Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T06:52:32.341Z Has data issue: false hasContentIssue false

2 - Collaborative recommendation

from PART I - INTRODUCTION TO BASIC CONCEPTS

Published online by Cambridge University Press:  05 August 2012

Dietmar Jannach
Affiliation:
Technische Universität Dortmund, Germany
Markus Zanker
Affiliation:
Alpen-Adria Universität Klagenfurt, Austria
Alexander Felfernig
Affiliation:
Technische Universität Graz, Austria
Gerhard Friedrich
Affiliation:
Alpen-Adria Universität Klagenfurt, Austria
Get access

Summary

The main idea of collaborative recommendation approaches is to exploit information about the past behavior or the opinions of an existing user community for predicting which items the current user of the system will most probably like or be interested in. These types of systems are in widespread industrial use today, in particular as a tool in online retail sites to customize the content to the needs of a particular customer and to thereby promote additional items and increase sales.

From a research perspective, these types of systems have been explored for many years, and their advantages, their performance, and their limitations are nowadays well understood. Over the years, various algorithms and techniques have been proposed and successfully evaluated on real-world and artificial test data.

Pure collaborative approaches take a matrix of given user-item ratings as the only input and typically produce the following types of output: (a) a (numerical) prediction indicating to what degree the current user will like or dislike a certain item and (b) a list of n recommended items. Such a top-N list should, of course, not contain items that the current user has already bought.

User-based nearest neighbor recommendation

The first approach we discuss here is also one of the earliest methods, called user-based nearest neighbor recommendation. The main idea is simply as follows: given a ratings database and the ID of the current (active) user as an input, identify other users (sometimes referred to as peer users or nearest neighbors) that had similar preferences to those of the active user in the past.

Type
Chapter
Information
Recommender Systems
An Introduction
, pp. 13 - 50
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×