Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-26T21:18:38.134Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  09 March 2017

Gregory V. Vereshchagin
Affiliation:
International Centre for Relativistic Astrophysics Network, Italy
Alexey G. Aksenov
Affiliation:
Russian Academy of Sciences, Moscow
Get access
Type
Chapter
Information
Relativistic Kinetic Theory
With Applications in Astrophysics and Cosmology
, pp. 299 - 325
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] L., Boltzmann. Lectures on Gas Theory. Dover, 2011.
[2] S. R. de, Groot, W. A. van, Leeuwen, and Ch. G., Weert. Relativistic Kinetic Theory: Principles and Applications. North-Holland, 1980.
[3] J. H., Jeans. Problems of Cosmogony and Stellar Dynamics. Cambridge University Press, 1919.
[4] F., Jüttner. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Annalen der Physik, 34:856–882, 1911.Google Scholar
[5] L. D., Landau. Die kinetische gleichung fur den fall coulombscher wechselwirkung. Physikalische Zeitschrift der Sowjetunion, 10:154–164, 1936.Google Scholar
[6] L. D., Landau. The kinetic equation in the case of coulomb interaction. Journal of Experimental and Theoretical Physics, 7:203–209, 1937.Google Scholar
[7] A. A., Vlasov. On vibration properties of electron gas. Journal of Experimental and Theoretical Physics, 8(3):291, 1938. (in Russian).Google Scholar
[8] J. L., Synge. The Relativistic Gas. North-Holland, 1957.
[9] C., Cercignani and G. M., Kremer. The Relativistic Boltzmann Equation: Theory and Applications. Birkhäuser, 2002.
[10] R., Ruffini, G., Vereshchagin, and S. S., Xue. Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes. Physical Reports, 487:1–140, 2010.Google Scholar
[11] N. N., Bogoliubov. Problems of Dynamic Theory in Statistical Physics (in Russian). Gostechizdat, 1946. (in Russian).
[12] F., Debbasch, J. P., Rivet, and W. A., van Leeuwen. Invariance of the relativistic oneparticle distribution function. Physica A, 301:181–195, 2001.Google Scholar
[13] R., Hakim. Introduction to Relativistic Statistical Mechanics: Classical and Quantum. World Scientific, 2011.
[14] W., Israel. Relativistic kinetic theory of a simple gas. Journal of Mathematical Physics, 4:1163–1181, 1963.Google Scholar
[15] P. T., Landsberg and J., Dunning-Davies. Ideal relativistic Bose condensation. Physical Review, 138:1049–1052, 1965.Google Scholar
[16] S. T., Beliaev and G. I., Budker. The relativistic kinetic equation. Soviet Physics Doklady, 1:218, 1956.Google Scholar
[17] Yu. L., Klimontovich. Relativistic transport equations for a plasma I. Journal of Experimental and Theoretical Physics, 37:524–530, 1960.Google Scholar
[18] Yu. L., Klimontovich. Relativistic transport equations for a plasma II. Journal of Experimental and Theoretical Physics, 37:876–882, 1960.Google Scholar
[19] N. A., Chernikov. Kinetic equation for a relativistic gas in an arbitrary gravitational field. Soviet Physics Doklady, 7:397, 1962.Google Scholar
[20] N. A., Chernikov. The relativistic gas in the gravitational field. Acta Physica Polonica, 23:629–645, 1963.Google Scholar
[21] A. V., Zakharov. Macroscopic Gravitation. Yanus-K, Moscow, 2000. (in Russian).
[22] Y. G., Ignat'ev. Relativistic Kinetic Theory of Nonequilibrium Processes in Gravitational Fields. Foliant, Kazan, 2010.
[23] H. A., Lorentz. The Theory of Electron and Its Applications to the Phenomena of Light and Radiant Heat. Dover, 2011.
[24] S. R., de Groot and L. G., Suttorp. Foundations of Electrodynamics. North, 1972.
[25] R. M., Zalaletdinov. Averaging out the Einstein equations. General Relativity and Gravitation, 24:1015–1031, 1992.Google Scholar
[26] R. M., Zalaletdinov. Towards a theory ofmacroscopic gravity. General Relativity and Gravitation, 25:673–695, 1993.Google Scholar
[27] R., Zalaletdinov. Averaging problem in cosmology and macroscopic gravity. arXiv:gr-qc/0701116, 2007.
[28] R., Zalaletdinov. The averaging problem in cosmology and macroscopic gravity. International Journal of Modern Physics A, 23:1173–1181, 2008.Google Scholar
[29] J., Ehlers. Survey of general relativity theory. In Relativity, Astrophysics and Cosmology, pages 1–125, 1973.
[30] R., Hakim. Remarks on relativistic statistical mechanics. I. Journal of Mathematical Physics, 8:1315–1344, 1967.Google Scholar
[31] I. P., Ochelkov, O. F., Prilutskii, I. L., Rozental, and V. V., Usov. Relativistic Kinetics and Hydrodynamics. 1979 (in Russian).
[32] F., Debbasch and W. A., van Leeuwen. General relativistic Boltzmann equation, I: Covariant treatment. Physica A, 388:1079–1104, 2009.Google Scholar
[33] C., Eckart. The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Physical Review, 58:919–924, 1940.Google Scholar
[34] L. D., Landau and E. M., Lifshitz. Fluid Mechanics. Pergamon Press, 1959.
[35] F., Debbasch and W. A., van Leeuwen. General relativistic Boltzmann equation, II: Manifestly covariant treatment. Physica A, 388:1818–1834, 2009.Google Scholar
[36] L. D., Landau and E. M., Lifshitz. The Classical Theory of Fields. Pergamon Press, 1975.
[37] E. A., Uehling and G. E., Uhlenbeck. Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I. Physical Review, 43:552–561, 1933.Google Scholar
[38] E. A., Uehling. Transport phenomena in Einstein-Bose and Fermi-Dirac gases. II. Physical Review, 46:917–929, 1934.Google Scholar
[39] N. A., Chernikov. Equilibrium distribution of the relativistic gas. Acta Physica Polonica, 26:1069–1091, 1964.Google Scholar
[40] S., Chandrasekhar. Radiative Transfer. Clarendon Press, 1950.
[41] V., Kourganoff. Basic Methods in Transfer Problems; Radiative Equilibrium and Neutron Diffusion. Clarendon Press, 1952.
[42] V. V., Sobolev. A Treatise on Radiative Transfer. Van Nostrand, 1963.
[43] G. B., Rybicki and A. P., Lightman. Radiative Processes in Astrophysics. Wiley- Interscience, 1979.
[44] D., Mihalas and B. W., Mihalas. Foundations of Radiation Hydrodynamics. Oxford University Press, 1984.
[45] F. H., Shu. The Physics of Astrophysics. Volume II:Gas Dynamics. University Science Books, 1992.
[46] P., Bodenheimer, G. P., Laughlin, M., Rózyczka, and H. W., Yorke, editors. Numerical Methods in Astrophysics: An Introduction. Taylor and Francis, 2007.
[47] S., Mandelstam. Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity: general theory. Physical Review, 112:1344–1360, 1958.Google Scholar
[48] V. B., Berestetskii, E. M., Lifshitz, and V. B., Pitaevskii. Quantum Electrodynamics. Elsevier, 1982.
