Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T12:42:04.507Z Has data issue: false hasContentIssue false

Chapter 15 - Extinct Radionuclides

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akram, W., Schönbächler, M., Bisterzo, S. and Gallino, R. (2015). Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system. Geochim. Cosmochim. Acta 165, 484500.Google Scholar
Allegre, C. J., Manhes, G. and Gopel, C. (2008). The major differentiation of the Earth at 4.45 Ga. Earth Planet. Sci. Lett. 267, 386–98.CrossRefGoogle Scholar
Andreasen, R. and Sharma, M. (2006). Solar nebula heterogeneity in p-process samarium and neodymium isotopes. Science 314, 806–9.CrossRefGoogle ScholarPubMed
Andreasen, R., Sharma, M., Subbarao, K. V. and Viladkar, S. G. (2008). Where on Earth is the enriched Hadean reservoir? Earth Planet. Sci. Lett. 266, 1428.Google Scholar
Arden, J. W. (1977). Isotopic composition of uranium in chondritic meteorites. Nature 269, 788–9.CrossRefGoogle Scholar
Armstrong, J. T., Hutcheon, I. D., and Wasserburg, G. J. (1984). Disturbed Mg isotopic systematics in Allende CAI. In: Lunar Planet. Sci. XV, Lunar Planet. Inst., 15 (abstract).Google Scholar
Arnett, W. D. (1969). Explosive nucleosynthesis in stars. Astrophys. J. 157, 1369–80.Google Scholar
Begemann, F., and Stegmann, W. (1976). Implications from the absence of 41K anomaly in a Allende inclusion. Nature 259, 549–50.Google Scholar
Bennett, C. L., Larson, D., Weiland, J. L. et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophy. J. Supp. Ser. 208, 20.Google Scholar
Birck, J. L. and Allegre, C. J. (1985). Evidence for the presence of 53Mn in the early solar-system. Geophys. Res. Lett. 12, 745–8.Google Scholar
Birck, J. L. and Allegre, C. J. (1988). Manganese–chromium isotope systematics and the development of the early solar-system. Nature 351, 579–84.Google Scholar
Bizzarro, M., Baker, J. A., Haack, H. and Lundgaard, K. L. (2005). Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophys. J. Lett. 632, L41.CrossRefGoogle Scholar
Bizzarro, M., Ulfbeck, D., Trinquier, A. et al. (2007). Evidence for a late supernova injection of 60Fe into the protoplanetary disk. Science 316, 1178–81.Google Scholar
Blake, J. B. and Schramm, D. N. (1976). A possible alternative to the r-process. Astrophys. J. 209, 846–9.Google Scholar
Blichert-Toft, J., Moynier, F., Lee, C. T. A., Telouk, P. and Albarede, F. (2010). The early formation of the IVA iron meteorite parent body. Earth Planet. Sci. Lett. 296, 469–80.CrossRefGoogle Scholar
Borg, L. E., Brennecka, G. A. and Symes, S. J. K. (2016). Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. Geochim. Cosmochim. Acta 175, 150–67.Google Scholar
Borg, L. E., Nyquist, L. E., Wiesmann, H., Shih, C. Y. and Reese, Y. (2003). The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotopic systematics. Geochim. Cosmochim. Acta 67, 3519–36.Google Scholar
Bouvier, A., Vervoort, J. D. and Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 4857.CrossRefGoogle Scholar
Boyet, M. and Carlson, R.W. (2005). 142Nd Evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–81.Google Scholar
Boyet, M. and Carlson, R. W. (2006). A new geochemical model for the Earth's mantle inferred from 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 250, 254–68.CrossRefGoogle Scholar
Boyet, M. and Gannoun, A. (2013). Nucleosynthetic Nd isotope anomalies in primitive enstatite chondrites. Geochim. Cosmochim. Acta 121, 652–66.CrossRefGoogle Scholar
Brazzle, R. H., Pravdivtseva, O. V., Meshik, A. P. and Hohenberg, C. M. (1999). Verification and interpretation of the I Xe chronometer. Geochim. Cosmochim. Acta 63, 739–60.Google Scholar
Brennecka, G. A., Borg, L. E. and Wadhwa, M. (2013). Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis. Proc. Nat. Acad. Sci. 110, 17 241–6.CrossRefGoogle ScholarPubMed
Brennecka, G. A. and Wadhwa, M. (2012). Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Nat. Acad. Sci. 109, 9299–303.Google Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M. et al. (2010). 238U/235U variations in meteorites: Extant 247Cm and implications for Pb–Pb dating. Science, 327, 449–51.Google Scholar
Broecker, W. (1986). How to Build a Habitable Planet. Eldigio Press, Columbia University, 291 pp.Google Scholar
Burkhardt, C., Borg, L. E., Brennecka, G. A. et al. (2016). A nucleosynthetic origin for the Earth's anomalous 142Nd composition. Nature 537, 394–8.Google Scholar
