Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T16:06:29.308Z Has data issue: false hasContentIssue false

19 - Pollen, charcoal and plant macrofossil evidence of Neogene and Quaternary environments in southern Africa

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
Affiliation:
University of the Witwatersrand, Johannesburg
Stefan W. Grab
Affiliation:
University of the Witwatersrand, Johannesburg
Get access

Summary

Abstract

Pollen and macrofossils are an integral part of palaeoenvironmental reconstruction. Here we discuss palaeobotanical evidence for vegetation and climate changes since the origins of modern biomes in southern Africa during the Miocene, and through the Pleistocene and Holocene. Examples of palaeobotanical records are provided from different biomes in different climate zones across southern Africa. These examples show that different biomes responded in different ways to climate changes throughout the Neogene and Quaternary, and that these environmental changes are also recorded in different ways though pollen, charcoal and macrofossils. In the latter part of the record, biome composition also reflects the impact of human activity.

Type
Chapter
Information
Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 306 - 323
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allott, L. F. (2006). Archaeological charcoal as a window on palaeovegetation and wood-use during the Middle Stone Age at Sibudu Cave. Southern African Humanities, 18, 173201.Google Scholar
Backwell, L. R., McCarthy, T. S., Wadley, L., Henderson, Z., Steininger, C. M., deKlerk, B., Barré, M., Lamothe, M., Chase, B. M., Woodborne, S., Susino, G. J., Bamford, M. K., Sievers, C., Brink, J. S., Rossouw, L., Pollarolo, L., Trower, G., Scott, L. and d’Errico, F. (2014). Multiproxy record of late Quaternary climate change and Middle Stone Age human occupation at Wonderkrater, South Africa. Quaternary Science Reviews, 99, 4259.CrossRefGoogle Scholar
Bamford, M. (1999). Pliocene fossil woods from an early hominid cave deposit, Sterkfontein, South Africa. South African Journal of Science, 95, 231237.Google Scholar
Bamford, M. K. (2003). Fossil woods from Auchas and their palaeoenvironment. Geology and Palaeobiology of the central and southern Namib Desert, southwestern Africa. Geological Survey of Namibia, Memoirs, 19, 2334.Google Scholar
Bamford, M. K., and de Wit, M. C. J. (1993). Taxonomic descriptions of fossil wood from Cainozoic Sak River terraces near Brandvlei, South Africa. Palaeontologia Africana, 30, 7180.Google Scholar
Brook, G. A., Scott, L., Railsback, L. B. and Goddard, E. A. (2010). A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. Journal of Arid Environments, 74, 870884.CrossRefGoogle Scholar
Bruch, A. A., Sievers, C. and Wadley, L. (2012). Quantification of climate and vegetation from the southern African Middle Stone Age sites – an application using Late Pleistocene plant material from Sibudu, South Africa. Quaternary Science Reviews, 45, 717.CrossRefGoogle Scholar
Carr, A. S., Boom, A. and Chase, B. M. (2010). The potential of plant biomarker evidence derived from rock hyrax middens as an indicator of palaeoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 321330.CrossRefGoogle Scholar
Carrión, J. S., Scott, L. and Vogel, J. C. (1999). Twentieth century changes in montane vegetation in the eastern Free State, South Africa, derived from palynology of hyrax dung middens. Journal of Quaternary Science, 14, 116.3.0.CO;2-Y>CrossRefGoogle Scholar
Carrión, J. S., Scott, L., Huffman, T. and Dreyer, C. (2000). Pollen analysis of Iron Age cow dung in southern Africa. Vegetation History and Archaeobotany, 9, 239249.CrossRefGoogle Scholar
Cartwright, C. R. (2013). Identifying the woody resources of Diepkloof Rock Shelter (South Africa) using scanning electron microscopy of the MSA wood charcoal assemblages. Journal of Archaeological Science, 40, 34633474.CrossRefGoogle Scholar