[49] P. L., Bhatnagar, E. P., Gross, and M., Krook. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94:511–525, 1954.Google Scholar
[50] J. L., Anderson and H. R., Witting. A relativistic relaxation-time model for the Boltzmann equation. Physica, 74:466–488, 1974.Google Scholar
[51] R. A., Isaacson. Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Physical Review, 166:1272–1279, 1968.Google Scholar
[52] R. J. van den, Hoogen. Averaging spacetime: Where do we go from here? In Proceedings of the Twelfth Marcel Grossmann Meeting, p. 578. World Scientific, 2012.
[53] J., Dunkel, P., Hänggi, and S., Hilbert. Non-local observables and lightcone-averaging in relativistic thermodynamics. Nature Physics, 5:741–747, 2009.Google Scholar
[54] N., Chernikov. Derivation of the equations of relativistic hydrodynamics from the relativistic transport equation. Physics Letters, 5:115–117, 1963.Google Scholar
[55] N. A., Chernikov. Microscopic foundation of relativistic hydrodymanics. Acta Physica Polonica, 27:465–489, 1964.Google Scholar
[56] L., Rezzolla and O., Zanotti. Relativistic Hydrodynamics. Oxford University Press, 2013.
[57] M., Prakash, M., Prakash, R., Venugopalan, and G., Welke. Non-equilibrium properties of hadronic mixtures. Physical Reports, 227:321–366, 1993.Google Scholar
[58] P., Huovinen and P. V., Ruuskanen. Hydrodynamic models for heavy ion collisions. Annual Review of Nuclear and Particle Science, 56:163–206, 2006.Google Scholar
[59] P., Braun-Munzinger, V., Koch, T., Schäfer, and J., Stachel. Properties of hot and dense matter from relativistic heavy ion collisions. Physical Reports, 621:76–126, 2016.Google Scholar
[60] G. S., Denicol, H., Niemi, E., Molnár, and D. H., Rischke. Derivation of Transient relativistic fluid dynamics from the Boltzmann equation. Physical Review D, 85(11):114047, 2012.Google Scholar
[61] K., Tsumura, Y., Kikuchi, and T., Kunihiro. Relativistic causal hydrodynamics derived from Boltzmann equation: A novel reduction theoretical approach. Physical Review D, 92(8):085048, 2015.Google Scholar
[62] E., Lehmann. Covariant equilibrium statistical mechanics. Journal of Mathematical Physics, 47(2):023303, 2006.Google Scholar
[63] D., Cubero, J., Casado-Pascual, J., Dunkel, P., Talkner, and P., Hänggi. Thermal equilibrium and statistical thermometers in special relativity. Physical Review Letters, 99(17):170601, 2007.Google Scholar
[64] A., Montakhab, M., Ghodrat, and M., Barati. Statistical thermodynamics of a twodimensional relativistic gas. Physical Review E, 79(3):031124, 2009.Google Scholar
[65] M., Mendoza, N. A. M., Araújo, S., Succi, and H. J., Herrmann. Transition in the equilibrium distribution function of relativistic particles. Scientific Reports, 2:611, 2012.Google Scholar
[66] Ya. B., Zeldovich. Survey of modern cosmology. Advanced Astronomy and Astrophysics, 3:241, 1965.
[67] Y. B., Zel'dovich, L. B., Okun', and S. B., Pikel'ner. Quarks:Astrophysical and physicochemical aspects. Soviet Physics Uspekhi, 8:702–709, 1966.Google Scholar
[68] Yu. S., Sigov. Computing Experiment: A Bridge between the Past and Future of Plasma Physics. Selected Works. Moscow: Fizmatlit, 2001. (in Russian)
[69] J. D., Jackson. Classical Electrodynamics. John Wiley, 1962.
[70] R., Hakim. Remarks on relativistic statistical mechanics. II. Hierarchies for the reduced densities. Journal of Mathematical Physics, 8:1379–1400, 1967.Google Scholar
[71] P. C., de Jagher and F. W., Sluijter. A covariant hierarchy of kinetic equations for classical particles and fields. Contributions to Plasma Physics, 28:169–183, 1988.Google Scholar
[72] L. S., Kuz'menkov. The Bogolyubov hierarchy of equations for relativistic systems: Radiation damping of waves in a plasma. Soviet Physics Doklady, 23:469, 1978.Google Scholar
[73] N. N., Bogoliubov. Problems of Dynamic Theory in Statistical Physics. North- Holland, 1962.
[74] S. A., Smolyansky. Comments on the principle of attenuation of correlation. Acta Physica Academiae Scientiarum Hungaricae, 25:147–151, 1968.Google Scholar
[75] I. L., Klimontovich. The Kinetic Theory of Electromagnetic Processes, volume 10 of Springer Series in Synergetics. Springer, 1983.
[76] R. T., Glassey. The Cauchy Problem in Kinetic Theory. SIAM, 1996.
[77] J., Schaeffer. The classical limit of the relativistic Vlasov-Maxwell system. Communications in Mathematical Physics, 104:403–421, 1986.Google Scholar
[78] N. D., Naumov. Kinetic theory of a relativistic plasma. Soviet Physics Journal, 24:270–274, 1981.Google Scholar
[79] P. A., Polyakov. Bogolyubov (BBGKY) hierarchy in classical relativistic electrodynamics. Theoretical and Mathematical Physics, 76:939–944, 1988.Google Scholar
[80] H., Andréasson. The Einstein-Vlasov system/kinetic theory. Living Reviews in Relativity, 14:4, 2011.Google Scholar
[81] D., Christodoulou. The Formation of Black Holes in General Relativity. European Mathematical Society, 2009.
[82] G., Rein and A. D., Rendall. Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Communications in Mathematical Physics, 150:561–583, 1992.Google Scholar
[83] A., Benedetti, W. B., Han, R., Ruffini, and G. V., Vereshchagin. On the frequency of oscillations in the pair plasma generated by a strong electric field. Physics Letters B, 698:75–79, 2011.Google Scholar
[84] F. F., Chen. Introduction to Plasma Physics and Controlled Fusion Volume 1: Plasma Physics. Plenum Press, 1984.
[85] V. P., Silin. Introduction in Kinetic Theory of Gases. Lebedev Institute Press, 1998. (in Russian)
[86] Y. L., Klimontovich. Physics of collisionless plasma. Physics Uspekhi, 40:21–51, 1997.Google Scholar
[87] E. M., Lifshitz and L. P., Pitaevskii. Physical Kinetics. Oxford: Pergamon Press, 1981.
[88] Yu. L., Klimontovich. Statistical Theory of Open Systems. Volume 1. Kluwer Academic, 1995.
[89] R. L., Liboff. Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. Springer, 2003.
[90] L. D., Landau and E. M., Lifshitz. Statistical Physics. Pergamon Press, 1980.
[91] S., Wolfram. The Mathematica Book. 1996.
[92] A. N., Kolmogorov and S. V., Fomin. Elements of the Theory of Functions and Functional Analysis. Dover Publications, 1999.
[93] S. K., Godunov and V. S., Ryabenkiy. Difference Schemes: An Introduction to the Underlining Theory. North-Holland, 1987.