Burkhardt, C., Kleine, T., Bourdon, B. et al. (2008). Hf–W mineral isochron for Ca, Al-rich inclusions: age of the solar system and the timing of core formation in planetesimals. Geochim. Cosmochim. Acta 72, 6177–97.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Oberli, F. et al. (2011). Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312, 390400.Google Scholar
Cameron, A. G. W. (1962). The formation of the sun and the planets. Icarus 1, 1369.CrossRefGoogle Scholar
Cameron, A. G. W. and Truran, J. W. (1977). The supernova trigger for formation of the solar-system. Icarus 30, 447–61.CrossRefGoogle Scholar
Canup, R. (2013). Lunar conspiracies. Nature 504, 27–9.Google Scholar
Caro, G., Bourdon, B., Birck, J. L. and Moorbath, S. (2003). 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle. Nature 423, 428–32.CrossRefGoogle ScholarPubMed
Caro, G., Bourdon, B., Birck, J. and Moorbath, S. (2006). High-precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the early differentiation of the Earth's mantle. Geochim. Cosmochim. Acta 70, 164–91.Google Scholar
Caro, G., Bourdon, B., Halliday, A. N. and Quitte, G. (2008). Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452, 336–9.Google Scholar
Champagne, A. E., Howard, A. J., and Parker, P. D. (1983). Nucleosynthesis of 26Al at low stellar temperatures. Astrophys. J. 269, 686–8.CrossRefGoogle Scholar
Chaussidon, M., Robert, F. and McKeegan, K.D. (2006). Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochim. Cosmochim. Acta 70, 224–45.Google Scholar
Chen, J. H., Papanastassiou, D. A. and Wasserburg, G. J. (2009). A search for nickel isotopic anomalies in iron meteorites and chondrites. Geochim. Cosmochim. Acta 73, 1461–71.Google Scholar
Chen, J. H. and Wasserburg, G. J. (1981). The isotopic composition of uranium and lead in Allende inclusions and meteorite phosphates. Earth Planet. Sci. Lett. 52, 115.Google Scholar
Chen, J. H. and Wasserburg, G. J. (1984). The origin of excess 107Ag in Gibeon (IVA) and other iron meteorites. In: Lunar Planet. Sci. XV, Lunar Planet. Inst., 144 (abstract).Google Scholar
Chen, J. H. and Wasserburg, G. J. (1990). The isotopic composition of Ag in meteorites and the presence of 107Pd in proto-planets. Geochim. Cosmochim. Acta 54, 1729–43.Google Scholar
Clayton, D. D. (1975). Extinct radioactivities: trapped residuals of presolar grains. Astrophys. J. 199, 765–9.Google Scholar
Clayton, D. D. (1979). Supernovae and the origin of the solar-system. Space Sci. Rev. 24, 147226.CrossRefGoogle Scholar
Clayton, D. D. (1983). Extinct radioactivities – A three-phase mixing model. Astrophys. J. 268, 381–4.Google Scholar
Clayton, R. N. (1993). Oxygen isotopes in meteorites. Ann. Rev. Earth Planet. Sci. 21, 115–49.CrossRefGoogle Scholar
Clayton, R. N., Grossman, L. and Mayeda, T. K. (1973). A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–8.Google Scholar
Crabb, J., Lewis, R. S. and Anders, E. (1982). Extinct 129I in C3 chondrites. Geochim. Cosmochim. Acta 46, 2511–26.Google Scholar
Ćuk, M. and Stewart, S. T. (2012). Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–52.CrossRefGoogle ScholarPubMed
Dauphas, N., Chen, J. H., Zhang, J. et al. (2014). Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet. Sci. Lett. 407, 96108.CrossRefGoogle Scholar
Dauphas, N., Cook, D. L., Sacarabany, A. et al. (2008). Iron 60 evidence for early injection and efficient mixing of stellar debris in the protosolar nebula. Astrophys. J. 686, 560.Google Scholar
Dauphas, N., Marty, B. and Reisberg, L. (2002). Inference on terrestrial genesis from molybdenum isotope systematics. Geophys. Res. Lett. 29 (6) 13.Google Scholar
Day, J. M. and Walker, R. J. (2015). Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–24.Google Scholar
Debaille, V., Brandon, A. D., Yin, Q. Z. and Jacobsen, B. (2007). Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–8.CrossRefGoogle ScholarPubMed
Dicke, R. H. (1969). The age of the galaxy from the decay of uranium. Astrophys. J. 155, 123–34.Google Scholar
Dickin, A. P. (2016). The Chondritic Moon: a solution to the 142 d conundrum and implications for terrestrial mantle evolution. Geol. Mag. 153, 548–55.Google Scholar
Dodd, R. T. (1969). Metamorphism of the ordinary chondrites: a review. Geochim. Cosmochim. Acta 33, 161203.Google Scholar
Elkins-Tanton, L. T., Weiss, B. P. and Zuber, M. T. (2011). Chondrites as samples of differentiated planetesimals. Earth Planet. Sci. Lett. 305, 110.Google Scholar
Gannoun, A., Boyet, M., Rizo, H. and El Goresy, A. (2011). 146Sm–142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula. Proc. Nat. Acad. Sci. 108, 7693–7.Google Scholar