Chase, B. M., Meadows, M. E., Carr, A. S. and Reimer, P. J. (2010). Evidence for progressive Holocene aridification in southern Africa recorded in Namibian hyrax middens: Implications for African monsoon dynamics and the “African Humid Period”. Quaternary Research, 74, 3645.CrossRefGoogle Scholar
Chase, B. M., Scott, L., Meadows, M. E., Gil-Romera, G., Boom, A., Carr, A. S., Reimer, P. J., Truc, L., Valsecchi, V. and Quick, L. J. (2012). Rock hyrax middens: A palaeoenvironmental archive for southern African drylands. Quaternary Science Reviews, 56, 107125.CrossRefGoogle Scholar
Coetzee, J. A. (1967). Pollen analytical studies in east and southern Africa. Palaeoecology of Africa, 3, 1146.Google Scholar
Coetzee, J. A. (1978). Climatic and biological changes in southwestern Africa during the Late Cenozoic. Palaeoecology of Africa and the Surrounding Islands, 10, 1329.Google Scholar
Coetzee, J. A. and Muller, J. (1984). The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern Cape (South Africa). Annals of the Missouri Botanical Garden, 71, 10881099.CrossRefGoogle Scholar
Coetzee, J. A. and Praglowski, J. (1984). Pollen evidence for the occurrence of Casuarina and Myrica in the Tertiary of South Africa. Grana, 23, 2341.CrossRefGoogle Scholar
Coetzee, J. A. and Rogers, J. (1982). Palynological and lithological evidence for the Miocene palaeoenvironment in the Saldanha region (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 39, 7185.CrossRefGoogle Scholar
Coetzee, J. A., Scholtz, A. and Deacon, H. J. (1983). Palynological studies and the vegetation history of the fynbos. In Fynbos Palaeecology: A Preliminary Synthesis, ed. Deacon, H. J., Hendey, Q. B. and Lambrechts, J. J. N.. Pretoria: South African National Scientific Programmes Report 75, pp. 156173.Google Scholar
Daniau, A.-L., Sánchez Goni, M. F., Martinez, P., Ureggo, D. H., Bout-Roumazeilles, V., Desprat, S. and Marlon, J. R. (2013). Orbital-scale climate forcing of grassland burning in southern Africa. Proceedings of the National Academy of Sciences, 110, 50695073.CrossRefGoogle ScholarPubMed
Dupont, L. M., Donner, B., Vidal, L., Pérez, E. M. and Wefer, G. (2005). Linking desert evolution and coastal upwelling: Pliocene climate change in Namibia. Geology, 33, 461464.CrossRefGoogle Scholar
Finch, J. M. and Hill, T. R. (2008). A late Quaternary pollen sequence from Mfabeni Peatland, South Africa: Reconstructing forest history in Maputaland. Quaternary Research, 70, 442450.CrossRefGoogle Scholar
Fisher, E. C., Albert, R.-M., Botha, G., Cawthra, H. C., Esteban, E., Harris, J., Jacobs, Z., Jerardino, A., Marean, C. W., Neumann, F. H., Pargeter, J., Poupart, M. and Venter, J. (2013). Archaeological reconnaissance for Middle Stone Age sites along the Pondoland coast, South Africa. Journal of Palaeoanthropology, 2013, 104137.Google Scholar
Goldblatt, P. (1996). Floristic diversity in the Cape Flora of South Africa. Biodiversity and Conservation, 6, 359377.CrossRefGoogle Scholar
Guérin, G., Murray, A. S., Jain, M., Thomsen, K. J. and Mercier, N. (2013). How confident are we in the chronology of the transition between Howieson’s Poort and Still Bay? Journal of Human Evolution, 64, 314317.CrossRefGoogle ScholarPubMed
Hall, M. J. (1976). Dendroclimatology, rainfall and human adaptation in the Later Iron Age of Natal and Zululand. Annals of the Natal Museum, 22, 693703.Google Scholar
Hamilton, A. C. (1972). The interpretation of pollen diagrams from highland Uganda. Palaeoecology of Africa, 7, 45149.Google Scholar
Hassold, N. J. C., Rea, D. K., van der Pluijm, B. A. and Parés, J. M. (2009). A physical record of the Antarctic Circumpolar Current: Late Miocene to recent slowing of abyssal circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 275, 2836.CrossRefGoogle Scholar
