from Part II - A first course
Published online by Cambridge University Press: 16 May 2011
We have so far described our quantum phases and critical points in terms of the wave-functions and energies of the eigenstates of the Hamiltonian. However, as we saw in our treatment of D-dimensional classical statistical mechanics in Chapters 3 and 4, a more subtle and complete characterization is obtained by considering correlation functions of various observable operators. These correlation functions are also amenable to a Feynman graph expansion and the renormalization group transformation, which was crucial in our full treatment of the classical critical point. This chapter considers correlation functions of the d-dimensional quantum model, and applies them to obtain an improved understanding of the quantum phases and the quantum critical point.
Section 5.5.3 has already presented a detailed description of the connection between the correlation functions of the D = 1 classical Ising chain and the single-site (i.e. d = 0) quantum Ising model. This mapping is immediately extended to the general D case, following the reasoning in Sections 5.6 and 6.5. From this we obtain the fundamental result that the two-point correlation function, C, of φα in (3.39) of the D-dimensional classical field theory (2.11) is precisely the same as the time-ordered correlation function of the operator φα under the Hamiltonian ℋ in (6.52).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.