[94] D. E., Potter. Computational Physics. John Wiley, 1973.
[95] Fritz J., Courant. Introduction to Calculus and Analysis I. Springer Science + Business Media, 1989.
[96] R., Courant and D., Hilbert. Methods of Mathematical Physics. John Wiley, 1989.
[97] V. S., Vladimirov. Equations of mathematical physics. Translated from the Russian original (1967) by Audrey Littlewood. Edited by Alan, Jeffrey. Pure and Applied Mathematics. Vol. 3. Marcel Dekker, 1971.
[98] A. N., Tikhonovl and A. A., Samarskii. Equations of Mathematical Physics. Dover, 1990.
[99] I. M., Khalatnikov. From the Atomic Bomb to the Landau Institute. Springer, 2012.
[100] J., Crank, P., Nicolson, and D. R., Hartree. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proceedings of the Cambridge Philosophical Society, 43:50, 1947.Google Scholar
[101] J. G., Charney, R., Fjörtoft, and J. von, Neumann. Numerical integration of the barotropic vorticity equation. Tellus, 2:237, 1950.Google Scholar
[102] J. von, Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University Press, 1996.
[103] R., Richtmeyer and K., Morton. Difference Methods for Initial Value Problems.Wiley, 1967.
[104] S. K., Godunov. Difference method of computation of shock waves. Uspekhi Matematicheskikh Nauk, 12:176–177, 1957.Google Scholar
[105] S. K., Godunov. Adifference method for numerical calculation of discontinuous solutions of fluid dynamics equations. Matematicheskii Sbornik, 47:271–306, 1959.Google Scholar
[106] J., Thijssen. Computational Physics. Cambridge University Press, 2007.
[107] W. E., Schiesser. The Numerical Method of Lines. Academic Press, 1991.
[108] J, Blazek. Computational Fluid Dynamics Principles and Applications. Elsevier, 2001.
[109] G., Hall and J. M., Watt. Modern Numerical Methods for Ordinary Differential Equations. Oxford University Press, 1976.
[110] M. W., Kutta. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschrift für Mathematik und Physik, 46:435–453, 1901.Google Scholar
[111] C. W., Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 1971.
[112] S. P., Hirshman, K. S., Perumalla, V. E., Lynch, and R., Sanchez. BCYCLIC: A parallel block tridiagonal matrix cyclic solver. Journal of Computational Physics, 229:6392–6404, 2010.Google Scholar
[113] E. N., Akimova. Parallel Gauss algorithms for block tridiagonal linear systems. Matematicheskoe Modelirovanie, 6(9):6167, 1994.Google Scholar
[114] C. A. J., Fletcher, editor. Computational Techniques for Fluid Dynamics. 2 vols. 1988.
[115] A. G., Aksenov and S. I., Blinnikov. A Newton iteration method for obtaining equilibria of rapidly rotating stars. Astronomy and Astrophysics, 290, 1994.
[116] O., Osterby and Z., Zlatev. Direct Methods for Sparse Matrixes. Lecture notes in Computer Science, Vol. 157. Springer, 1983.
[117] G. D., Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, 1985.
[118] A., Mezzacappa and S. W., Bruenn. A numerical method for solving the neutrino Boltzmann equation coupled to spherically symmetric stellar core collapse. Astrophysics Journal, 405:669–684, 1993.Google Scholar
[119] H., Harleston and K. A., Holcomb. Numerical solution of the general relativistic Boltzmann equation for massive and massless particles. Astrophysics Journal, 372:225–240, 1991.Google Scholar
[120] A. G., Aksenov. Statement of the problem of gravitational collapse of a stellar ironoxygen core and a numerical method of its solution. Astronomy Letters, 24:482–490, 1998.Google Scholar
[121] N., Metropolis and S., Ulam. The Monte Carlo method. Journal of the American Statistical Association, 44:335–341, 1949.Google Scholar
[122] S., Brooks, A., Gelman, G., Jones, and X.-L., Meng. Handbook of Markov ChainMonte Carlo. Chapman and Hall/CRC, 2011.
[123] N., Metropolis, A. W., Rosenbluth, M. N., Rosenbluth, A. H., Teller, and E., Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.Google Scholar
[124] W. K., Hastings. Monte Carlo sampling methods using Markov chains and Their Applications. Biometrika, 57:97109, 1970.Google Scholar
[125] I. M., Sobol. Monte Carlo Numerical Methods. Nauka, 1977. (in Russian)
[126] O., Kallenberg. Foundations of Modern Probability. Springer, 1997.
[127] D. E., Knuth. The Art of Computer Programming. Vol. 2: Seminumerical Algorithms. Addison-Wesley, 1981.
[128] L. A., Pozdnyakov, I. M., Sobol, and R. A., Syunyaev. Comptonization and the shaping of X-ray source spectra –Monte Carlo calculations. Astrophysics and Space Physics Reviews, 2:189–331, 1983.Google Scholar
[129] B. E., Stern, M. C., Begelman, M., Sikora, and R., Svensson. A large-particle Monte Carlo code for simulating non-linear high-energy processes near compact objects. Monthly Notices of the Royal Astronomical Society, 272:291–307, 1995.Google Scholar
[130] L. A., Pozdniakov, I. M., Sobol, and R. A., Siuniaev. Effect of multiple Compton scatterings on an X-ray emission spectrum – Calculations by the Monte Carlo method. Soviet Astronomy, 21:708–714, 1977.Google Scholar
[131] S. W., Bruenn. Stellar core collapse – Numerical model and infall epoch. Astrophysical Journal Supplement Series, 58:771–841, 1985.Google Scholar
[132] V. S., Imshennik and D. K., Nadezhin. Supernova 1987A in the Large Magellanic Cloud: Observations and theory. Astrophysics and Space Physics Reviews, 8:1–147, 1989.Google Scholar
[133] J. J., Duderstadt and G. A., Moses. Inertial Confinement Fusion. John Wiley, 1982.
[134] R., Courant, K., Friedrichs, and H., Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100:32–74, 1928.Google Scholar
[135] B. L., Rozdestvenskii and N. N., Janenko. Systems of Quasilinear Equations and Their Applications to Gas Dynamics. American Mathematical Society, 1983.
