Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T16:24:44.112Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 March 2017

Martin T. Barlow
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AF] D.J., Aldous and J., Fill. Reversible Markov Chains and Random Walks on Graphs. See http://www.stat.berkeley.edu/∼aldous/RWG/book.html
[Ah] L.V., Ahlfors. Conformal Invariants: Topics in Geometric Function Theory. New York, NY: McGraw-Hill Book Co. (1973).
[Ar] D.G., Aronson. Bounds on the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73 (1967) 890–896.Google Scholar
[Ba1] M.T., Barlow Which values of the volume growth and escape time exponent are possible for a graph? Rev. Mat. Iberoamer. 20 (2004), 1–31.Google Scholar
[Ba2] M.T., Barlow. Some remarks on the elliptic Harnack inequality. Bull. London Math. Soc. 37 (2005), no. 2, 200–208.Google Scholar
[BB1] M.T., Barlow and R.F., Bass. Random walks on graphical Sierpinski carpets. In: Random Walks and Discrete Potential Theory, eds. M., Piccardello and W., Woess. Symposia Mathematica XXXIX. Cambridge: Cambridge University Press (1999).
[BB2] M.T., Barlow and R.F., Bass. Stability of parabolic Harnack inequalities. Trans. Amer. Math. Soc. 356 (2003), no. 4, 1501–1533.Google Scholar
[BC] M.T., Barlow and X., Chen. Gaussian bounds and parabolic Harnack inequality on locally irregular graphs. Math. Annalen 366 (2016), no. 3, 1677–1720.Google Scholar
[BCK] M.T., Barlow, T., Coulhon, and T., Kumagai. Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Comm. Pure. Appl. Math. LVIII (2005), 1642–1677.Google Scholar
[BH] M.T., Barlow and B.M., Hambly. Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Prob. 14 (2009), no. 1, 1–27.Google Scholar
[BK] M.T., Barlow and T., Kumagai. Random walk on the incipient infinite cluster on trees. Illinois J. Math. 50 (Doob volume) (2006), 33–65.Google Scholar
[BJKS] M.T., Barlow, A.A., Járai, T., Kumagai and G., Slade. Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278 (2008), no. 2, 385–431.Google Scholar
[BM] M.T., Barlow and R., Masson. Spectral dimension and random walks on the two dimensional uniform spanning tree. Commun. Math. Phys. 305 (2011), no. 1, 23–57.Google Scholar
[BMu] M.T., Barlow and M., Murugan. Stability of elliptic Harnack inequality. In prep.
[BT] Zs., Bartha and A., Telcs. Quenched invariance principle for the random walk on the Penrose tiling. Markov Proc. Related Fields 20 (2014), no. 4, 751–767.Google Scholar
[Bas] R.F., Bass. On Aronsen's upper bounds for heat kernels. Bull. London Math. Soc. 34 (2002), 415–419.Google Scholar
[BPP] I., Benjamini, R., Pemantle, and Y., Peres. Unpredictable paths and percolation. Ann. Prob. 26 (1998), 1198–1211.Google Scholar
[BD] A., Beurling and J., Deny. Espaces de Dirichlet. I. Le cas élémentaire. Acta Math. 99 (1958), 203–224.Google Scholar
[BL] K., Burdzy and G.F., Lawler. Rigorous exponent inequalities for random walks. J. Phys. A 23 (1990), L23–L28.Google Scholar
[Bov] A., Bovier. Metastability: a potential theoretic approach. Proc. ICM Madrid 2006. Zurich: European Mathematical Society.
[CKS] E.A., Carlen, S., Kusuoka, and D.W., Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Suppl. no. 2 (1987), 245– 287.Google Scholar
[Ca] T.K., Carne. A transmutation formula for Markov chains. Bull. Sci. Math. 109 (1985), 399–405.Google Scholar
[CRR] A.K., Chandra, P., Raghavan, W.L., Ruzzo, R., Smolensky, and P., Tiwari. The electrical resistance of a graph captures its commute and cover times. In: Proc. 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, ed. D.S., Johnson. New York, NY: ACM (1989).
[Ch] X., Chen. Pointwise upper estimates for transition probability of continuous time random walks on graphs. In prep.
