Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T16:15:31.567Z Has data issue: false hasContentIssue false

8 - Random variables with probability density functions

Published online by Cambridge University Press:  06 July 2010

David Applebaum
Affiliation:
University of Sheffield
Get access

Summary

Random variables with continuous ranges

Since Chapter 5, we have been concerned only with discrete random variables and their applications, that is random variables taking values in sets where the number of elements is either finite or ∞. In this chapter, we will extend the concept of random variables to the ‘continuous’ case wherein values are taken in ℝ or some interval of ℝ.

Historically, much of the motivation for the development of ideas about such random variables came from the theory of errors in making measurements. For example, suppose that you want to measure your height. One approach would be to take a long ruler or tape measure and make the measurement directly. Suppose that we get a reading of 5.7 feet. If we are honest, we might argue that this result is unlikely to be very precise – tape measures are notoriously inaccurate and it is very difficult to stand completely still when you are being measured.

To allow for the uncertainty as to our true height we introduce a random variable X to represent our height, and indicate our hesitancy in trusting the tape measure by assigning a number close to 1 to the probability P(X ∈ (5.6, 5.8)), that is we say that our height is between 5.6 feet and 5.8 feet with very high probability. Of course, by using better measuring instruments, we may be able to assign high probabilities for X lying in smaller and smaller intervals, for example (5.645, 5.665); however, since the precise location of any real number requires us to know an infinite decimal expansion, it seems that we cannot assign probabilities of the form P(X = 5.67).

Type
Chapter
Information
Probability and Information
An Integrated Approach
, pp. 155 - 187
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×