Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-29T05:48:18.683Z Has data issue: false hasContentIssue false

20 - Antennas and radio wave propagation

Published online by Cambridge University Press:  05 June 2012

Jon B. Hagen
Affiliation:
Cornell University, New York
Get access

Summary

While discussing transmitter and receiver circuitry we did not have to know much about antennas or propagation. It sufficed to know only that a voltage applied to the terminals of a transmitting antenna causes a proportional voltage to appear very shortly thereafter at the terminals of a receiving antenna. To be more exact, it was sufficient to know that everything between the terminals of the two antennas is equivalent to a linear two-port network. Here we will consider the transmission through this propagation link.

When an ac source (transmitter) is connected to an antenna (practically any metal structure) the resulting current has a component that is in phase with the applied voltage. The impedance of the antenna therefore has a real part, a resistance, and draws power from the source. If the antenna is efficient, most of the power flows away from the antenna in the form of (energy-bearing) electromagnetic waves and only a small fraction of the power will be dissipated by ohmic heating of the antenna itself. The impedance will also generally have a nonzero imaginary part, a reactance. If the reactance is zero at the operating frequency the antenna is said to be resonant, just as an RLC circuit is purely resistive at its resonant frequency. An external tuning network (an antenna tuner) can be used to cancel the reactance and also transform the resistance to a value that matches a receiver's input impedance or to a value that draws a desired amount of power from a transmitter.

Type
Chapter
Information
Radio-Frequency Electronics
Circuits and Applications
, pp. 259 - 277
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Collin, R. E., Antennas and Radiowave Propagation, New York: McGraw-Hill, 1985.Google Scholar
Davies, K., Ionospheric Radio Propagation, New York: Dover Publications, 1966.Google Scholar
Kelley, M. C., The Earth's Ionosphere: Plasma Physics and Electrodynamics, New York: Academic Press, 1989.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×