Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T10:52:24.248Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 February 2013

Craig H. Mallinckrodt
Affiliation:
Eli Lilly and Company, Indianapolis, IN
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts, M., Guys, H., Molenberghs, G. and Ryan, L. M. (2002). Topics in Modelling of Clustered Data. Chapman and Hall, London.CrossRefGoogle Scholar
Carpenter, J. R., Kenward, M. G., and Vansteelandt, S. (2006). A comparison of multiple imputation and doubly robust estimation for analyses with missing data. Journal of the Royal Statistical Society, Series A, 169: 571–584.CrossRefGoogle Scholar
Carpenter, J. R. and Kenward, M. G. (2007). Missing Data in Clinical Trials: A Practical Guide. Birmingham: National Health Service Coordinating.Google Scholar
Centre for Research Methodology. (2009). Online at: JH17 MK.shtml (accessed May 28, 2009).
Cnaan, A., Laird, N. M., and Slasor, P. (1997). Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statistics in Medicine, 16 (20): 2349–2380.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Cohen, J. (1992). A power primer. Psychological Bulletin, 112: 155–159.CrossRefGoogle ScholarPubMed
Collins, L. M., Schafer, J. L., and Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychology Methods, 6 (4): 330–351.CrossRefGoogle ScholarPubMed
Committee for Medicinal Products for Human Use (CHMP). (2010). Guideline on missing data in confirmatory clinical trials. EMA/CPMP/EWP/1776/99 Rev. 1.
Cook, R. D., and Weisberg, S. (1982). Residuals and Influence in Regression. New York: Chapman & Hall.Google Scholar
Copas, J. B., and Li, H. G. (1997). Inference for non-random samples (with discussion). Journal of the Royal Statistical Society B, 59: 55–96.CrossRefGoogle Scholar
Detke, M. J., Lu, Y., Goldstein, D. J., McNamara, R. K., and Demitrack, M. A. (2002). Duloxetine 60 mg once daily dosing versus placebo in the acute treatment of major depression. Journal of Psychiatric Research, 36: 383--390.CrossRefGoogle ScholarPubMed
Diggle, P. D., and Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics, 43: 49–93.CrossRefGoogle Scholar
Diggle, P. J., Heagerty, P., Liang, K. Y., and Seger, S. L. (2002). The Analysis of Longitudinal Data, 2nd Edition. Oxford: Oxford University Press.Google Scholar
Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society B, 57: 45.Google Scholar
Fahrmeir, L., and Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models. Heidelberg: Springer.CrossRefGoogle Scholar
Fitzmaurice, G. M., Laird, N. M., and Ware, J. H. (2004). Applied Longitudinal Analysis. Hoboken, NJ: Wiley Interscience.Google Scholar
Fedorov, V. V., and Liu, T. 2007. Enrichment design. Wiley Encyclopedia of Clinical Trials, 1–8.
Fleming, T. R. (2011). Addressing missing data in clinical trials. Annals of Internal Medicine, 154: 113–117.CrossRefGoogle ScholarPubMed
Hamilton, M: A rating scale for depression. J Neurol Neurosurg Psychiatry 1960, 23: 56--61.CrossRefGoogle Scholar
Harville, David A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72 (358): 320–338.CrossRefGoogle Scholar
Hogan, J. W., and Laird, N. M. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine, 16: 239–258.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Horvitz, D. G., and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47: 663–685.CrossRefGoogle Scholar
ICH guidelines. Online at:
Jansen, I., Beunckens, C., Molenberghs, G., Verbeke, G., Mallinckrodt, C. H. (2006a). Analyzing incomplete binary longitudinal clinical trial data. Statistical Science, 21 (1): 52–69.CrossRefGoogle Scholar
Jansen, I., Hens, N., Molenberghs, G., Aerts, M., Verbeke, G., and Kenward, M. G. (2006b). The nature of sensitivity in missing not at random models. Computational Statistics and Data Analysis, 50: 830–858.CrossRefGoogle Scholar
Kenward, M. G. (1998). Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. Statistics in Medicine, 17 (23): 2723–2732.3.0.CO;2-5>CrossRefGoogle Scholar
Kim, Y. (2011). Missing data handling in chronic pain trials. Journal of Biopharmaceutical Statistics, 21 (2): 311–325.CrossRefGoogle ScholarPubMed
Landin, R., DeBrota, D. J., DeVries, T. A., Potter, W. Z., and Demitrack, M. A. (2000). The impact of restrictive entry criterion during the placebo lead-in period. Biometrics, 56 (1): 271–278.CrossRefGoogle ScholarPubMed
Laird, N. M., and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38 (4): 963–974.CrossRefGoogle ScholarPubMed
Laird, N. M. (1994). Informative dropout in longitudinal data analysis. Applied Statistics, 43: 84.Google Scholar
Leon, A. C., Hakan, D., and Hedeken, D. (2007). Bias reduction with an adjustment for participants’ intent to drop out of a randomized controlled clinical trial. Clinical Trials, 4: 540–547.CrossRefGoogle Scholar
Liang, K. Y., and Zeger, S. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73 (1): 13–22.CrossRefGoogle Scholar
Liang, K. Y., and Zeger, S. (2000). Longitudinal data analysis of continuous and discrete responses for pre-post designs. Sankhya: The Indian Journal of Statistics, 62 (Series B): 134–148.Google Scholar