Glavin, D. P., Kubny, A., Jagoutz, E. and Lugmair, G. W. (2004). Mn–Cr isotope systematics of the D'Orbigny angrite. Meteoritics Planet. Sci. 39, 693700.CrossRefGoogle Scholar
Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S. and Wadhwa, M. (2015). The uranium isotopic composition of the Earth and the Solar System. Geochim. Cosmochim. Acta 148, 145–58.Google Scholar
Gopel, C., Birck, J. L., Galy, A., Barrat, J. A. and Zanda, B. (2015). Mn–Cr systematics in primitive meteorites: Insights from mineral separation and partial dissolution. Geochim. Cosmochim. Acta 156, 124.CrossRefGoogle Scholar
Gopel, C., Manhes, G. and Allegre, C. J. (1994). UPb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet. Sci. Lett. 121, 153–71.CrossRefGoogle Scholar
Gounelle, M., Chaussidon, M. and Rollion-Bard, C. (2013). Variable and extreme irradiation conditions in the early solar system inferred from the initial abundance of 10Be in Isheyevo CAIs. Astrophys. J. Lett. 763, L33.CrossRefGoogle Scholar
Hagee, B., Bernatowicz, T. J., Podosek, F. A. et al. (1990). Actinide abundances in ordinary chondrites. Geochim. Cosmochim. Acta 54, 2847–58.CrossRefGoogle Scholar
Halliday, A. N. (2004). Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–9.Google Scholar
Halliday, A. N. (2012). The origin of the Moon. Science 338, 441.Google Scholar
Harper, C. L. and Jacobsen, S. B. (1992). Evidence from coupled 147Sm–143Nd and 146Sm–142Nd systematics for very early (4.5-Gyr) differentiation of the Earth's mantle. Nature 360, 728–32.Google Scholar
Harper, C. L. and Jacobsen, S. B. (1996). Evidence for 182Hf in the early solar system and constraints on the timescale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta 60, 1131–53.Google Scholar
Harper, C. L., Volkening, J., Heumann, K. G., Shih, C.-Y. and Weismann, H. (1991). 182Hf182W: new cosmochronometric constraints on terrestrial accretion, core formation, the astrophysical site of the r-process, and the origin of the solar system. Lunar Planet. Sci. XXII, 515–16.Google Scholar
Hartman, W. K. (1986). Moon origin: the impact-trigger hypothesis. In: Hartman, W. K., Philips, R. J. and Taylor, G. J. (Eds) Origin of the Moon, Lunar Planet. Institute, pp. 579608.Google Scholar
Hohenberg, C. M. (1969). Radioisotopes and the history of nucleosynthesis in the galaxy. Science 166, 212–15.CrossRefGoogle ScholarPubMed
Hohenberg, C. M., Podosek, F. A. and Reynolds, J. H. (1967). Xenon–iodine dating: sharp isochronism in chondrites. Science 156, 233–6.Google Scholar
Holst, J. C., Olsen, M. B., Paton, C. et al. (2013). 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System. Proc. Nat. Acad. Sci. 110, 8819–23.Google Scholar
Horan, M. F., Carlson, R. W. and Blichert-Toft, J. (2012). Pd–Ag chronology of volatile depletion, crystallization and shock in the Muonionalusta IVA iron meteorite and implications for its parent body. Earth Planet. Sci. Lett. 351, 215–22.Google Scholar
Huss, G. R., Meyer, B. S., Srinivasan, G., Goswami, J. N. and Sahijpal, S. (2009). Stellar sources of the short-lived radionuclides in the early solar system. Geochim. Cosmochim. Acta 73, 4922–45.Google Scholar
Hutcheon, I. D., Armstrong, J. T., and Wasserburg, G. J. (1984). Excess in 41K in Allende CAZ: confirmation of a hint. In: Lunar Planet. Sci. XV, Lunar Planet. Inst., 387–8 (abstract).Google Scholar
Hutcheon, I. D. and Hutchison, R. (1989). Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets. Nature 337, 238–41.Google Scholar
Ito, M., Nagasawa, H. and Yurimoto, H. (2006). A study of Mg and K isotopes in Allende CAIs: Implications to the time scale for the multiple heating processes. Meteoritics Planet. Sci. 41, 1871–81.Google Scholar
Jackson, M. G. and Carlson, R. W. (2012). Homogeneous superchondritic 142Nd/144Nd in the mid-ocean ridge basalt and ocean island basalt mantle. Geochem. Geophys. Geosys. 13(6) 110.Google Scholar
Jacobsen, B., Yin, Q. Z., Moynier, F. et al. (2008). 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 272, 353–64.Google Scholar
Jacobsen, S. B. (2005). The Hf–W isotopic system and the origin of the Earth and Moon. Ann. Rev. Earth Planet. Sci. 33, 531–70.Google Scholar
Jacobson, S. A., Morbidelli, A., Raymond, , et al. (2014). Highly siderophile elements in the Earth's mantle as a clock for the Moon-forming impact. Nature 508, 84–7.CrossRefGoogle ScholarPubMed
Javoy, M. (1995). The integral enstatite chondrite model of the Earth. Geophys. Res. Lett. 22, 2219–22.Google Scholar