[Co1] T., Coulhon. Espaces de Lipschitz et inégalités de Poincaré. J. Funct. Anal. 136 (1996), no. 1, 81–113.Google Scholar
[Co2] T., Coulhon. Heat kernel and isoperimetry on non-compact Riemannian manifolds. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), eds. P. Auscher, T. Coulhon, and A. Grigor'yan. Contemporary Mathematics vol. 338. Providence, RI: AMS (2003), pp. 65–99.
[CG] T., Coulhon and A., Grigor'yan. Random walks on graphs with regular volume growth. GAFA 8 (1998), 656–701.Google Scholar
[CGZ] T., Coulhon, A., Grigoryan, and F., Zucca. The discrete integral maximum principle and its applications. Tohoku Math. J. (2) 57 (2005), no. 4, 559–587.Google Scholar
[CS] T., Coulhon and A., Sikora. Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem. Proc. Lond. Math. Soc. (3) 96 (2008), no. 2, 507–544.Google Scholar
[Da] E.B., Davies. Large deviations for heat kernels on graphs. J. London Math. Soc.(2) 47 (1993), 65–72.Google Scholar
[D1] T., Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Math. Iberoamer. 15 (1999), 181–232.Google Scholar
[D2] T., Delmotte. Graphs between the elliptic and parabolic Harnack inequalities. Potential Anal. 16 (2002), no. 2, 151–168.Google Scholar
[De] Y., Derriennic. Lois ‘zero ou deux’ pour les processus de Markov. Ann. Inst. Henri Poincaré Sec. B 12 (1976), 111–129.Google Scholar
[DiS] P., Diaconis and D., Stroock. Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Prob. 1 (1991), 36–61.Google Scholar
[DS] P., Doyle and J.L., Snell. Random Walks and Electrical Networks. Washington D.C.: Mathematical Association of America (1984). Arxiv:.PR/0001057.
[Duf] R.J., Duffin. The extremal length of a network. J. Math. Anal. Appl. 5 (1962), 200–215.Google Scholar
[Dur] R., Durrett. Probability: Theory and Examples, 4th edn. Cambridge: Cambridge University Press (2010).
[DK] B., Dyda and M., Kassmann. On weighted Poincaré inequalities. Ann. Acad. Sci. Fenn. Math. 38 (2013), 721–726.Google Scholar
[DM] E.B., Dynkin and M.B., Maljutov. Random walk on groups with a finite number of generators. (In Russian.) Dokl. Akad. Nauk SSSR 137 (1961), 1042–1045.Google Scholar
[FS] E.B., Fabes and D.W., Stroock. A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Mech. Rat. Anal. 96 (1986), 327– 338.Google Scholar
[Fa] K., Falconer. Fractal Geometry. Chichester: Wiley (1990).
[Fe] W., Feller. An Introduction to Probability Theory and its Applications. Vol. I, 3rd edn. New York, NY: Wiley (1968).
[Fo1] M., Folz. Gaussian upper bounds for heat kernels of continuous time simple random walks. Elec. J. Prob. 16 (2011), 1693–1722, paper 62.Google Scholar
[Fo2] M., Folz. Volume growth and stochastic completeness of graphs. Trans. Amer. Math. Soc. 366 (2014), 2089–2119.Google Scholar
[Fos] F.G., Foster. On the stochastic matrices associated with certain queuing processes. Ann. Math. Statist. 24 (1953), 355–360.Google Scholar
[FOT] M., Fukushima, Y., Oshima, and M., Takeda, Dirichlet Forms and Symmetric Markov Processes. Berlin: de Gruyter (1994).