Helgren, D. M. and Butzer, K. W. (1977). Palaeosols of the Southern Cape coast, South Africa: implications for laterite definition, genesis and age. Geographical Review, 67, 430445.CrossRefGoogle Scholar
Hendey, Q. B. (1984). Southern African late Tertiary vertebrates. In Southern African Prehistory and Palaeoenvironments, ed. Klein, R. G.. Rotterdam: Balkema, pp. 81106.Google Scholar
Hoetzel, S., Dupont, L., Schefuss, E., Rommerskirchen, F. and Wefer, G. (2013). The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nature Geoscience, 6, 10271030.CrossRefGoogle Scholar
Humphries, M. S. and Benitez-Nelson, C. R. (2013). Recent trends in sediment and nutrient accumulation rates in coastal, freshwater Lake Sibaya, South Africa. Marine and Freshwater Research, 64, 10871099.CrossRefGoogle Scholar
Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grün, R., Mackay, A., Mitchell, P., Vogelsang, R. and Wadley, L. (2008). Ages for the Middle Stone Age of southern Africa: implications for human behavior and dispersal. Science, 322, 733735.CrossRefGoogle ScholarPubMed
Jarzen, D. M. and Nichols, D. J. (1996). Pollen. In Palynology: Principles and Applications. Vol. 1. Principles, ed. Jansonius, J. and McGregor, D. C.. Salt Lake City: American Association of Stratigraphic Palynologists Foundation, pp. 261292.Google Scholar
Kristen, I., Wilkes, H., Vieth, A., Zink, K.-G., Plessen, B., Thorpe, J., Partridge, T. C. and Oberhänsli, H. (2010). Biomarker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: Evidence for deglacial wetness and early Holocene drought from South Africa. Journal of Palaeolimnology, 44, 143160.CrossRefGoogle Scholar
Majewski, W. and Bohaty, S. M, (2010). Surface-water cooling and salinity decrease during the Middle Miocene climate transition at Southern Ocean ODP site 747 (Kerguelen Plateau). Marine Micropaleontology, 74, 114.CrossRefGoogle Scholar
McCarthy, T. S., Ellery, W. N., Backwell, L., Marren, P., de Klerk, B., Tooth, S., Brandt, D. and Woodborne, S. (2010). The character, origin and palaeoenvironmental significance of the Wonderkrater spring mound, South Africa. Journal of African Earth Sciences, 58, 115126.CrossRefGoogle Scholar
Meadows, M. E. and Sugden, J. M. (1990). Late Quaternary vegetation history of the Cederberg, southwestern Cape. Palaeoecology of Africa, 21, 269282.Google Scholar
Metwally, A. A., Scott, L., Neumann, F. H., Bamford, M. K. and Oberhänsli, H. (2014). Holocene palynology and palaeoenvironments in the Savanna Biome at Tswaing Crater, central South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 402, 125135.CrossRefGoogle Scholar
Miller, C. E. and Sievers, C. (2012). An experimental micromorphological investigation of bedding construction in the Middle Stone Age of Sibudu, South Africa. Journal of Archaeological Science, 39, 30393051.CrossRefGoogle Scholar
Mills, S. C., Grab, S. W., Rea, B. R., Carr, S. J. and Farrow, A. (2012). Shifting westerlies and precipitation patterns during the Late Pleistocene in southern Africa determined using glacier reconstruction and mass balance modelling. Quaternary Science Reviews, 55, 145159.CrossRefGoogle Scholar
Mucina, L. and Rutherford, M. C. (2006). The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute, 807pp.Google Scholar
Neumann, F. H., Stager, J. C., Scott, L., Venter, H. J. T. and Weyhenmeyer, C. (2008). Holocene vegetation and climate records from Lake Sibaya, KwaZulu-Natal (South Africa). Review of Palaeobotany and Palynology, 152, 113128.CrossRefGoogle Scholar
Neumann, F. H., Scott, L., Bousman, C. B. and van As, L. (2010). A Holocene sequence of vegetation change at Lake Eteza, coastal KwaZulu-Natal, South Africa. Review of Palaeobotany and Palynology, 162, 3953.CrossRefGoogle Scholar
