA: Academic Press, 1965).Google Scholar
Kidder, S.Q. and Vonder Haar, T.H., Satellite Meteorology: An Introduction (Cambridge, MA: Academic Press, 1995).Google Scholar
Klein, H.A., The Science of Measurement (corrected edn) (Mineola, NY: Dover, 1988).Google Scholar
Kolb, A.C. and Griem, H., ‘Theory of Line Broadening in Multiplet Spectra’, Phys. Rev., 111 (1958), 514521.Google Scholar
Kourganoff, V., Introduction to Advanced Astrophysics (Dordrecht: D. Reidel, 1980).Google Scholar
Kroto, H.W., Molecular Rotation Spectra (corrected edn) (Mineola, NY: Dover, 1992).Google Scholar
Kubo, R., ‘Some Aspects of the Statistical Mechanical Theory of Irreversible Processes’, in Lectures in Theoretical Physics Vol. I, eds. Brittin, W.E. and Dunham, L. G. (Hoboken, NJ: Interscience, 1959), pp. 120–203.Google Scholar
Kubo, R., ‘The Fluctuation-Dissipation Theorem’, Rep. Progr. Phys, 29 (1966a), 255284.Google Scholar
Kubo, R., ‘The Fluctuation–Dissipation Theorem and Brownian Motion’, in Many-Body Theory, ed. Kubo, R. (Tokyo: Syokabō and New York: Benjamin, 1966b), pp. 1–16.Google Scholar
Kuhn, T.S., Black-Body Theory and the Quantum Discontinuity, 1894–1912 (Chicago University Press, 1978).Google Scholar
Lam, K.S., ‘Application of Pressure Broadening to the Calculation of Atmospheric Oxygen and Water Vapor Microwave Absorption’, J. Quant. Spectrosc. Radiat. Transfer, 17 (1977), 351383.Google Scholar
Lanczos, C., Applied Analysis (Pitman, 1957).Google Scholar
Landau, L.D. and Lifshitz, E.M., Electrodynamics of Continuous Media (trans. from Russian) (Oxford: Pergamon, 1960).Google Scholar
Landau, R.H., Quantum Mechanics II (New York: Wiley, 1990).Google Scholar
Lévy, A., Lacome, N. and Chackerian, C., Jr, ‘Collisional Line Mixing’, in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium (Academic Press, 1992), pp. 261–337.Google Scholar
Lindgren, I., Salomonson, S. and Åsén, B., ‘The Covariant-Evolution-Operator Method in Bound-State QED’, Phys. Reports, 389 (2004), 161261.Google Scholar
Lippmann, B.A. and Schwinger, J., ‘Variational Principles for Scattering Processes. I’, Phys. Rev., 79 (1950), 469480.Google Scholar
Longhurst, R.S., Geometrical and Physical Optics (Harlow: Longmans, 1957).Google Scholar
Lorentz, H.A., The Theory of Electrons (G. E. Stechert & Co., 1923).Google Scholar
Loudon, R., The Quantum Theory of Light (Oxford University Press, 1973).Google Scholar
Ma, Q., ‘Water Continuum Absorption in the Infrared and Millimeter Spectral Regions’, PhD dissertation, University of Alabama, 1990.Google Scholar
Ma, Q. and Tipping, R.H., ‘Water Vapor Continuum in the Millimeter Spectral Region’, J. Chem. Phys., 93 (1990a), 61276139.Google Scholar
Ma, Q. and Tipping, R.H., ‘The Atmospheric Water Continuum in the Infrared: Extension of the Statistical Theory of Rosenkranz’, J. Chem. Phys., 93 (1990b), 70667075.Google Scholar
Ma, Q. and Tipping, R.H., ‘A Far Wing Line Shape Theory and Its Application in the Infrared Region. I’, J. Chem. Phys., 95 (1991), 62906301.Google Scholar
Ma, Q. and Tipping, R.H., ‘A Far Wing Line Shape Theory and Its Application to the Water Vibration Bands. II’, J. Chem. Phys., 96 (1992a), 86558663.Google Scholar
Ma, Q. and Tipping, R.H., ‘A Far Wing Line Shape Theory and Its Application to the Foreign-Broadened Water Continuum Absorption. III’, J. Chem. Phys., 97 (1992b), 818828.Google Scholar
Ma, Q. and Tipping, R.H., ‘The Detailed Balance Requirement and General Empirical Formalisms for Continuum Absorption’, J. Quant. Spectrosc. Radiat. Transfer, 51 (1994a), 751757.Google Scholar