Jeffrey, P. M., and Reynolds, J. H. (1961). Origin of excess 129Xe in stone meteorites. J. Geophys. Res. 66, 3582–3.Google Scholar
Kelly, W. R., and Wasserburg, G. J. (1978). Evidence for the existence of 107Pd in the early solar-system. Geophys. Res. Lett. 5, 1079–82.Google Scholar
Kinoshita, N., Paul, M., Kashiv, Y. et al. (2012). A shorter 146Sm half-life measured and implications for 146Sm–142Nd chronology in the solar system. Science 335, 1614–17.Google Scholar
Kita, N. T., Tenner, T. J., Ushikubo, T. et al. (2015). Why do U–Pb ages of chondrules and CAIs have more spread than their 26Al ages? 78th Ann. Meet. Meteoritical Soc. 1856, 5360.Google Scholar
Kleine, T., Hans, U., Irving, A. J. and Bourdon, B. (2012). Chronology of the angrite parent body and implications for core formation in protoplanets. Geochim. Cosmochim. Acta 84, 186203.Google Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E. and Munker, C. (2005a). Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf–182W in CAIs, metal-rich chondrites, and iron meteorites. Geochim. Cosmochim. Acta 69, 5805–18.CrossRefGoogle Scholar
Kleine, T., Munker, C., Mezger, K. and Palme, H. (2002). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–5.Google Scholar
Kleine, T., Palme, H., Mezger, K. and Halliday, A.N. (2005b). Hf–W chronometry of lunar metals and the age and early differentiation of the Moon. Science 310, 1671–4.CrossRefGoogle ScholarPubMed
Kleine, T., Touboul, M., Bourdon, B. et al. (2009). Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–88.Google Scholar
Konig, S., Munker, C., Hohl, S. et al. (2011). The Earth's tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75, 2119–36.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Goodrich, C. A., Scott, E. R. D. and Weisberg, M. K. (2005). Classification of meteorites. In: Davis, A. M. (Ed.) Meteorites, Comets and Planets: Treatise on Geochemistry, vol. 1. Elsevier.Google Scholar
Kruijer, T. S., Fischer-Godde, M., Kleine, T. et al. (2013). Neutron capture on Pt isotopes in iron meteorites and the Hf–W chronology of core formation in planetessimals. Earth Planet. Sci. Lett. 361, 162–72.Google Scholar
Kruijer, T. S., Kleine, T., Fischer-Gödde, M., Burkhardt, C. and Wieler, R. (2014a). Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth Planet. Sci. Lett. 403, 317–27.Google Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M. and Sprung, P. (2015). Lunar tungsten isotopic evidence for the late veneer. Nature 520, 534–7.Google Scholar
Kruijer, T. S., Sprung, P., Kleine, T. et al. (2012). Hf–W chronometry of core formation in planetessimals inferred from weakly irradiated iron meteorites. Geochim. Cosmochim. Acta 99, 287304.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M. et al. (2014b). Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–4.Google Scholar
Lee, D.-C. and Halliday, A. N. (1995). Hafniumtungsten chronometry and the timing of terrestrial core formation. Nature 378, 771–4.Google Scholar
Lee, D.-C. and Halliday, A. N. (1996). Hf–W isotopic evidence for rapid accretion and differentiation in the early solar system. Science 274, 1876–9.Google Scholar
Lee, D.-C. and Halliday, A. N. (2000). HfW internal isochrons for ordinary chondrites and the initial 182Hf180Hf of the solar system. Chem. Geol. 169, 3543.Google Scholar
Lee, D. C., Halliday, A. N., Leya, I., Wieler, R. and Wiechert, U. (2002). Cosmogenic tungsten and the origin and earliest differentiation of the Moon. Earth Planet. Sci. Lett. 198, 267–74.Google Scholar
Lee, D.-C., Halliday, A. N., Snyder, G. A. and Taylor, L. A. (1997). Age and origin of the Moon. Science 278, 1098–103.Google Scholar
Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1976). Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett. 3, 109–13.Google Scholar
Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1977). Aluminum-26 in the early solar-system: Fossil or fuel? Astrophys. J. Lett. 211, L107–10.Google Scholar
Lee, T. (1978). A local proton irradiation model for isotopic anomalies in the solar system. Astrophys. J. 224, 217–26.Google Scholar
Lee, T., Shu, F. H., Shang, H., Glassgold, A. E. and Rehm, K. E. (1998). Protostellar cosmic rays and extinct radioactivities in meteorites. Astrophys. J. 506, 898912.Google Scholar
Lewis, R. S., Amari, S. and Anders, E. (1990). Meteoritic silicon carbide: pristine material from carbon stars. Nature 348, 293–8.CrossRefGoogle Scholar
Leya, I. (2011). Cosmogenic effects on 7Li/6Li, 10B/11B, and 182W/184W in CAIs from carbonaceous chondrites. Geochim. Cosmochim. Acta 75, 1507–18.Google Scholar