Neumann, F. H., Botha, G. A. and Scott, L. (2014). 18,000 years of grassland evolution in the summer rainfall region of South Africa: evidence from Mahwaqa Mountain, KwaZulu-Natal. Vegetation History and Archaeobotany, 23, 665681.CrossRefGoogle Scholar
Norström, E., Scott, L., Partridge, T. C., Risberg, J. and Holmgren, K. (2009). Reconstruction of environmental and climate changes at Braamhoek wetland, eastern escarpment South Africa, during the last 16,000 years with emphasis on the Pleistocene–Holocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 240258.CrossRefGoogle Scholar
Palmer, P. G. (1976). Grass cuticles: A new paleoecological tool for East African lake sediments. Canadian Journal of Botany, 54, 17251734.CrossRefGoogle Scholar
Power, M. J., Marlon, J., Ortiz, N., Bartlein, P.J., Harrison, S. P., Mayle, F. E., Ballouche, A., Bradshaw, R. H. W., Carcaillet, C., Cordova, C., Mooney, S., Moreno, P. I., Prentice, I. C., Thonicke, K., Tinner, W., Whitlock, C., Zhang, Y., Zhao, Y., Ali, A. A., Anderson, R. S., Beer, R., Behling, H., Briles, C., Brown, K. J., Brunelle, A., Bush, M., Camill, P., Chu, G. Q., Clark, J., Colombaroli, D., Connor, S., Daniau, A.-L., Daniels, M., Dodson, J., Doughty, E., Edwards, M. E., Finsinger, W., Foster, D., Frechette, J., Gaillard, M.-J., Gavin, D. G., Gobet, E., Haberle, S., Hallett, D. J., Higuera, P., Hope, G., Horn, S., Inoue, J., Kaltenrieder, P., Kennedy, L., Kong, Z. C., Larsen, C., Long, C. J., Lynch, J., Lynch, E. A., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T., Mohr, J., Nelson, D. M., New, J., Newnham, R., Noti, R., Oswald, W., Pierce, J., Richard, P. J. H., Rowe, C., Sanchez Goñi, M. F., Shuman, B. N., Takahara, H., Toney, J., Turney, C., Urrego-Sanchez, D. H., Umbanhowar, C., Vandergoes, M., Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J. and Zhang, J. H. (2008). Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 30, 887907.CrossRefGoogle Scholar
Quick, L. J., Chase, B. M., Meadows, M. E., Scott, L. and Reimer, P. J. (2011). A 19.5 kyr vegetation history from the central Cederberg Mountains, South Africa: Palynological evidence from rock hyrax middens. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 253270.CrossRefGoogle Scholar
Ramsay, P. J. (1995). 9000 years of sea-level change along the southern African coastline. Quaternary International, 31, 7175.CrossRefGoogle Scholar
Renaut, R. and Bamford, M. K. (2006). Results of a preliminary palynological analysis at Sibudu Cave. Southern African Humanities, 18, 235240.Google Scholar
Roberts, D. L., Matthews, T., Herries, A. I. R., Boulter, C., Scott, L., Musekiwa, C., Mthembi, P., Browning, C., Smith, R. M. H., Haarhoff, P. and Bateman, M. D. (2011). Regional and global context of the Late Cenozoic Langebaanweg (LBW) palaeontological site: West Coast of South Africa. Earth-Science Reviews, 106, 191214.CrossRefGoogle Scholar
Roberts, D. L., Sciscio, L., Herries, A. I. R., Scott, L., Bamford, M. K., Musekiwa, C. and Tsikos, H. (2013). Miocene fluvial systems and palynofloras at the southwestern tip of Africa: Implications for regional and global fluctuations in climate and ecosystems. Earth-Science Reviews, 124, 184201.CrossRefGoogle Scholar
Rossouw, L., Stynder, D. D. and Haarhof, P. (2009). Evidence for opal phytolith preservation in the Langebaanweg ‘E’ Quarry Varswater Formation and its potential for palaeohabitat reconstruction. South African Journal of Science, 105, 223227.Google Scholar
Sciscio, L., Neumann, F. H., Roberts, D., Tsikos, H., Scott, L. and Bamford, M. (2013). Fluctuations in Miocene climate and sea levels along the south-western South African coast: Inferences from biogeochemistry, palynology and sedimentology. Palaeontologia Africana, 48, 218.Google Scholar
Scott, L. (1982). A late Quaternary pollen record from the Transvaal bushveld, South Africa. Quaternary Research, 17, 341370.CrossRefGoogle Scholar