[Ga] R.J., Gardner. The Brunn-Minkowski inequality. Bull. AMS 39 (2002), 355– 405.Google Scholar
[Gg1] A.A., Grigor'yan. The heat equation on noncompact Riemannian manifolds. Math. USSR Sbornik 72 (1992), 47–77.Google Scholar
[Gg2] A.A., Grigor'yan. Heat kernel upper bounds on a complete non-compact manifold. Revista Math. Iberoamer. 10 (1994), 395–452.Google Scholar
[GT1] A., Grigor'yan and A., Telcs. Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J. 109 (2001), 452–510.Google Scholar
[GT2] A., Grigor'yan and A., Telcs. Harnack inequalities and sub-Gaussian estimates for random walks. Math. Annal. 324 (2002), no. 3, 521–556.Google Scholar
[GHM] A., Grigor'yan, X.-P., Huang, and J., Masamune. On stochastic completeness of jump processes. Math. Z. 271 (2012), no. 3, 1211–1239.Google Scholar
[Grom1] M., Gromov. Groups of polynomial growth and expanding maps. Publ. Math. IHES 53 (1981), 53–73.Google Scholar
[Grom2] M., Gromov. Hyperbolic groups. In: Essays in Group Theory, ed. S.M., Gersten. New York, NY: Springer (1987), pp. 75–263.
[HSC] W., Hebisch and L., Saloff-Coste. Gaussian estimates for Markov chains and random walks on groups. Ann. Prob. 21 (1993), 673–709.Google Scholar
[Je] D., Jerison. The weighted Poincaré inequality for vector fields satisfying Hörmander's condition. Duke Math. J. 53 (1986), 503–523.Google Scholar
[Kai] V.A., Kaimanovich. Measure-theoretic boundaries of 0-2 laws and entropy. In: Harmonic Analysis and Discrete Potential Theory (Frascati, 1991). New York, NY: Plenum (1992), pp. 145–180.
[Kan1] M., Kanai. Rough isometries and combinatorial approximations of geometries of non-compact riemannian manifolds. J. Math. Soc. Japan 37 (1985), 391–413.Google Scholar
[Kan2] M., Kanai. Analytic inequalities, and rough isometries between non-compact reimannian manifolds. In: Curvature and Topology of Riemannian Manifolds. Proc. 17th Intl. Taniguchi Symp., Katata, Japan, eds. K., Shiohama, T., Sakai, and T., Sunada. Lecture Notes in Mathematics 1201. New York, NY: Springer (1986), pp. 122–137.
[KSK] J.G., Kemeny, J.L., Snell, and A.W., Knapp. Denumerable Markov Chains. New York, NY: Springer (1976).
[Ki] J., Kigami. Harmonic calculus on limits of networks and its application to dendrites. J. Funct. Anal. 128 (1995), no. 1, 48–86.Google Scholar
[Kir1] G., Kirchhoff. Über die Auflösung der Gleichungen, auf welche man bei der Untersuchungen der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72 (1847), 497–508.Google Scholar
[Kir2] G., Kirchhoff. On the solution of the equations obtained from the investigation of the linear distribution of galvanic currents. (Translated by J.B. O'Toole.) IRE Trans. Circuit Theory 5 (1958), 4–7.Google Scholar
[KN] G., Kozma and A., Nachmias. The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178 (2009), no. 3, 635–654.Google Scholar
[Kum] T., Kumagai. Random Walks on Disordered Media and their Scaling Limits. École d'Été de Probabilités de Saint-Flour XL – 2010. Lecture Notes in Mathematics 2101. Chan: Springer International (2014).
[LL] G.F., Lawler and V., Limic. Random Walk: A Modern Introduction. Cambridge: Cambridge University Press (2010).
[LP] R., Lyons and Y., Peres. Probability on Trees and Networks. Cambridge: Cambridge University Press, 2016.
[Ly1] T., Lyons. A simple criterion for transience of a reversible Markov chain. Ann. Prob. 11 (1983), 393–402.Google Scholar
[Ly2] T., Lyons. Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains. J. Diff. Geom. 26 (1987), 33–66.Google Scholar
[Mer] J.-F., Mertens, E., Samuel-Cahn, and S., Zamir. Necessary and sufficient conditions for recurrence and transience of Markov chains in terms of inequalities. J. Appl. Prob. 15 (1978), 848–851.Google Scholar
[Mo1] J., Moser. On Harnack's inequality for elliptic differential equations. Commun. Pure Appl. Math. 14 (1961), 577–591.
[Mo2] J., Moser. On Harnack's inequality for parabolic differential equations. Commun. Pure Appl. Math. 17 (1964), 101–134.Google Scholar
[Mo3] J., Moser. On a pointwise estimate for parabolic differential equations. Commun. Pure Appl. Math. 24 (1971), 727–740.Google Scholar
[N] J., Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958), 931–954.Google Scholar
[Nor] J., Norris. Markov Chains. Cambridge: Cambridge University Press (1998).
