from Part II - Manipulation of individual quantum states in quantum dots using optical techniques
Published online by Cambridge University Press: 05 August 2012
Introduction
Quantum dots are often referred to as artificial atoms, since they trap carriers in discrete energy-levels due to the nanoscale three-dimensional finite potential energy well they provide. As such, dots exhibit a coherent light–matter interaction that is similar to an atom. This is evidenced by observations of atom–optics phenomena such as Rabi oscillations [43, 26], power broadening [27], Autler–Townes doublet [14, 42], Mollow triplet [42, 8], and coherent population trapping [6]. In this chapter, Rabi rotation measurements are used to examine how an exciton transition deviates from an ideal two-level atom due to its interaction with a reservoir of phonons.
The neutral exciton transition may be regarded as a two-level system, or qubit, composed of the crystal ground-state ∣0〉 and a single electron-hole pair ∣X〉. The state-vector of a qubit can be described as a pseudo spin-half. When an oscillating electro-magnetic field resonantly excites the two-level transition it drives an oscillation in the population inversion known as a Rabi oscillation. This results from the oscillations of the driving field and the dipole of the two-level system being synchronous, such that in its rotating frame, the driving field acts as a static magnetic field that causes the pseudo-spin to rotate. Coherent control of the pseudo-spin can be achieved by applying well-defined driving fields, enabling the preparation, and manipulation of superposition states. Such coherent control concepts have found widespread use in electron spin, and nuclear magnetic resonance spectroscopy.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.