Lipkovich, I., Duan, Y., and Ahmed, S. (2005). Multiple imputation compared with restricted pseudo-likelihood and generalized estimating equations for analysis of binary repeated measures in clinical studies. Pharmaceutical Statistics, 4 (4): 267–285.CrossRefGoogle Scholar
Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of American Statistical Association, 88 (421): 125–134.Google Scholar
Little, R. J. A. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika, 81 (3): 471–483.CrossRefGoogle Scholar
Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. Journal of American Statistical Association, 90 (431): 1112–1121.CrossRefGoogle Scholar
Little, R. J. A., and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd Edition. New York: Wiley.CrossRefGoogle Scholar
Little, R., and Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics, 52 (4): 1324–1333.CrossRefGoogle ScholarPubMed
Little, R. J. A., and Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin's causal model. Psychological Methods, 3: 147–159.CrossRefGoogle Scholar
Liu, G., and Gould, A. L. (2002). Comparison of alternative strategies for analysis of longitudinal trials with dropouts. Journal of Biopharmaceutical Statistics, 12 (2): 207–226.CrossRefGoogle ScholarPubMed
Lu, K., and Mehrotra, D. (2009). Specification of covariance structure in longitudinal data analysis for randomized clinical trials. Statistics in Medicine, 4: 474–488.Google Scholar
Ma, G., Troxel, A. B., and Heitjan, D. F. (2005). An index of local sensitivity to nonignorable drop-out in longitudinal modeling. Statistics in Medicine, 24 (14): 2129–2150.CrossRefGoogle Scholar
Mallinckrodt, C. H., Clark, S. W., Carroll, R. J., and Molenberghs, G. (2003). Assessing response profiles from incomplete longitudinal clinical trial data under regulatory considerations. Journal of Biopharmaceutical Statistics, 13 (2): 179–190.CrossRefGoogle ScholarPubMed
Mallinckrodt, C. H., Kaiser, C. J., Watkin, J. G., Molenberghs, G., and Carroll, R. J. (2004). The effect of correlation structure on treatment contrasts estimated from incomplete clinical trial data with likelihood-based repeated measures compared with last observation carried forward ANOVA. Clinical Trials, 1 (6): 477–489.CrossRefGoogle ScholarPubMed
Mallinckrodt, C. H., and Kenward, M. G. (2009). Conceptual considerations regarding choice of endpoints, hypotheses, and analyses in longitudinal clinical trials. Drug Information Journal, 43 (4): 449–458.CrossRefGoogle Scholar
Mallinckrodt, C. H., Lane, P. W., Schnell, D., Peng, Y., and Mancuso, J. P. (2008). Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials. Drug Information Journal, 42: 305–319.Google Scholar
Mallinckrodt, C. H., Lin, Q., Lipkovich, I., and Molenberghs, G. (forthcoming). A structured approach to choosing estimands and estimators in longitudinal clinical trials. Pharmaceutical Statistics, (In Press).
Mallinckrodt, C. H., Tamura, R. N., and Tanaka, Y. (2011). Improving signal detection and reducing placebo response in psychiatric clinical trials. Journal of Psychiatric Research, 45: 1202–1207.CrossRefGoogle ScholarPubMed
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman & Hall.CrossRefGoogle Scholar
Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9: 538–558.CrossRefGoogle Scholar
Molenberghs, G., and Kenward, M. G. (2007). Missing Data in Clinical Studies. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
Molenberghs, G., Kenward, M. G., and Lesaffre, E. (1997). The analysis of longitudinal ordinal data with nonrandom dropout. Biometrika, 84 (1): 33–44.CrossRefGoogle Scholar
Molenberghs, G., Thijs, H., Jansen, I., Beunckens, C., Kenward, M. G., Mallinckrodt, C., and Carroll, R. J. (2004). Analyzing incomplete longitudinal clinical trial data. Biostatistics, 5 (3): 445–464.CrossRefGoogle ScholarPubMed
Molenberghs, G., and Verbeke, G. (2005). Models for Discrete Longitudinal Data. New York: Springer.Google Scholar
Molenberghs, G., Verbeke, G., Thijs, H., Lesaffre, E., and Kenward, M. (2001). Mastitis in dairy cattle: Local influence to assess sensitivity of the dropout process. Computational Statistics & Data Analysis, 37 (1): 93–113.CrossRefGoogle Scholar
National Research Council (2010). The Prevention and Treatment of Missing Data in Clinical Trials. Panel on Handling Missing Data in Clinical Trials. Committee on National Statistics, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.Google Scholar
O’Neill, R. T., and Temple, R. (2012). The prevention and treatment of missing data in clinical trials: An FDA perspective on the importance of dealing with it. Clinical Pharmacology and Therapeutics. .CrossRef
Permutt, T and Pinheiro, J. (2009). Dealing with the missing data challenge in clinical trials. Drug Information Journal. 43: 403--408.CrossRefGoogle Scholar
Ratitch, B, O’Kelly, M. Implementation of Pattern-Mixture Models Using Standard SAS/STAT Procedures. PharmaSUG 2011. Available at (accessed October 4, 2011).