[NW] C., St J.A., Nash-Williams. Random walks and electric currents in networks. Proc. Camb. Phil. Soc. 55 (1959), 181–194.Google Scholar
[Os] H., Osada. Isoperimetric dimension and estimates of heat kernels of pre- Sierpinski carpets. Prob. Theor Related Fields 86 (1990), 469–490.Google Scholar
[Pol] G., Polya. Über eine Ausgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Math. Ann. 84 (1921), 149–160.Google Scholar
[Rev] D., Revelle. Heat kernel asymptotics on the lamplighter group. Elec. Commun. Prob. 8 (2003), 142–154.Google Scholar
[RW] L.C.G., Rogers and D.W., Williams. Diffusions, Markov Processes, and Martingales. Vol. 1. Foundations. 2nd edn. Chichester: Wiley (1994).
[Ro] O.S., Rothaus. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities. J. Funct. Anal. 64 (1985), 296–313.Google Scholar
[SC1] L., Saloff-Coste. A note on Poincaré, Sobolev, and Harnack inequalities. Inter. Math. Res. Not 2 (1992), 27–38.Google Scholar
[SC2] L., Saloff-Coste. Aspects of Sobolev-type Inequalities. LMS Lecture Notes 289. Cambridge: Cambridge University Press (2002).
[SJ] A., Sinclair and M., Jerrum. Approximate counting, uniform generation and rapidly mixing Markov chains. Inform. Comput. 82 (1989), 93–133.Google Scholar
[So1] P.M., Soardi. Rough isometries and Dirichlet finite harmonic functions on graphs. Proc. AMS 119 (1993), 1239–1248.Google Scholar
[So2] P.M., Soardi. Potential Theory on Infinite Networks. Berlin: Springer (1994).
[Spi] F., Spitzer. Principles of Random Walk. New York, NY: Springer (1976).
[SZ] D.W., Stroock and W., Zheng. Markov chain approximations to symmetric diffusions. Ann. Inst. H. Poincaré Prob. Stat. 33 (1997), 619–649.Google Scholar
[T1] A., Telcs. Random walks on graphs, electric networks and fractals. Prob. Theor. Related Fields 82 (1989), 435–451.Google Scholar
[T2] A., Telcs. Local sub-Gaussian estimates on graphs: the strongly recurrent case. Electron. J. Prob. 6 (2001), no. 22, 1–33.Google Scholar
[T3] A., Telcs. Diffusive limits on the Penrose tiling. J. Stat. Phys. 141 (2010), 661–668.Google Scholar
[Tet] P., Tetali. Random walks and the effective resistance of networks. J. Theor. Prob. 4 (1991), 101–109.Google Scholar
[Tru] K., Truemper. On the delta-wye reduction for planar graphs. J. Graph Theory 13 (1989), 141–148.Google Scholar
[V1] N.Th., Varopoulos. Isoperimetric inequalities and Markov chains. J. Funct. Anal. 63 (1985), 215–239.Google Scholar
[V2] N.Th., Varopoulos. Long range estimates forMarkov chains. Bull. Sci. Math., 2e serie 109 (1985), 225–252225–252.Google Scholar
[W] D., Williams. Probability with Martingales. Cambridge: Cambridge University Press (1991).
[Wo] W., Woess. Random Walks on Infinite Graphs and Groups. Cambridge: Cambridge University Press (2000).
[Z] A.H., Zemanian. Infinite Electrical Metworks. Cambridge: Cambridge University Press (1991).
[Zie] W.P., Ziemer. Weakly Differentiable Functions. New York, NY: Springer (1989).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Martin T. Barlow, University of British Columbia, Vancouver
  • Book: Random Walks and Heat Kernels on Graphs
  • Online publication: 09 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781107415690.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Martin T. Barlow, University of British Columbia, Vancouver
  • Book: Random Walks and Heat Kernels on Graphs
  • Online publication: 09 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781107415690.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Martin T. Barlow, University of British Columbia, Vancouver
  • Book: Random Walks and Heat Kernels on Graphs
  • Online publication: 09 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781107415690.010
Available formats
×