Ma, Q. and Tipping, R.H., ‘An Improved Quasi-Static Line Shape Theory: the Effects of Molecular Motion on the Line Wings’, J. Chem. Phys., 100 (1994b), 55675579.Google Scholar
Ma, Q. and Tipping, R.H., ‘Water Vapor Millimeter Wave Foreign Continuum: A Lanczos Calculation in the Coordinate RepresentationJ. Chem. Phys., 117 (2002), 1058110596.Google Scholar
Ma, Q., Tipping, R.H. and Boulet, C., ‘A Far-Wing Line Shape Theory Which Satisfies the Detailed Balance Principle’, J. Quant. Spectrosc. Radiat. Transfer, 59 (1998a), 245257.Google Scholar
Ma, Q., Tipping, R.H., Birnbaum, G. and Boulet, C., ‘Sum Rules and Symmetry of the Memory Function in Spectral Line Shape Theories’, J. Quant. Spectrosc. Radiat. Transfer, 59 (1998b), 259271.Google Scholar
Mandl, F., Statistical Physics (Hoboken, NJ: Wiley, 1971).Google Scholar
Margenau, H. and Lewis, M., ‘Structure of Spectral Lines from Plasmas’, Rev. Mod. Phys, 31 (1959), 569615.Google Scholar
Merzbacher, E., Quantum Mechanics (2nd edn) (Hoboken, NY: Wiley, 1970).Google Scholar
Messiah, A., Quantum Mechanics (Mineola, NY: Dover, 1958).Google Scholar
Milne, E.A., ‘Thermodynamics of the Stars’, in Selected Papers in the Transfer of Radiation, ed. Menzel, D.H. (Mineola, NY: Dover, 1966), pp. 79–269. Reprinted from Handbuch der Astrophysik (1930), Vol.3, Pt.1, pp. 65–255.Google Scholar
Milne, E.A., Vectorial Mechanics (London: Methuen, 1948).Google Scholar
Mlawer, E. J., Payne, V.H., Moncet, J.-L., Delamere, J.S., Alvarado, M.J. and Tobin, D.C., ‘Development and Recent Evaluation of the MT CKD Model of Continuum Absorption’, Phil. Trans. R. Soc. A, 370 (2012), 25202556.Google Scholar
Moazzen-Ahmadi, M.N. and Roberts, J.A., ‘Pressure Broadening Theory of Asymmetric-Top Molecules Using the Methods of Irreducible Tensor Operators’, J. Quant. Spectrosc. Radiat. Transfer, 30 (1983), 229243.Google Scholar
Monchick, L., ‘The High Energy Asymptotic Behavior of Line Shape Cross Sections and Detailed Balance’, J. Chem. Phys. 95 (1991), 50475055.Google Scholar
Moro, G. and Freed, J.H., ‘The Lanczos Algorithm in Molecular Dynamics: A Calculation of Spectral Densities’, in Large Scale Eigenvalue Problems, eds. Cullum, J. and Willoughby, R.A. (North-Holland, 1986), pp. 143–161.Google Scholar
Morrison, M.A. and Parker, G.A., ‘A Guide to Rotations in Quantum Mechanics’, Aust. J. Phys 40 (1987), 465497.Google Scholar
Newton, R.G., Scattering Theory of Waves and Particles (New York: McGraw-Hill, 1982).Google Scholar
Nyquist, H., ‘Thermal Agitation of Electric Charge in Conductors’, Phys. Rev. 32 (1928), 110113.Google Scholar
Park, D., Introduction to the Quantum Theory (3rd edn) (New York: McGraw-Hill, 1992).Google Scholar
Pease, M.C. III, Methods of Matrix Algebra (Academic Press, 1965).Google Scholar
Prigogine, I., From Being to Becoming (San Francisco: W. H. Freeman & Co., 1980).Google Scholar
Prigogine, I. and Stengers, I., Order Out of Chaos (New York: Bantam Books, 1984).Google Scholar
Ptashnik, I.V., ‘Evidence for the Contribution of Water Dimers to the Near-IR Water Vapour Self-Continuum’, J. Quant. Spectrosc. Radiat. Transfer, 109 (2008), 831852.Google Scholar
Raschke, E., ed., ‘Terminology and Units of Radiation Quantities and Measurements’, Report by the Radiation Commission of the International Association of Meteorology and Atmospheric Physics (IAMAP) (1978).Google Scholar
Reichl, L.E., A Modern Course in Statistical Physics (2nd edn) (New York: Wiley, 1998).Google Scholar
Reif, F., Fundamentals of Statistical and Thermal Physics (New York: McGraw-Hill, 1965).Google Scholar