Leya, I., Schonbachler, M., Wiechert, U., Krahenbuhl, U. and Halliday, A. N. (2008). Titanium isotopes and the radial heterogeneity of the solar system. Earth Planet. Sci. Lett. 266, 233–44.Google Scholar
Liu, M. C., Chaussidon, M., Gopel, C. and Lee, T. (2012). A heterogeneous solar nebula as sampled by CM hibonite grains. Earth Planet. Sci. Lett. 327, 7583.Google Scholar
Lugaro, M., Heger, A., Osrin, D. et al. (2014). Stellar origin of the 182Hf cosmochronometer and the presolar history of solar system matter. Science 345, 650–3.Google Scholar
Lugmair, G. W. and Galer, S. J. G. (1992). Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochim. Cosmochim. Acta 56, 1673–94.Google Scholar
Lugmair, G. W. and Marti, K. (1977). Sm–Nd–Pu timepieces in the Angra dos Reis meteorite. Earth Planet. Sci. Lett. 35, 273–84.Google Scholar
Lugmair, G. W. and Shukolykov, A. (1998). Early solar system timescales according to 53Mn53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–86.Google Scholar
MacPherson, G. J., Bullock, E. S., Janney, P. E. et al. (2010). Early solar nebula condensates with canonical, not supracanonical, initial 26Al/27Al ratios. Astrophys. J. Lett. 711, L117–21.Google Scholar
MacPherson, G. J., Kita, N. T., Ushikubo, T., Bullock, E. S. and Davis, A. M. (2012). Well-resolved variations in the formation ages for Ca–Al-rich inclusions in the early Solar System. Earth Planet. Sci. Lett. 331, 4354.Google Scholar
Mahoney, W. A., Ling, J. C., Wheaton, W. A. and Jacobsen, A. S. (1984). HEAO-3 discovery of 26Al in the interstellar medium. Astrophys. J. 286, 578–85.Google Scholar
Makide, K., Nagashima, K., Krot, A. N. et al. (2013). Heterogeneous distribution of 26Al at the birth of the Solar System: Evidence from corundum-bearing refractory inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta 110, 190215.Google Scholar
Markowski, A., Quitte, G., Halliday, A. N. and Kleine, T. (2006). Tungsten isotopic compositions of iron meteorites: chronological constraints vs. cosmogenic effects. Earth Planet. Sci. Lett. 242, 115.Google Scholar
Markowski, A., Quitte, G., Kleine, T. et al. (2007). Hafnium–tungsten chronometry of angrites and the earliest evolution of planetary objects. Earth Planet. Sci. Lett. 262, 214–29.Google Scholar
Marks, N. E., Borg, L. E., Hutcheon, I. D., Jacobsen, B. and Clayton, R. N. (2014). Samarium–neodymium chronology and rubidium–strontium systematics of an Allende calcium–aluminum-rich inclusion with implications for 146Sm half-life. Earth Planet. Sci. Lett. 405, 1524.Google Scholar
McCulloch, M. T. and Wasserburg, G. J. (1978). Barium and neodymium isotopic anomalies in the Allende meteorite. Astrophys. J. 220, L1519.Google Scholar
McKeegan, K. D., Chaussidon, M. and Robert, F. (2000). Incorporation of short-lived 10Be in a calcium aluminum-rich inclusion from the Allende meteorite. Science 289, 1334–7.CrossRefGoogle Scholar
McLeod, C. L., Brandon, A. D. and Armytage, R. M. (2014). Constraints on the formation age and evolution of the Moon from 142Nd–143Nd systematics of Apollo 12 basalts. Earth Planet. Sci. Lett. 396, 179–89.Google Scholar
Mishra, R. K. and Chaussidon, M. (2014a). Timing and extent of Mg and Al isotopic homogenization in the early inner Solar System. Earth Planet. Sci. Lett. 390, 318–26.Google Scholar
Mishra, R. K. and Chaussidon, M. (2014b). Fossil records of high level of 60Fe in chondrules from unequilibrated chondrites. Earth Planet. Sci. Lett. 398, 90100.Google Scholar
Mishra, R. K. and Goswami, J. N. (2014). Fe–Ni and Al–Mg isotope records in UOC chondrules: Plausible stellar source of 60Fe and other short-lived nuclides in the early Solar System. Geochim. Cosmochim. Acta 132, 440–57.Google Scholar
Moynier, F., Blichert-Toft, J., Wang, K., Herzog, G. F. and Albarede, F. (2011). The elusive 60Fe in the solar nebula. Astrophys. J. 741 (71), 16.Google Scholar
Newsome, H. E. (1995). Composition of the solar system, planets, meteorites, and major terrestrial reservoirs. Global Earth Physics. American Geophysical Union, pp. 159189.Google Scholar
Nichols, R. H., Hohenberg, C. M., Kehm, K., Kim, Y. and Marti, K. (1994). I–Xe studies of the Acapulco meteorite: absolute I–Xe ages of individual phosphate grains and the Bjurbole standard. Geochim. Cosmochim. Acta 58, 2553–61.Google Scholar
Niemeyer, S. (1979). I–Xe dating of silicate and troilite from IAB iron meteorites. Geochim. Cosmochim. Acta 43, 843–60.Google Scholar