[136] P., Colella and P. R., Woodward. The piecewise parabolic method (PPM) for gasdynamical simulations. Journal of Computational Physics, 54:174–201, 1984.Google Scholar
[137] P., Colella and H. M., Glaz. Efficient solution algorithms for the Riemann problem for real gases. Journal of Computational Physics, 59:264–289, 1985.Google Scholar
[138] P. L., Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 135:250–258, 1997.Google Scholar
[139] M. M., Basko, M. D., Churazov, and A. G., Aksenov. Prospects of heavy ion fusion in cylindrical geometry. Laser and Particle Beams, 20:411–414, 2002.Google Scholar
[140] S. I., Anisimov, V. V., Zhakhovskii, N. A., Inogamov, K., Nishihara, Y. V., Petrov, and V. A., Khokhlov. Ablated matter expansion and crater formation under the action of ultrashort laser pulse. Soviet Journal of Experimental and Theoretical Physics, 103:183–197, 2006.Google Scholar
[141] V. E., Fortov, D. H., Hoffmann, and B. Y., Sharkov. Intense ion beams for generating extreme states of matter. Physics Uspekhi, 51:109–131, 2008.Google Scholar
[142] M., Pelanti and K. M., Shyue. A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporationwaves. Journal of Computational Physics, 259:331–357, 2014.Google Scholar
[143] V. T., Zhukov, A. V., Zabrodin, and O. B., Feodoritova. A method for solving twodimensional equations of heat-conducting gas dynamics in domains of complex configurations. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 33:1240–1250, 1993.Google Scholar
[144] G. H., Miller and E. G., Puckett. A high-order Godunov method for multiple condensed phases. Journal of Computational Physics, 128:134–164, 1996.Google Scholar
[145] A. G., Aksenov and M. D., Churazov. Deuterium targets and the MDMT code. Laser and Particle Beams, 21:81–84, 2003.Google Scholar
[146] A. G., Aksenov. Computation of shockwaves in plasma. Computational Mathematics and Mathematical Physics, 55:1752–1769, 2015.Google Scholar
[147] V. D., Shafranov. The structure of shock waves in a plasma. Journal of Experimental and Theoretical Physics, 5:1183–1188, 1957.Google Scholar
[148] M. M., Basko. Stopping of fast ions in a dense plasma. Soviet Journal of Plasma Physics, 10:689–694, 1984.Google Scholar
[149] J. M., Martí and E., Müller. Numerical hydrodynamics in special relativity. Living Reviews in Relativity, 6, 2003.
[150] T. W., Baumgarte and S. L., Shapiro. Numerical Relativity: Solving Einstein's Equations on the Computer. Cambridge University Press, 2010.
[151] I. F., Mirabel and L. F., Rodríguez. Sources of relativistic jets in the galaxy. ARA&A, 37:409–443, 1999.
[152] M. A., Aloy, J. M., Ibánez, J. M., Martí, and E., Müller. GENESIS: A high-resolution code for three-dimensional relativistic hydrodynamics. Astrophysical Journal Supplement Series, 122:151–166, 1999.Google Scholar
[153] L. B., Lucy. A numerical approach to the testing of the fission hypothesis. AJ, 82:1013–1024, 1977.
[154] R. H., Durisen, R. A., Gingold, J. E., Tohline, and A. P., Boss. Dynamic fission instabilities in rapidly rotating N = 3/2 polytropes – A comparison of results from finite-difference and smoothed particle hydrodynamics codes. Astrophysics Journal, 305:281–308, 1986.Google Scholar
[155] L., Hernquist and N., Katz. TREESPH – A unification of SPH with the hierarchical tree method. Astrophysical Journal Supplement Series, 70:419–446, 1989.Google Scholar
[156] J. J., Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics, 68:1703–1759, 2005.Google Scholar
[157] S., Rosswog. SPH methods in the modelling of compact objects. Living Reviews in Computational Astrophysics, 1, 2015.
[158] J., Barnes and P., Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 324:446–449, 1986.Google Scholar
[159] S. J., Aarseth. Gravitational N-Body Simulations. Cambridge University Press, 2003.
[160] V., Springel. The cosmological simulation code GADGET-2. Monthly Notices of the Royal Astronomical Society, 364:1105–1134, 2005.Google Scholar
[161] T., Abel, O., Hahn, and R., Kaehler. Tracing the dark matter sheet in phase space. Monthly Notices of the Royal Astronomical Society, 427:61–76, 2012.Google Scholar
[162] S., Rosswog. Conservative, special-relativistic smoothed particle hydrodynamics. Journal of Computational Physics, 229:8591–8612, 2010.Google Scholar
[163] S., Rosswog. Boosting the accuracy of SPH techniques: Newtonian and specialrelativistic tests. Monthly Notices of the Royal Astronomical Society, 448:3628–3664, 2015.Google Scholar
[164] J. M., Dawson. Particle simulation of plasmas. Reviews of Modern Physics, 55:403–447, 1983.Google Scholar
[165] C. K., Birdsall and A. B., Langdon. Plasma Physics via Computer Simulation. McGraw-Hill, 1985.
[166] R. W., Hockney and J. W., Eastwood. Computer Simulation Using Particles. Hilger, 1988.
[167] Yu. N., Grigoryev, V. A., Vshivkov, and M. P., Fedoruk. Numerical Particle-in-Cell Methods. De Gruyter, 2002.
[168] F. H., Harlow. A machine calculation method for hydrodynamic problems. Technical report LAMS-1956. Los Alamos Scientific Laboratory, November 1955.
[169] J. P., Verboncoeur. Particle simulation of plasmas: Review and advances. Plasma Physics and Controlled Fusion, 47(27):A231–A260, 2005.Google Scholar
[170] R. A., Fonseca, L. O., Silva, F. S., Tsung et al. OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In Computational Science – ICCS 2002: International Conference Amsterdam, The Netherlands, April 21–24, 2002 Proceedings, Part III, pages 342–351. Springer, 2002.
[171] K., Noguchi, C., Tronci, G., Zuccaro, and G., Lapenta. Formulation of the relativistic moment implicit particle-in-cell method. Physics of Plasmas, 14(4):042308, 2007.Google Scholar
[172] K., Germaschewski, W., Fox, S., Abbott et al. The Plasma Simulation Code: A modern particle-in-cell code with load-balancing and GPU support. arXiv:1310.7866, 2013.
[173] J. P., Boris. Acceleration calculation from a scalar potential. Plasma Physics Laboratory Report MATT-769, Princeton University, 1970.
[174] H., Qin, S., Zhang, J., Xiao, J., Liu, Y., Sun, and W. M., Tang. Why is Boris algorithm so good. Physics of Plasmas, 20(8):084503, 2013.Google Scholar
[175] L. D., Landau. On the vibration of the electronic plasma. Journal of Physics (USSR), 10:25, 1946.Google Scholar
[176] P. C., Clemmow and A. J., Willson. The dispersion equation in plasma oscillations. Proceedings of the Royal Society of London Series A, 237:117–131, 1956.Google Scholar
[177] V. P., Silin. Kinetic equation of rapidly varying processes. Soviet Journal of Experimental and Theoretical Physics, 11:1136, 1960.Google Scholar
[178] V. N., Tsytovich. Spatial dispersion in a relativistic plasma. Soviet Journal of Experimental and Theoretical Physics, 13:1249, 1961.Google Scholar
[179] K., Imre. Oscillations in a relativistic plasma. Physics of Fluids, 5:459–466, 1962.Google Scholar
[180] B., Buti. Plasma oscillations and Landau damping in a relativistic gas. Physics of Fluids, 5:1–5, 1962.Google Scholar
[181] D. B., Melrose. Quantum Plasmadynamics, volume 735 of Lecture Notes in Physics, Springer, 2008.