Riedi, P.C., Thermal Physics (London: Macmillan, 1976).Google Scholar
Rigby, M., Smith, E.B., Wakeham, W.A. and Maitland, G.C., The Forces Between Molecules (Oxford University Press, 1986).Google Scholar
Rose, M.E., Elementary Theory of Angular Momentum (New York: Wiley, 1957).Google Scholar
Rosenkranz, P.W., ‘Shape of the 5mm Oxygen Band in the Atmosphere’, IEEE Trans. Antennas Propag., 23 (1975), 498506.Google Scholar
Rosenkranz, P.W., ‘Pressure Broadening of Rotational Bands. I. A Statistical Theory’, J. Chem. Phys., 83 (1985), 61396144.Google Scholar
Rosenkranz, P.W., ‘Pressure Broadening of Rotational Bands. II. Water Vapor from 300 to 1100 cm−1 ’, J. Chem. Phys., 87 (1987), 163170.Google Scholar
Rosenkranz, P.W., ‘Interference Coefficients for Overlapping Oxygen Lines in Air’, J. Quant. Spectrosc. Radiat. Transfer, 39 (1988), 287297.Google Scholar
Rosenkranz, P.W., ‘Absorption of Microwaves by Atmospheric Gases’, in Atmospheric Remote Sensing by Microwave Radiometry, ed. Jansson, M. A. (New York: Wiley, 1993), pp. 37–90.Google Scholar
Royer, A., ‘Cumulant Expansions and Pressure Broadening as an Example of Relaxation’, Phys. Rev. A, 6 (1972), 17411760.Google Scholar
Royer, A., ‘Shift, Width, and Asymmetry of Pressure-Broadened Spectral Lines at Intermediate Densities’, Phys. Rev. A, 22 (1980), 16251654.Google Scholar
Sakurai, J.J. (ed. S.F. Tuan), Modern Quantum Mechanics (Boston, MA: Addison-Wesley, 1994).Google Scholar
Schattke, W., Van Hove, M.A., Garcia de Abajo, F.J., Diez Muiño, R. and Mannella, N., ‘Overview of Core and Valence Photoemission’, in Solid-State Photoemission and Related Methods: Theory and Experiment, eds. Schattke, W. and Van Hove, M. (Weinheim: Wiley-VCH, 2003), pp. 50–115.Google Scholar
Schiff, L.I., Quantum Mechanics (3rd edn) (New York: McGraw-Hill, 1968).Google Scholar
Schofield, D.P. and Kjaergaard, H.G., ‘Calculated OH-Stetching and HOH-Bending Vibrational Transitions in the Water Dimer’, Phys. Chem. Chem. Phys., 5 (2003), 31003105.Google Scholar
Semat, H. and Albright, J.R., Introduction to Atomic and Nuclear Physics (London: Chapman & Hall, 1972).Google Scholar
Shafer, R. and Gordon, R.G., ‘Quantum Scattering of Rotational Relaxation and Spectral Line Shapes in H2 -He Gas Mixtures’, J. Chem. Phys, 58 (1973), 54225443.Google Scholar
Shire, E.S., Classical Electricity and Magnetism (Cambridge University Press, 1960).Google Scholar
Shore, B.W. and Menzel, D.H., Principles of Atomic Spectra (New York: Wiley, 1968).Google Scholar
Šimečková, M., Jacquemart, D., Rothman, L.S., Gamache, R.R. and Goldman, A., ‘Einstein A-Coefficients and Statistical Weights for Molecular Absorption Transitions in the HITRAN Database’, J. Quant. Spectrosc. Radiat. Transfer 98 (2006), 130155.Google Scholar
Simmons, G.F., Introduction to Topology and Modern Analysis (New York: McGraw-Hill, 1963).Google Scholar
Smit, M.J., Groenenboom, G.C., Wormer, P.E.S., Van der Avoird, A., Bukowski, R. and Szalewicz, K., ‘Vibrations, Tunneling, and Transition Dipole Moments in the Water Dimer’, J. Chem. Phys., 105 (2001), 62126225.Google Scholar
Smith, E.W., ‘Absorption and Dispersion in the O2 Microwave Spectrum at Atmospheric Pressures’, J. Chem. Phys., 74 (1981), 66586673.Google Scholar
Smith, E.W., Cooper, J. and Roszman, L.J., ‘An Analysis of the Unified and Scalar Additivity Theories of Spectral Line Broadening’, J. Quant. Spectroscop. Radiat. Transfer, 13 (1973), 15231538.Google Scholar