Norman, E. B. and Schramm, D. N. (1983). 182Hf chronometer for the early solar system. Nature 304, 515–17.Google Scholar
Nuth, J. (1991). Small grains of truth. Nature 349, 1819.Google Scholar
Nyquist, L. E., Bansal, B., Wiesmann, H. and Shih, C. Y. (1994). Neodymium, strontium and chromium isotopic studies of the LEW86010 and Angra dos Reis meteorites and the chronology of the angrite parent body. Meteoritics 29, 872–85.Google Scholar
Nyquist, L. E., Kleine, T., Shih, C. Y. and Reese, Y. D. (2009). The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochim. Cosmochim. Acta 73, 5115–36.Google Scholar
Nyquist, L., Lindstrom, D., Mittlefehldt, D. et al. (2001). Manganese–chromium formation intervals for chondrules from Bishunpur and Chainpur meteorites. Meteoritics Planet. Sci. 36, 911–38.CrossRefGoogle Scholar
Nyquist, L. E., Wiesmann, H., Bansal, B. et al. (1995). 146Sm–142Nd formation interval for the lunar mantle. Geochim. Cosmochim. Acta 59, 2817–37.Google Scholar
O'Neil, J., Carlson, R. W., Francis, D. and Stevenson, R. K. (2008). Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–31.Google Scholar
Papanastassiou, D. A. (1986). Chromium isotopic anomalies in the Allende meteorite. Astrophys. J. 308, L2730.Google Scholar
Paton, C., Schiller, M. and Bizzarro, M. (2013). Identification of an 84Sr-depleted carrier in primitive meteorites and implications for thermal processing in the solar protoplanetary disk. Astrophys. J. Lett. 763 (L40), 16.Google Scholar
Podosek, F. A. (1970). Dating of meteorites by the high-temperature release of iodine-correlated Xe-129. Geochim. Cosmochim. Acta 34, 341–65.Google Scholar
Podosek, F. A., Zinner, E. K., Macpherson, G. J. et al. (1991). Correlated study of initial 87Sr/86Sr and Al–Mg isotopic systematics and petrologic properties in a suite of refractory inclusions from the Allende meteorite. Geochim. Cosmochim. Acta 55, 1083–110.Google Scholar
Qin, L., Alexander, C. M. D., Carlson, R. W., Horan, M. F. and Yokoyama, T. (2010). Contributors to chromium isotope variation of meteorites. Geochim. Cosmochim. Acta 74, 1122–45.Google Scholar
Qin, L., Dauphas, N., Wadhwa, M., Masarik, J. and Janney, P. E. (2008). Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling. Earth Planet. Sci. Lett. 273, 94104.CrossRefGoogle Scholar
Quitte, G., Markowski, A., Latkoczy, C., Gabriel, A. and Pack, A. (2010). Iron-60 heterogeneity and incomplete isotope mixing in the early solar system. Astrophys. J. 720, 1215–24.Google Scholar
Regelous, M., Elliott, T. and Coath, C. D. (2008). Nickel isotope heterogeneity in the early Solar System. Earth Planet. Sci. Lett. 272, 330–38.Google Scholar
Reynolds, J. H. (1960). Determination of the age of the elements. Phys. Rev. Lett. 4, 89.Google Scholar
Rotaru, M., Birck, J. L. and Allegre, C. J. (1992). Clues to early solar-system history from chromium isotopes in carbonaceous chondrites. Nature 358, 465–70.Google Scholar
Roth, A. S., Bourdon, B., Mojzsis, S. J. et al. (2013). Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet. Sci. Lett. 361, 50–7.Google Scholar
Rugel, G., Faestermann, T., Knie, K. et al. (2009). New measurement of the 60Fe half-life. Phys. Rev. Lett. 103 (7), 072502.Google Scholar
Russell, S. S., Srinivasan, G., Huss, G. R., Wasserburg, G. J. and MacPherson, G. J. (1996). Evidence for widespread 26Al in the Solar Nebula and constraints for nebular time scales. Science 273, 757–62.Google Scholar
Sahijpal, S., Goswami, J. N., Davis, A. M., Grossman, L. and Lewis, R. S. (1998). A stellar origin for the short-lived nuclides in the early solar system. Nature 391, 559–61.Google Scholar
Salmeron, R. and Ireland, T. R. (2012). Formation of chondrules in magnetic winds blowing through the proto-asteroid belt. Earth Planet. Sci. Lett. 327, 61–7.Google Scholar
Schersten, A., Elliott, T., Hawkesworth, C., Russell, S. and Masarik, J. (2006). Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett. 241, 530–42.Google Scholar
Schiller, M., Baker, J. A. and Bizzarro, M. (2010). 26Al–26Mg dating of asteroidal magmatism in the young Solar System. Geochim. Cosmochim. Acta 74, 4844–64.Google Scholar
Schiller, M., Connelly, J. N., Glad, A. C., Mikouchi, T. and Bizzarro, M. (2015). Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth Planet. Sci. Lett. 420, 4554.Google Scholar
Schoenberg, R., Kamber, B. S., Collerson, K. D. and Eugster, O. (2002). New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta 66, 3151–60.Google Scholar