[182] A., Achterberg and J., Wiersma. TheWeibel instability in relativistic plasmas. I., Linear theory. Astronomy and Astrophysics, 475:1–18, 2007.Google Scholar
[183] D., Bohm and E. P., Gross. Theory of plasma oscillations. A. Origin of medium-like behavior. Physical Review, 75:1851–1864, 1949.Google Scholar
[184] A. B., Mikhailovskii. Oscillations of an isotropic relativistic plasma. Plasma Physics, 22:133–149, 1980.Google Scholar
[185] C., Mouhot and C., Villani. On Landau damping. Acta Mathematica, 207:29–201, 2011.Google Scholar
[186] E. W., Laing and D. A., Diver. Relativistic Landau damping of longitudinal waves in isotropic pair plasmas. Physics of Plasmas, 13(9):092115, 2006.Google Scholar
[187] R., Bingham, J. T., Mendonça, and J. M., Dawson. Photon Landau damping. Physical Review Letters, 78:247–249, 1997.Google Scholar
[188] R. Z., Sagdeev. Cooperative phenomena and shock waves in collisionless plasmas. Reviews of Plasma Physics, 4:23, 1966.Google Scholar
[189] A. B., Mikhailovskii. Plasma Instability Theory. Volume 1. Instabilities in a Homogeneous Plasma. Atomizdat, 1975. (in Russian)
[190] A., Hasegawa. Plasma Instabilities and Nonlinear Effects. Springer, 1975.
[191] E. S., Weibel. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Physical Review Letters, 2:83–84, 1959.Google Scholar
[192] A., Bret, M. C., Firpo, and C., Deutsch. Collective electromagnetic modes for beamplasma interaction in the whole k space. Physical Review E, 70(4):046401, 2004.Google Scholar
[193] A., Bret. Weibel, two-stream, filamentation, oblique, Bell, Buneman…which one grows faster. Astrophysics Journal, 699:990–1003, 2009.Google Scholar
[194] F., Fiuza, R. A., Fonseca, J., Tonge, W. B., Mori, and L. O., Silva. Weibel-instabilitymediated collisionless shocks in laboratory with ultraintense lasers. Physical Review Letters, 108:235004, 2012.Google Scholar
[195] M. E., Dieckmann. Particle simulation of an ultrarelativistic two-stream instability. Physical Review Letters, 94(15):155001, 2005.Google Scholar
[196] A., Bret, L., Gremillet, D., Bénisti, and E., Lefebvre. Exact relativistic kinetic theory of an electron-beam plasma system: Hierarchy of the competing modes in the systemparameter space. Physical Review Letters, 100(20):205008, 2008.Google Scholar
[197] P. H., Yoon. Electromagnetic Weibel instability in a fully relativistic bi-Maxwellian plasma. Physics of Fluids B, 1:1336–1338, 1989.Google Scholar
[198] R., Shaisultanov, Y., Lyubarsky, and D., Eichler. Stream instabilities in relativistically hot plasma. Astrophysics Journal, 744:182, 2012.Google Scholar
[199] A., Bret, L., Gremillet, and M. E., Dieckmann. Multidimensional electron beamplasma instabilities in the relativistic regime. Physics of Plasmas, 17(12):120501, 2010.Google Scholar
[200] P. H., Yoon and R. C., Davidson. Exact analytical model of the classicalWeibel instability in a relativistic anisotropic plasma. Physical Reviews A, 35:2718–2721, 1987.Google Scholar
[201] M., Milosavljevic, E., Nakar, and A., Spitkovsky. Steady state electrostatic layers from Weibel instability in relativistic collisionless shocks. Astrophysics Journal, 637:765–773, 2006.Google Scholar
[202] U., Schaefer-Rolffs and R. C., Tautz. The relativistic kineticWeibel instability: Comparison of different distribution functions. Physics of Plasmas, 15(6):062105, 2008.Google Scholar
[203] A. I., Akhiezer and Ya. B., Fainberg. On the interaction of charged particle beam with electron plasma. DAN USSR, 69:555, 1949.Google Scholar
[204] K. M., Watson, S. A., Bludman, and M. N., Rosenbluth. Statistical mechanics of relativistic streams. I. Physics of Fluids, 3:741–747, 1960.Google Scholar
[205] S. A., Bludman, K. M., Watson, and M. N., Rosenbluth. Statistical mechanics of relativistic streams. II. Physics of Fluids, 3:747–757, 1960.Google Scholar
[206] Y. B., Fainberg, V. D., Shapiro, and V. I., Shevchenko. Nonlinear theory of interaction between a “monochromatic” beam of relativistic electrons and a plasma. Soviet Journal of Experimental and Theoretical Physics, 30:528, 1969.Google Scholar
[207] M. V., Medvedev and A., Loeb. Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophysics Journal, 526:697–706, 1999.Google Scholar
[208] A., Stockem Novo, A., Bret, R. A., Fonseca, and L. O., Silva. Physics of collisionless shocks: Theory and simulation. Plasma Physics and Controlled Fusion, 58(1):014005, 2016.Google Scholar
[209] A., Spitkovsky. Particle acceleration in relativistic collisionless shocks: Fermi process at last. Astrophysics Journal, 682:L5–L8, 2008.Google Scholar
[210] J. T., Frederiksen, C. B., Hededal, T., Haugbolle, and A., Nordlund. Magnetic field generation in collisionless shocks: Pattern growth and transport. Astrophysics Journal, 608:L13–L16, 2004.Google Scholar
[211] A., Spitkovsky. On the structure of relativistic collisionless shocks in electron-ion plasmas. Astrophysics Journal, 673:L39–L42, 2008.Google Scholar
[212] L., Sironi, A., Spitkovsky, and J., Arons. The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophysics Journal, 771:54, 2013.Google Scholar
[213] P., Chang, A., Spitkovsky, and J., Arons. Long-term evolution of magnetic turbulence in relativistic collisionless shocks: Electron-positron plasmas. Astrophysics Journal, 674:378–387, 2008.Google Scholar
[214] S., Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, 1972.
[215] E. W., Kolb and M. S., Turner. The Early Universe. Frontiers in Physics. Reading, 1990.
[216] W. T., Hu. Wandering in the Background: A CosmicMicrowave Background Explorer. PhD thesis, University of California, Berkeley, 1995.
[217] S., Weinberg. Cosmology. Oxford University Press, 2008.