Scott, L. (1987). Pollen analysis of hyena coprolites and sediments from Equus Cave, Taung, Southern Kalahari (South Africa). Quaternary Research, 28, 144156.CrossRefGoogle Scholar
Scott, L. (1990). Hyrax (Procaviidae) and dassie rat (Petromuridae) middens in palaeoenvironmental studies in Africa. In Packrat Middens: The Last 40,000 Years of Biotic Change, ed. Betancourt, J. L., van Devender, T. R. and Martin, P. S.. Tucson: University Arizona Press, pp. 408427.Google Scholar
Scott, L. (1994). Palynology of late Pleistocene hyrax middens, southwestern Cape Province, South Africa: A preliminary report. Historical Biology, 9, 7181.CrossRefGoogle Scholar
Scott, L. (1995). Pollen evidence for vegetational and climatic change in southern Africa during the Neogene and Quaternary. In Paleoclimate and Evolution, with Emphasis on Human Origins, ed. Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H.. New Haven: Yale University Press, pp. 6576.Google Scholar
Scott, L. (1999a). Palynological analysis of the Pretoria Saltpan (Tswaing Crater) sediments and vegetation history of the Bushveld Savanna biome, South Africa. In Tswaing – Investigations into the Origin, Age and Palaeoenvironments of the Pretoria Saltpan, ed. Partridge, T. C.. Pretoria: Council for Geoscience, pp. 143166.Google Scholar
Scott, L. (1999b). Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: A comparison of pollen data from the Tswaing crater (the Pretoria Saltpan) and Wonderkrater. Quaternary International, 57/58, 215223.CrossRefGoogle Scholar
Scott, L. (2002). Microscopic charcoal in sediments: Quaternary fire history of the grassland and savanna regions in South Africa. Journal of Quaternary Science, 17, 7786.CrossRefGoogle Scholar
Scott, L., Anderson, H. M. and Anderson, J. M. (1997). Vegetation history. In Vegetation of Southern Africa, ed. Cowling, R. M., Richardson, D. M. and Pierce, S. M.. Cambridge: Cambridge University Press, pp. 6284.Google Scholar
Scott, L. and Bonnefille, R. (1986). Search for pollen from the hominid deposits of Kromdraai, Sterkfontein and Swartkrans: Some problems and preliminary results. South African Journal of Science, 82, 380382.Google Scholar
Scott, L. and Bousman, C. B. (1990). Palynological analysis of hyrax middens from Southern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 76, 367379.CrossRefGoogle Scholar
Scott, L., Holmgren, K., Talma, A. S., Woodborne, S. and Vogel, J. C. (2003). Age interpretation of the Wonderkrater spring sediments and vegetation change in the Savanna Biome, Limpopo Province, South Africa. South African Journal of Science, 99, 484488.Google Scholar
Scott, L. and Thackeray, J. F. (1987). Multivariate analysis of late Pleistocene and Holocene pollen spectra from Wonderkrater, Transvaal, South Africa. South African Journal of Science, 83, 9398.Google Scholar
Scott, L., Neumann, F. H., Brook, G. A., Bousman, C. B., Norström, E. and Metwally, A. A. (2012). Terrestrial fossil-pollen evidence of climate change during the last 26 thousand years in Southern Africa. Quaternary Science Reviews, 32, 100118.CrossRefGoogle Scholar
Scott, L. and Woodborne, S. (2007a). Pollen analysis and dating of Late Quaternary faecal deposits (hyraceum) in the Cederberg, Western Cape, South Africa. Review of Palaeobotany and Palynology, 144, 123134.CrossRefGoogle Scholar
Scott, L. and Woodborne, S. (2007b). Vegetation history inferred from pollen in Late Quaternary faecal deposits (hyraceum) in the Cape winter-rain region, and its bearing on past climates in South Africa. Quaternary Science Reviews, 26, 941953.CrossRefGoogle Scholar
Sievers, C. (2006). Seeds from the Middle Stone Age layers at Sibudu cave. Southern African Humanities, 18, 203222.Google Scholar
Stager, J. C., Ryves, D. B., King, C., Madson, J., Hazzard, M., Neumann, F. H. and Maud, R. (2013). Late Holocene precipitation variability in the summer rainfall region of South Africa. Quaternary Science Reviews, 67, 105120.CrossRefGoogle Scholar