Schonbachler, M., Carlson, R. W., Horan, M. F., Mock, T. D. and Hauri, E. H. (2008). Silver isotope variations in chondrites: volatile depletion and the initial 107Pd abundance of the solar system. Geochim. Cosmochim. Acta 72, 5330–41.Google Scholar
Schramm, D. N. and Wasserburg, G. J. (1970). Nucleochronologies and the mean age of the elements. Astrophys. J. 162, 5769.Google Scholar
Schulz, T., Munker, C., Palme, H. and Mezger, K. (2009). Hf–W chronometry of the IAB iron meteorite parent body. Earth Planet. Sci. Lett. 280, 185–93.Google Scholar
Seeger, P. A., Fowler, W. A. and Clayton, D. D. (1965). Nucleosynthesis of heavy elements by neutron capture. Astrophys. J. Supp. 11, 121–66Google Scholar
Sharma, M., Papanastassiou, D. A., Wasserburg, G. J. and Dymek, R. F. (1996). The issue of the terrestrial record of Sm-146. Geochim. Cosmochim. Acta 60, 2037–47.Google Scholar
Shu, F. H., Shang, H., Glassgold, A. E. and Lee, T. (1997). X-rays and fluctuating X-winds from protostars. Science 277, 1475–9.Google Scholar
Shukolyukov, A. and Lugmair, G. W. (1993a). Live iron-60 in the early solar system. Science 259, 1138–42.Google Scholar
Shukolyukov, A. and Lugmair, G. W. (1993b). 60Fe in eucrites. Earth Planet. Sci. Lett. 119, 159–66.CrossRefGoogle Scholar
Sprung, P., Kleine, T. and Scherer, E. E. (2013). Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon. Earth Planet. Sci. Lett. 380, 7787.Google Scholar
Srinivasan, G. and Chaussidon, M. (2013). Constraints on 10Be and 41Ca distribution in the early solar system from 26Al and 10Be studies of Efremovka CAIs. Earth Planet. Sci. Lett. 374, 1123.Google Scholar
Srinivasan, G., Goswami, J. N. and Bhandari, N. (1999). 26Al in eucrite Piplia Kalan: plausible heat source and formation chronology. Science 284, 1348–50.Google Scholar
Srinivasan, G., Sahijpal, S., Ulyanov, A. A. and Goswami, J. N. (1996). Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and 41Ca in the early solar system. Geochim. Cosmochim. Acta 60, 1823–35.Google Scholar
Srinivasan, G., Ulyanov, A. A. and Goswami, J. N. (1994). 41Ca in the early solar system. Astrophys. J. Lett. 431, L6770.Google Scholar
Steele, R. C., Coath, C. D., Regelous, M., Russell, S. and Elliott, T. (2012). Neutron-poor nickel isotope anomalies in meteorites. Astrophys. J. 758 (59), 121.Google Scholar
Steele, R. C., Elliott, T., Coath, C. D. and Regelous, M. (2011). Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochim. Cosmochim. Acta 75, 7906–25.Google Scholar
Stirling, C. H., Halliday, A. N. Porcelli, D. (2005). In search of live 247Cm in the early solar system. Geochim. Cosmochim. Acta 69, 1059–71.Google Scholar
Stirling, C. H., Halliday, A. N., Potter, E. K., Andersen, M. B. and Zanda, B. (2006). A low initial abundance of 247Cm in the early solar system and implications for r-process nucleosynthesis. Earth Planet. Sci. Lett. 251, 386–97.Google Scholar
Sugiura, N., Shuzou, Y. and Ulyanov, A. (2001). Berylliumboron and aluminiummagnesium chronology of calciumaluminium-rich inclusions in CV chondrites. Meteoritics Planet. Sci. 36, 1397–408.Google Scholar
Tang, H. and Dauphas, N. (2012). Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth Planet. Sci. Lett. 359, 248–63.Google Scholar
Tang, H. and Dauphas, N. (2014). 60Fe–60Ni chronology of core formation in Mars. Earth Planet. Sci. Lett. 390, 264–74.Google Scholar
Tang, H. and Dauphas, N. (2015). Low 60Fe abundance in Semarkona and Sahara 99555. Astrophys. J. 802 (22), 19.Google Scholar
Taylor, G. J., Maggiore, P., Scott, E. R., Rubin, A. E. and Keil, K. (1987). Original structures, and fragmentation and reassembly histories of asteroids: Evidence from meteorites. Icarus 69, 113.Google Scholar
Theis, K. J., Schonbachler, M., Benedix, G. K. et al. (2013). Palladium–silver chronology of IAB iron meteorites. Earth Planet. Sci. Lett. 361, 402–11.Google Scholar
Thrane, K., Bizzarro, M. and Baker, J. A. (2006). Extremely brief formation interval for refractory inclusions and uniform distribution of 26Al in the early solar system. Astrophys. J. Lett. 646 (2), L159.Google Scholar
Touboul, M., Kleine, T., Bourdon, B. et al. (2009). Hf–W thermochronometry: II. Accretion and thermal history of the acapulcoite–lodranite parent body. Earth Planet. Sci. Lett. 284, 168–78.Google Scholar
Touboul, M., Puchtel, I. S. and Walker, R. J. (2015). Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520, 530–3.Google Scholar
Trinquier, A., Birck, J. L. and Allegre, C. J. (2007). Widespread 54Cr heterogeneity in the inner solar system. Astrophys. J. 655 (2), 1179.Google Scholar