[218] J., Goodman. Are gamma-ray bursts optically thick. Astrophysics Journal, 308:L47–L50, 1986.Google Scholar
[219] T., Piran. Gamma-ray bursts and the fireball model. Physical Reports, 314:575–667, 1999.Google Scholar
[220] R., Ruffini, J. D., Salmonson, J. R., Wilson, and S. S., Xue. On the pair electromagnetic pulse of a black hole with electromagnetic structure. Astronomy and Astrophysics, 350:334–343, 1999.Google Scholar
[221] J. F. C., Wardle, D. C., Homan, R., Ojha, and D. H., Roberts. Electron-positron jets associated with the quasar 3C279. Nature, 395:457–461, 1998.Google Scholar
[222] E., Churazov, R., Sunyaev, S., Sazonov, M., Revnivtsev, and D., Varshalovich. Positron annihilation spectrum from the Galactic Centre region observed by SPI/INTEGRAL. Monthly Notices of the Royal Astronomical Society, 357:1377–1386, 2005.Google Scholar
[223] V. V., Usov. Bare quark matter surfaces of strange stars and e+e- emission. Physical Review Letters, 80:230–233, 1998.Google Scholar
[224] D. B., Blaschke, A. V., Prozorkevich, C. D., Roberts, S. M., Schmidt, and S. A., Smolyansky. Pair production and optical lasers. Physical Review Letters, 96(14):140402–+, 2006.Google Scholar
[225] A. Di, Piazza, C., Müller, K. Z., Hatsagortsyan, and C. H., Keitel. Extremely highintensity laser interactions with fundamental quantum systems. Reviews of Modern Physics, 84:1177–1228, 2012.Google Scholar
[226] I., Kuznetsova, D., Habs, and J., Rafelski. Pion and muon production in e[sup -], e[sup +], gamma plasma. Physical Review D, 78(1):014027, 2008.Google Scholar
[227] G. P., Zank and R. G., Greaves. Linear and nonlinear modes in nonrelativistic electronpositron plasmas. Physical Review E, 51:6079–6090, 1995.Google Scholar
[228] M. H., Thoma. Colloquium: Field theoretic description of ultrarelativistic electronpositron plasmas. Reviews of Modern Physics, 81:959–968, 2009.Google Scholar
[229] H., Chen, S. C., Wilks, J. D., Bonlie et al. Relativistic positron creation using ultraintense short pulse lasers. Physical Review Letters, 102(10):105001–+, 2009.Google Scholar
[230] J. I., Katz. A cubic micron of equilibrium pair plasma. Astrophysical Journal Supplement Series, 127:371–373, 2000.Google Scholar
[231] M. G., Mustafa and B., Kämpfer. Gamma flashes from relativistic electron-positron plasma droplets. Physical Reviews A, 79(2):020103–+, 2009.Google Scholar
[232] J., Myatt, J. A., Delettrez, A. V., Maximov et al. Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation. Physical Review E, 79(6):066409–+, 2009.Google Scholar
[233] S. C., Wilks,W. L., Kruer, M., Tabak, and A. B., Langdon. Absorption of ultra-intense laser pulses. Physical Review Letters, 69:1383–1386, 1992.Google Scholar
[234] G. S., Bisnovatyi-Kogan, Y. B., Zel'dovich, and R. A., Syunyaev. Physical processes in a low-density relativistic plasma. Soviet Astronomy, 15:17–+, 1971.Google Scholar
[235] T. A., Weaver. Reaction rates in a relativistic plasma. Physical Reviews A, 13:1563–1569, 1976.Google Scholar
[236] A. P., Lightman. Relativistic thermal plasmas – Pair processes and equilibria. Astrophysics Journal, 253:842–858, 1982.Google Scholar
[237] R. J., Gould. Processes in relativistic plasmas. Astrophysics Journal, 254:755–766, 1982.Google Scholar
[238] S., Stepney and P. W., Guilbert. Numerical FITS to important rates in high temperature astrophysical plasmas. Monthly Notices of the Royal Astronomical Society, 204:1269–1277, 1983.Google Scholar
[239] P. S., Coppi and R. D., Blandford. Reaction rates and energy distributions for elementary processes in relativistic pair plasmas. Monthly Notices of the Royal Astronomical Society, 245:453–507, 1990.Google Scholar
[240] A. P., Lightman and D. L., Band. Relativistic thermal plasmas – Radiation mechanisms. Astrophysics Journal, 251:713–726, 1981.Google Scholar
[241] R., Svensson. Electron-positron pair equilibria in relativistic plasmas. Astrophysics Journal, 258:335–+, 1982.Google Scholar
[242] P. W., Guilbert and S., Stepney. Pair production, Comptonization and dynamics in astrophysical plasmas. Monthly Notices of the Royal Astronomical Society, 212:523–544, 1985.Google Scholar
[243] A. A., Zdziarski. Spectra from pair-equilibrium plasmas. Astrophysics Journal, 283:842–847, 1984.Google Scholar
[244] R. J., Gould. Kinetic theory of relativistic plasmas. Physics of Fluids, 24:102–107, 1981.Google Scholar
[245] S., Stepney. Two-body relaxation in relativistic thermal plasmas. Monthly Notices of the Royal Astronomical Society, 202:467–481, 1983.Google Scholar
[246] R., Svensson. The pair annihilation process in relativistic plasmas. Astrophysics Journal, 258:321–334, 1982.Google Scholar
[247] R. J., Gould. Thermal bremsstrahlung from high-temperature plasmas. Astrophysics Journal, 238:1026–1033, 1980.Google Scholar
[248] E., Haug. Electron-positron bremsstrahlung in mildly relativistic thermal plasmas. Astronomy and Astrophysics, 148:386–390, 1985.Google Scholar
[249] A. P., Lightman. Double Compton emission in radiation dominated thermal plasmas. Astrophysics Journal, 244:392–405, 1981.Google Scholar
[250] R. J., Gould. The cross section for double Compton scattering. Astrophysics Journal, 285:275–278, 1984.Google Scholar
[251] R., Svensson. Steady mildly relativistic thermal plasmas – Processes and properties. Monthly Notices of the Royal Astronomical Society, 209:175–208, 1984.Google Scholar
[252] L. D., Landau and E. M., Lifshitz. Physical Kinetics. Elsevier, 1981.
[253] A. G., Aksenov, R., Ruffini, and G. V., Vereshchagin. Thermalization of nonequilibrium electron-positron-photon plasmas. Physical Review Letters, 99(12):125003–+, 2007.Google Scholar
[254] A. G., Aksenov, R., Ruffini, and G. V., Vereshchagin. Thermalization of electronpositron- photon plasmas with an application to GRB. I. American Institute of Physics Conference Series, volume 966, pages 191–196, 2008.Google Scholar
[255] A. G., Aksenov, R., Ruffini, and G. V., Vereshchagin. Thermalization of the mildly relativistic plasma. Physical Review D, 79(4):043008, 2009.Google Scholar
[256] A. G., Aksenov, R., Ruffini, and G. V., Vereshchagin. Pair plasma relaxation time scales. Physical Review E, 81(4):046401, 2010.Google Scholar
[257] A. G., Aksenov, R., Ruffini, I. A., Siutsou, and G. V., Vereshchagin. Dynamics and emission of mildly relativistic plasma. International Journal of Modern Physics Conference Series, 12:1–9, 2012.Google Scholar
[258] David, Lemoine. Fluctuations in the relativistic plasma and primordial magnetic fields. Physical Review D, 51(6):2677–2686, 1995.Google Scholar
[259] W., Greiner and J., Reinhardt. Quantum Electrodynamics. Springer, 2003.
[260] A. I., Akhiezer and V. B., Berestetskii. Quantum Electrodynamics. Nauka, 1981.
[261] R. P., Pilla and J., Shaham. Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method. Astrophysics Journal, 486:903–918, 1997.Google Scholar
[262] G. V., Vereshchagin. Relativistic kinetic theory with some applications. In M., Novello and S.E. Perez, Bergliaffa, editors, Cosmology and Gravitation: XVth Brazilian School of Cosmology and Gravitation, pages 1–40. Cambridge Scientific, 2014.