Robins, J. M., Rotnizky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association, 89: 846–866.CrossRefGoogle Scholar
Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90: 106–121.CrossRefGoogle Scholar
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3): 581–592.CrossRefGoogle Scholar
Rubin, D. B. (1978). Multiple imputations in sample surveys – a phenomenological Bayesian approach to nonresponse. In Imputation and Editing of Faulty or Missing Survey Data. Washington, DC: U.S. Department of Commerce, pp. 1–23.Google Scholar
Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.CrossRefGoogle Scholar
Rubin, D. B. (1994). Informative dropout in longitudinal data analysis. Applied Statistics, 43: 80–82.Google Scholar
SAS Institute Inc. (2003). SAS/STAT® User's Guide, Version 9.1, Cary, NC: SAS Institute, Inc.
Schafer, J. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistics Neerlandica, 57: 19–35.CrossRefGoogle Scholar
Shen, S., Beunckens, C., Mallinckrodt, C., and Molenberghs, G. (2006). A local influence sensitivity analysis for incomplete longitudinal depression data. Journal of Biopharmacological Statistics, 16 (3): 365–384.CrossRefGoogle ScholarPubMed
Shen, J., Kobak, K. A., Zhao, Y., Alexander, M., and Kane, J. (2008). Use of remote centralized raters via live 2-way video in a multi central clinical trial for schizophrenia. Journal of Clinical Psychopharmacology, 28 (6): 691–693.CrossRefGoogle Scholar
Siddiqui, O., Hung, H. M., and O’Neill, R. O. (2009). MMRM vs. LOCF: A comprehensive comparison based on simulation study and 25 NDA datasets. Journal of Biopharmaceutical Statistics, 19 (2): 227–246.CrossRefGoogle ScholarPubMed
Snedecor, G. W., and Cochran, W. G. (1989). Statistical Methods. 8th edition. Aimes: Iowa State University Press.
Temple, R. (2005). Enrichment designs: Efficiency in development of cancer treatments. Journal of Clinical Oncology, 23 (22): 4838–4839.CrossRefGoogle ScholarPubMed
Teshome, B., Lipkovich, I., Molenberghs, G., and Mallinckrodt, C. (forthcoming). A multiple imputation based approach to sensitivity analyses and effectiveness assessments in longitudinal clinical trials. Journal of Biopharmacological Statistics.
Thijs, H., Molenberghs, G., Michiels, B., Verbeke, G., and Curran, D. (2002) Strategies to fit pattern-mixture models. Biostatistics, 3: 245–265.CrossRefGoogle ScholarPubMed
Thijs, H., Molenberghs, G., and Verbeke, G. (2000). The milk protein trial: Influence analysis of the dropout process. Biomedical Journal, 42 (5): 617–646.Google Scholar
Troxel, A. B., Ma, G., and Heitjan, D. F. (2004). An index of local sensitivity to nonignorability. Statistica Sinica, 14: 1221–1237.Google Scholar
Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. New York: Springer.Google Scholar
Verbeke, G., and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer.Google Scholar
Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E., and Kenward, M. G. (2001). Sensitivity analysis for nonrandom dropout: a local influence approach. Biometrics, 57 (1): 7–14.CrossRefGoogle ScholarPubMed
Wonnacott, T. H., and Wonnacott, R. J. (1981). Regression: A Second Course in Statistics. New York: Wiley.Google Scholar
Wu, M. C., and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44: 175–188.CrossRefGoogle Scholar
Wu, M. C., and Bailey, K. R. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. Biometrics, 45 (3): 939–955.CrossRefGoogle ScholarPubMed
Zhu, H. T., and Lee, S. Y. (2001). Local influence for incomplete-data models. Journal of the Royal Statistical Society B, 63: 111–126.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Craig H. Mallinckrodt
  • Book: Preventing and Treating Missing Data in Longitudinal Clinical Trials
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139381666.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Craig H. Mallinckrodt
  • Book: Preventing and Treating Missing Data in Longitudinal Clinical Trials
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139381666.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Craig H. Mallinckrodt
  • Book: Preventing and Treating Missing Data in Longitudinal Clinical Trials
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139381666.021
Available formats
×