Trinquier, A., Birck, J. L., Allegre, C. J., Gopel, C. and Ulfbeck, D. (2008). 53Mn–53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72, 5146–63.Google Scholar
Trinquier, A., Elliott, T., Ulfbeck, D. et al. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–6.Google Scholar
Trivedi, B. M. P. (1977). A new approach to nucleocosmochronology. Astrophys. J. 215, 877–84.Google Scholar
Truran, J. W., and Cameron, A. G. W. (1978). 26Al production in explosive carbon burning. Astrophys. J. 219, 226–9.Google Scholar
Turner, G., Crowther, S. A., Burgess, R. et al. (2013). Short lived 36Cl and its decay products 36Ar and 36S in the early solar system. Geochim. Cosmochim. Acta 123, 358–67.Google Scholar
Villeneuve, J., Chaussidon, M. and Libourel, G. (2009). Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science 325, 985–8.Google Scholar
Wallner, A., Bichler, M., Buczak, K. et al. (2015). Settling the half-life of 60Fe: fundamental for a versatile astrophysical chronometer. Phys. Rev. Lett. 114 (4), 041101.Google Scholar
Warren, P. H. (2011). Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93100.Google Scholar
Wasserburg, G. J. (1985). Short-lived nuclei in the early solar-system. In: Black, D. C. and Matthews, M. S. (Eds) Protostars and Planets. University of Arizona Press, pp. 703–37.Google Scholar
Wasserburg, G. J., Busso, M. and Gallino, R. (1996). Abundances of actinides and short-lived non-actinides in the interstellar medium: diverse supernova sources for the r-process. Astrophys. J. Lett. 431, L109–13.Google Scholar
Wasserburg, G. J., Fowler, W. A. and Hoyle, F. (1960). Duration of nucleosynthesis. Phys. Rev. Lett. 4, 112–14.CrossRefGoogle Scholar
Wasserburg, G. J. and Hayden, R. J. (1955). Time interval between nucleogenesis and the formation of meteorites. Nature 176, 130–1.Google Scholar
Wasserburg, G. J., Lee, T. and Papanastassiou, D. A. (1977). Correlated O and Mg isotopic anomalies in Allende inclusions: II magnesium. Geophys. Res. Lett. 4, 299302.Google Scholar
Wasserburg, G. J. and Papanastassiou, D. A. (1982). Some short-lived nuclides in the early solar-system – a connection with the placental ISM. In: Barnes, C. A., Clayton, D. D. and Schramm, D. N. (Eds), Essays in Nuclear Astrophysics. Cambridge University Press, pp. 77140.Google Scholar
Wasson, J. T. (2013). Vesta and extensively melted asteroids: Why HED meteorites are probably not from Vesta. Earth Planet. Sci. Lett. 381, 138–46.Google Scholar
Weisberg, M. K., McCoy, T. J. and Krot, A. N. (2006). Systematics and evaluation of meteorite classification. In: Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and The Early Solar System II. University of Arizona Press, pp. 1952.Google Scholar
Wiechert, U., Halliday, A. N., Lee, D. C. et al. (2001). Oxygen isotopes and the Moon-forming giant impact. Science 294, 345–8.Google Scholar
Wohlers, A. and Wood, B. J. (2015). A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature 520, 337–40.Google Scholar
Yamakawa, A. and Yin, Q. Z. (2014). Chromium isotopic systematics of the Sutter's Mill carbonaceous chondrite: Implications for isotopic heterogeneities of the early solar system. Meteoritics Planet. Sci. 49, 2118–27.Google Scholar
Yin, Q. Z., Jacobsen, B., Moynier, F. and Hutcheon, I. D. (2007). Toward consistent chronology in the early solar system: high-resolution 53Mn–53Cr chronometry for chondrules. Astrophys. J. Lett. 662 (1), L43.Google Scholar
Yin, Q., Jacobsen, S. B., Yamashita, K. et al. (2002). A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–52.Google Scholar
Yokoyama, T., Fukami, Y., Okui, W., Ito, N. and Yamazaki, H. (2015). Nucleosynthetic strontium isotope anomalies in carbonaceous chondrites. Earth Planet. Sci. Lett. 416, 4655.Google Scholar
Young, E. D. (2014). Inheritance of solar short-and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth Planet. Sci. Lett. 392, 1627.Google Scholar
Young, E.E., Simon, J.I., Galy, A. et al. (2005). Supra-canonical 26Al/27Al and the residence time of the CAIs in the solar protoplanetary disk. Science 308, 223–7.Google Scholar
Zinner, E., Amari, S., Anders, E. and Lewis, R. (1991). Large amounts of extinct 26Al in interstellar grains from the Murchison meteorite. Nature 349, 51–4.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Extinct Radionuclides
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Extinct Radionuclides
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Extinct Radionuclides
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.016
Available formats
×