[263] E., Haug. Energy loss and mean free path of electrons in a hot thermal plasma. Astronomy and Astrophysics, 191:181–185, 1988.Google Scholar
[264] G., Beaudet, V., Petrosian, and E. E., Salpeter. Energy losses due to neutrino processes. Astrophysics Journal, 150:979–+, 1967.Google Scholar
[265] D. A., Dicus. Stellar energy-loss rates in a convergent theory of weak and electromagnetic interactions. Physical Review D, 6:941–949, 1972.Google Scholar
[266] M., Misiaszek, A., Odrzywołek, and M., Kutschera. Neutrino spectrum from the pairannihilation process in the hot stellar plasma. Physical Review D, 74(4):043006–+, 2006.Google Scholar
[267] H. B. J., Koers and R. A. M. J., Wijers. The effect of neutrinos on the initial fireballs in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 364:934–942, 2005.Google Scholar
[268] D., Bégué and G. V., Vereshchagin. Transparency of an instantaneously created electron-positron-photon plasma. Monthly Notices of the Royal Astronomical Society, 439:924–928, 2014.Google Scholar
[269] A. G., Aksenov, M., Milgrom, and V. V., Usov. Structure of pair winds from compact objects with application to emission from hot bare strange stars. Astrophysics Journal, 609:363–377, 2004.Google Scholar
[270] I., Kuznetsova, D., Habs, and J., Rafelski. Thermal reaction processes in a relativistic QED plasma drop. Physical Review D, 81(5):053007, 2010.Google Scholar
[271] A. G., Aksenov, R., Ruffini, and G. V., Vereshchagin. Kinetics of the mildly relativistic plasma and GRBs. In R., Ruffini and G., Vereshchagin, editors. American Institute of Physics Conference Series, volume 1205, pages 11–16, 2010.
[272] R., Ruffini, A. G., Aksenov, M. G., Bernardini et al. The Blackholic energy and the canonical Gamma-Ray Burst IV: The “long,” “genuine short” and “fake-disguised short” GRBs. In M., Novello and S., Perez, editors. American Institute of Physics Conference Series, volume 1132, pages 199–266, 2009.
[273] R., Ruffini, J. D., Salmonson, J., R.Wilson, and S. S., Xue. On the pair-electromagnetic pulse from an electromagnetic black hole surrounded by a baryonic remnant. Astronomy and Astrophysics, 359:855–864, 2000.Google Scholar
[274] C. L., Bianco, R., Ruffini, G., Vereshchagin, and S. S., Xue. Equations of motion, initial and boundary conditions for GRB. Journal of the Korean Physical Society, 49:722–731, 2006.Google Scholar
[275] A. A., Abdo, M., Ackermann, M., Arimoto et al. Fermi observations of high-energy gamma-ray emission from GRB 080916C. Science, 323:1688, 2009.Google Scholar
[276] A. G., Aksenov, C. L., Bianco, R., Ruffini, and G. V., Vereshchagin. GRBs and the thermalization process of electron-positron plasmas. In M., Galassi, D., Palmer, and E., Fenimore, editors. American Institute of Physics Conference Series, volume 1000, pages 309–312, 2008.
[277] G. V., Vereshchagin. Physics of nondissipative ultrarelativistic photospheres. International Journal of Modern Physics D, 23:1430003, 2014.Google Scholar
[278] A., Mizuta, S., Nagataki, and J., Aoi. Thermal radiation from gamma-ray burst jets. Astrophysics Journal, 732:26, 2011.Google Scholar
[279] R., Ruffini, I. A., Siutsou, and G. V., Vereshchagin. A theory of photospheric emission from relativistic outflows. Astrophysics Journal, 772:11, 2013.Google Scholar
[280] A., Pe'er and F., Ryde. A theory ofmulticolor blackbody emission from relativistically expanding plasmas. Astrophysics Journal, 732:49–+, 2011.Google Scholar
[281] C., Lundman, A., Pe'er, and F., Ryde. A theory of photospheric emission from relativistic, collimated outflows. Monthly Notices of the Royal Astronomical Society, 428:2430–2442, 2013.Google Scholar
[282] A. M., Beloborodov. Radiative transfer in ultrarelativistic outflows. Astrophysics Journal, 737:68–+, 2011.Google Scholar
[283] A. M., Beloborodov. Collisional mechanism for gamma-ray burst emission. Monthly Notices of the Royal Astronomical Society, 407:1033–1047, 2010.Google Scholar
[284] D., Giannios. The peak energy of dissipative gamma-ray burst photospheres. Monthly Notices of the Royal Astronomical Society, 422:3092–3098, 2012.Google Scholar
[285] D., Bégué, I. A., Siutsou, and G. V., Vereshchagin. Monte Carlo simulations of the photospheric emission in gamma-ray bursts. Astrophysics Journal, 767:139, 2013.Google Scholar
[286] H., Ito, S., Nagataki, M., Ono et al. Photospheric emission from stratified jets. Astrophysical Journal, 777:62, 2013.Google Scholar
[287] A. G., Aksenov, R., Ruffini, and G. V., Vereshchagin. Comptonization of photons near the photosphere of relativistic outflows. Monthly Notices of the Royal Astronomical Society, 436:L54–L58, 2013.Google Scholar
[288] A., Pe'er and E., Waxman. Time-dependent numerical model for the emission of radiation from relativistic plasma. Astrophysics Journal, 628:857–866, 2005.Google Scholar
[289] A., Benedetti, R., Ruffini, and G. V., Vereshchagin. Phase space evolution of pairs created in strong electric fields. Physics Letters A, 377:206–215, 2013.Google Scholar
[290] T., Piran, A., Shemi, and R., Narayan. Hydrodynamics of relativistic fireballs. Monthly Notices of the Royal Astronomical Society, 263:861–867, 1993.Google Scholar
[291] P., Mészáros, P., Laguna, and M. J., Rees. Gasdynamics of relativistically expanding gamma-ray burst sources – Kinematics, energetics, magnetic fields, and efficiency. Astrophysics Journal, 415:181–190, 1993.Google Scholar
[292] F., Sauter. Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Zeitschrift für Physik, 69:742–+, 1931.Google Scholar
[293] W., Heisenberg and H., Euler. Folgerungen aus der Diracschen Theorie des Positrons. Zeitschrift für Physik, 98:714–+, 1935.Google Scholar
[294] J., Schwinger. On gauge invariance and vacuum polarization. Phys. Rev., 82:664–679, 1951.Google Scholar
[295] C., Bula, K. T., McDonald, E. J., Prebys et al. Observation of nonlinear effects in Compton scattering. Physical Review Letters, 76:3116–3119, 1996.Google Scholar
[296] D. L., Burke, R. C., Field, G., Horton-Smith et al. Positron production in multiphoton light-by-light scattering. Physical Review Letters, 79:1626–1629, 1997.Google Scholar
[297] D., Strickland and G., Mourou. Compression of amplified chirped optical pulses. Optics Communications, 56:219–221, 1985.Google Scholar
[298] V., Yanovsky, V., Chvykov, G., Kalinchenko et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Optics Express, 16:2109, 2008.Google Scholar
[299] G. A., Mourou, T., Tajima, and S. V., Bulanov. Optics in the relativistic regime. Reviews of Modern Physics, 78:309–371, 2006.Google Scholar