Snider, R.F. and Sanctuary, B.C., ‘Generalized Boltzmann Equation for Molecules with Internal States’, J. Chem. Phys. 55 (1971), 15551566.Google Scholar
Spitzer, L., Jr, ‘Impact Broadening of Spectral Lines’, Phys. Rev., 58 (1940), 348357.Google Scholar
Stein, S. and Jones, J.J., Modern Communication Principles (New York: McGraw-Hill, 1967).Google Scholar
Steinfeld, J.I., Molecules and Radiation (Cambridge, MA: MIT Press, 1979).Google Scholar
Stratton, J.A., Electromagnetic Theory (Cambridge University Press, 1941).Google Scholar
Strow, L.L., ‘Line Mixing in Infrared Atmospheric Spectra’, in ’Modeling the Atmosphere’ (SPIE Proceedings Vol. 928, ed. L.S. Rothman, 1988), 194212.Google Scholar
Strow, L.L. and Reuter, D., ‘Effect of Line Mixing on Atmospheric Brightness Temperatures near 15 μm’, Appl. Opt., 27 (1988), 872878.Google Scholar
Sudbery, A., Quantum Mechanics and the Particles of Nature (Cambridge University Press, 1986).Google Scholar
Swihart, T.L., Astrophysics and Stellar Astronomy (New York: Wiley, 1968).Google Scholar
Thankappen, V.K., Quantum Mechanics, (Wiley Eastern, 1985).Google Scholar
Thompson, W.J., Angular Momentum (New York: Wiley, 1994).Google Scholar
Thorne, A.P., Spectrophysics (2nd edn) (London: Chapman & Hall 1988).Google Scholar
Tinkham, M., Group Theory and Quantum Mechanics (New York: McGraw-Hill, 1964).Google Scholar
Tonkov, M.V. and Filippov, N.N., ‘Influence of Molecular Interactions on the Form of the Vibration-Rotation Bands in the Spectra of Gases: 1. Correlation Function’, Opt. Spectrosc, 54 (1983), 591595.Google Scholar
Townes, C.H. and Schawlow, A.L., Microwave Spectroscopy (New York: McGraw-Hill, 1955).Google Scholar
Trindle, C.O. and Illinger, K.H., ‘Scattering Theory of Pressure Broadening of Rotational and Vibration-Rotation Transitions’, J. Chem. Phys, 48 (1968), 44154426.Google Scholar
Tsao, C.J. and Curnutte, B., ‘Line Widths of Pressure Broadened Lines’, J. Quant. Spectrosc. Radiat. Transfer, 2 (1962), 4191.Google Scholar
Van Fraassen Bas, C., Quantum Mechanics: An Empiricist View (Oxford University Press, 1991).Google Scholar
Van Ness, H.C., Understanding Thermodynamics (corrected edn) (Mineola, NY: Dover, 1983).Google Scholar
Van Vleck, J.H., ‘The Absorption of Microwaves by Oxygen’, Phys. Rev., 71 (1947), 413424.Google Scholar
Van Vleck, J.H. and Huber, D.L., ‘Absorption, Emission and Linebreadths: a Semihistorical Perspective’, Rev. Mod. Phys., 49 (1977), 939959.Google Scholar
Van Vleck, J.H. and Weisskopf, V.F., ‘On the Shape of Collision Broadened Lines’, Rev. Mod. Phys., 17 (1945), 227236.Google Scholar
Von Neumann, J., Mathematical Foundations of Quantum Mechanics, trans. from German by R.T. Beyer (Princeton, NJ: Princeton University Press, 1955).Google Scholar
Vuylsteke, A.A., Elements of Maser Theory (New York: Van Nostrand, 1960).Google Scholar
Weatherburn, C.E., Advanced Vector Analysis (London: George Bell & Sons, 1924).Google Scholar
Wilkinson, J.H., The Algebraic Eigenvalue Problem (Oxford University Press, 1965).Google Scholar
Ziman, J.M., Elements of Advanced Quantum Theory (Cambridge University Press, 1969).Google Scholar
Zwanzig, R., ‘Ensemble Method in the Theory of Irreversibility’, J.Chem. Phys., 33 (1960), 1338–41.Google Scholar
Zwanzig, R.W., ‘Statistical Mechanics of Irreversibility’, in Lectures in Theoretical Physics, Vol.III, eds. Brittin, W.E., Downs, B.W., and Downs, J. (Hoboken, NJ: Interscience, 1961) pp. 106–141.Google Scholar
Zwanzig, R., ‘On the Identity of Three Generalized Master Equations’, Physica, 30 (1964), 11091123.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×