Strachan, K. L., Finch, J. M., Hill, T. and Barnett, R. L. (2014). A late Holocene sea-level curve for the east coast of South Africa. South African Journal of Science, 110, doi:10.1590/ sajs.2014/20130198.CrossRefGoogle Scholar
Thiergart, F. (1964). Ein Vergleich der flözbildenden Elemente des niederrheinischen Tertiärs mit mehr oder weniger gleichaltrigen Südafrikas und Asiens auf Grund pollenanalytischer Untersuchungen. Fortschritte der Geologie Rheinland und Westfalen, 12, 105112.Google Scholar
Thiergart, F., Frantz, U. and Raukopf, K. (1962). Palynologische Untersuchungen von Tertiärkohlen und einer Oberflächenprobe nahe Knysna, Südafrika. Advancing Frontiers in Plant Science, 4, 151178.Google Scholar
Tribolo, C., Mercier, N., Douville, E., Joron, J.-L., Reyss, J.-L., Rufer, D., Cantin, N., Lefrais, Y., Miller, C. E., Porraz, G., Parkington, J., Rigaud, J.-Ph. and Texier, P.-J. (2013). OSL and TL dating of the Middle Stone Age sequence at Diepkloof Rock Shelter (South Africa): A clarification. Journal of Archaeological Science, 40, 34013411.CrossRefGoogle Scholar
Tribolo, C., Mercier, N., Valladas, H., Joron, J. L., Guibert, P., Lefrais, Y., Selo, M., Texier, P.-J., Rigaud, J.-Ph., Porraz, G., Poggenpoel, C., Parkington, J., Texier, J.-P. and Lenoble, A. (2009). Thermoluminescence dating of a Stillbay–Howiesons Poort sequence at Diepkloof Rock Shelter (Western Cape, South Africa). Journal of Archaeological Science, 36, 730739.CrossRefGoogle Scholar
Truc, L., Chevalier, M., Favier, C., Cheddadi, R., Meadows, M. E., Scott, L., Carr, A. S., Smith, G. F. and Chase, B. M. (2013). Quantification of climate change for the last 20,000 years from Wonderkrater, South Africa: Implications for the long-term dynamics of the Intertropical Convergence Zone. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 575587.CrossRefGoogle Scholar
Valsecchi, V., Chase, B. M., Slingsby, J. A., Carr, A. S., Quick, L. J., Meadows, M. E., Cheddadi, R. and Reimer, P. J. (2013). A high resolution 15,600-year pollen and microcharcoal record from the Cederberg Mountains, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 387, 616.CrossRefGoogle Scholar
van Zinderen Bakker, E. M. (1957). A pollen analytical investigation of the Florisbad deposits (South Africa). In Proceedings of the Third-Pan-African Congress on Prehistory, Livingstone, 1955, ed. Clarke, J. D.. London: Chatto and Windus, pp. 5667.Google Scholar
van Zinderen Bakker, E. M. (1984). Palynological evidence for Late Cenozoic arid conditions along the Namibia coast from holes 532 and 530A, Leg 57. Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project, 75, 763768.Google Scholar
Vrba, E. S. (1985). Early hominids in southern Africa: Updated observations on chronological and ecological background. In Hominid Evolution, ed. Tobias, P. V.. New York: Alan R. Liss, pp. 195200.Google Scholar
Wadley, L. (2004). Vegetation changes between 61 500 and 26 000 years ago: The evidence from seeds in Sibudu Cave, KwaZulu-Natal. South African Journal of Science, 100, 167173.Google Scholar
Wadley, L., Sievers, C., Bamford, M., Goldberg, P., Berna, F. and Miller, C. (2011). Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science, 334, 13881391.CrossRefGoogle ScholarPubMed
Walther, S. and Neumann, F. H. (2011). Sedimentology, isotopes and palynology of late Holocene cores from Lake Sibaya and the Kosi Bay system (KwaZulu-Natal, South Africa). South African Geographical Journal, 93, 133153.CrossRefGoogle Scholar
Wooller, M. J., Street-Perrott, F. A. and Agnew, A. D. Q. (2000). Late Quaternary fires and grassland palaeoecology of Mount Kenya, East Africa: Evidence from charred grass cuticles in lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 207230.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×