Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-20T11:27:29.079Z Has data issue: false hasContentIssue false

5 - Huygens: the Principia and proportion theory

Published online by Cambridge University Press:  29 March 2010

Niccolò Guicciardini
Affiliation:
Università degli Studi, Bologna, Italy
Get access

Summary

Purpose of this chapter

At the time that Newton's Principia was published, Christiaan Huygens was universally recognized as the greatest authority in natural philosophy and a leading geometer of his age. His work in mathematics, mechanics, technology, astronomy and optics was outstanding. One can enumerate his main contributions: the mathematical treatment of probability, the study of impact laws, the observations of the planetary system, the mathematical treatment of simple and compound pendula, the discovery of the tautochronism of the cycloid, the understanding of conservation laws in dynamics nowadays seen as ‘equivalent’ to energy conservation, the mathematical study of centrifugal force, the wave theory of light and the study of double refraction in a crystal of Iceland spar. This is indeed an impressive list: both Newton and Leibniz declared their indebtedness to the Dutch natural philosopher.

What is perhaps more relevant with Huygens is that he showed how far-reaching could be the use of mathematics in the understanding of natural phenomena. In particular, Huygens' work in mechanics and optics was framed in a highly sophisticated mathematical language. While Galileo's ‘two new sciences’ required relatively simple mathematical tools, while Descartes' ‘natural philosophy’ was mainly qualitative and divorced from mathematics, Huygens' work was heavily mathematical. One of his masterpieces, significantly entitled Horologium oscillatorium, sive de motu pendulorum ad horologia aptato demonstrationes geometricae, published in Paris in 1673, required very complex mathematical techniques. Newton's Principia and Leibniz's dynamical works were written after the example of mathematization of mechanics given in the Horologium, and, despite the numerous differences, both men owed a great deal to this work.

Type
Chapter
Information
Reading the Principia
The Debate on Newton's Mathematical Methods for Natural Philosophy from 1687 to 1736
, pp. 118 - 135
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×