[300] A., Ringwald. Pair production from vacuum at the focus of an X-ray free electron laser. Physics Letters B, 510:107–116, 2001.Google Scholar
[301] T., Tajima and G., Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Physical Review Special Topics Accelerators and Beams, 5(3):031301, 2002.Google Scholar
[302] S., Gordienko, A., Pukhov, O., Shorokhov, and T., Baeva. Coherent focusing of high harmonics: A new way towards the extreme intensities. Physical Review Letters, 94(10):103903, 2005.Google Scholar
[303] I. V., Sokolov, N. M., Naumova, J. A., Nees, and G. A., Mourou. Pair creation in QEDstrong pulsed laser fields interacting with electron beams. Physical Review Letters, 105(19):195005, 2010.Google Scholar
[304] E., Esarey, C. B., Schroeder, andW. P., Leemans. Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics, 81:1229–1285, 2009.Google Scholar
[305] A. R., Bell and J. G., Kirk. Possibility of prolific pair production with high-power lasers. Physical Review Letters, 101(20):200403, 2008.Google Scholar
[306] S. S., Bulanov, T. Z., Esirkepov, A. G. R., Thomas, J. K., Koga, and S. V., Bulanov. Schwinger limit attainability with extreme power lasers. Physical Review Letters, 105(22):220407, 2010.Google Scholar
[307] N. V., Elkina, A. M., Fedotov, I. Y., Kostyukov et al. QED cascades induced by circularly polarized laser fields. Physical Review Special Topics Accelerators and Beams, 14(5):054401, 2011.Google Scholar
[308] A. M., Fedotov, N. B., Narozhny, G., Mourou, and G., Korn. Limitations on the attainable intensity of high power lasers. Physical Review Letters, 105(8):080402, 2010.Google Scholar
[309] N. B., Narozhny and A. M., Fedotov. Quantum-electrodynamic cascades in intense laser fields. Physics Uspekhi, 58:95–102, 2015.Google Scholar
[310] C., Alcock, E., Farhi, and A., Olinto. Strange stars. Astrophysics Journal, 310:261–272, 1986.Google Scholar
[311] R., Belvedere, D., Pugliese, J. A., Rueda, R., Ruffini, and S. S., Xue. Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions. Nuclear Physics A, 883:1–24, 2012.Google Scholar
[312] V. V., Usov. Thermal emission from bare quark matter surfaces of hot strange stars. Astrophysics Journal, 550:L179–L182, 2001.Google Scholar
[313] W. B., Han, R., Ruffini, and S. S., Xue. Electron and positron pair production of compact stars. Physical Review D, 86(8):084004, 2012.Google Scholar
[314] V. I., Ritus. Quantum effects in the interaction of elementary particles with an intense electromagnetic field. Moscow Izdatel Nauka AN SSR Fizicheskii Institut Trudy, 111:5–151, 1979.Google Scholar
[315] P., Auger, P., Ehrenfest, R., Maze, J., Daudin, and R. A., Fréon. Extensive cosmic-ray showers. Reviews of Modern Physics, 11:288–291, 1939.Google Scholar
[316] A. I., Nikishov and V. I., Ritus. Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field. Soviet Journal of Experimental and Theoretical Physics, 25:1135, 1967.Google Scholar
[317] V. N., Baier and V. M., Katkov. Quantum effects in magnetic bremsstrahlung. Physics Letters A, 25:492–493, 1967.Google Scholar
[318] A. I., Nikishov and V. I., Ritus. Problems of quantum electrodynamics in intense fields. Bulletin of the Lebedev Physics Institute, 111:1–272, 1979.Google Scholar
[319] A. I., Akhiezer, N. P., Merenkov, and A. P., Rekalo. On a kinetic theory of electromagnetic showers in strong magnetic fields. Journal of Physics G Nuclear Physics, 20:1499–1514, 1994.Google Scholar
[320] A. A., Mironov, N. B., Narozhny, and A. M., Fedotov. Collapse and revival of electromagnetic cascades in focused intense laser pulses. Physics Letters A, 378:3254–3257, 2014.Google Scholar
[321] J. G., Kirk, A. R., Bell, and I., Arka. Pair production in counter-propagating laser beams. Plasma Physics and Controlled Fusion, 51(8):085008, 2009.Google Scholar
[322] Y., Kluger, J. M., Eisenberg, B., Svetitsky, F., Cooper, and E., Mottola. Pair production in a strong electric field. Physical Review Letters, 67:2427–2430, 1991.Google Scholar
[323] Y., Kluger, J. M., Eisenberg, B., Svetitsky, F., Cooper, and E., Mottola. Fermion pair production in a strong electric field. Physical Review D, 45:4659–4671, 1992.Google Scholar
[324] T., Matsui and K., Kajantie. Decay of strong color electric field and thermalization in ultra-relativistic nucleus-nucleus collisions. Physics Letter B, 164:373, 1985.Google Scholar
[325] S. A., Smolyansky, G., Roepke, S., Schmidt, D., Blaschke, V. D., Toneev, and A. V., Prozorkevich. Dynamical derivation of a quantum kinetic equation for particle production in the Schwinger mechanism. arXiv:hep-ph/9712377, 1997.
[326] S., Schmidt, D., Blaschke, G., Röpke, S. A., Smolyansky, A. V., Prozorkevich, and V. D., Toneev. A quantum kinetic equation for particle production in the Schwinger mechanism. International Journal of Modern Physics E, 7:709–722, 1998.Google Scholar
[327] G., Gatoff, A. K., Kerman, and T., Matsui. Flux-tube model for ultrarelativistic heavyion collisions: Electrohydrodynamics of a quark-gluon plasma. Physical Review D, 36:114–129, 1987.Google Scholar
[328] Y., Kluger, E., Mottola, and J. M., Eisenberg. Quantum Vlasov equation and its Markov limit. Physical Review D, 58(12):125015, 1998.Google Scholar
[329] J. C. R., Bloch, V. A., Mizerny, A. V., Prozorkevich et al. Pair creation: Back reactions and damping. Physical Review D, 60(11):116011, 1999.Google Scholar
[330] D. V., Vinnik, A. V., Prozorkevich, S. A., Smolyansky et al. Plasma production and thermalisation in a strong field. European Physical Journal C, 22:341–349, 2001.Google Scholar
[331] D. B., Blaschke, V. V., Dmitriev, G., Röpke, and S. A., Smolyansky. BBGKY kinetic approach for an e-e+ γ plasma created from the vacuum in a strong lasergenerated electric field: The one-photon annihilation channel. Physical Review D, 84(8):085028, 2011.Google Scholar
[332] R., Ruffini, L., Vitagliano, and S. S., Xue. On plasma oscillations in strong electric fields. Physical Letters B, 559:12–19, 2003.Google Scholar
[333] R., Ruffini, G.V., Vereshchagin, and S.-S., Xue. Vacuum polarization and plasma oscillations. Physical Letters A, 371:399–405, 2007.Google Scholar
[334] A. R., Bodmer. Collapsed nuclei. Physical Review D, 4:1601–1606, 1971.Google Scholar
[335] E., Witten. Cosmic separation of phases. Physical Review D, 30:272–285, 1984.Google Scholar
[336] F., Weber. Strange quark matter and compact stars. Progress in Particle and Nuclear Physics, 54:193–288, 2005.Google Scholar
[337] A., Chodos, R. L., Jaffe, K., Johnson, C. B., Thorn, and V. F., Weisskopf. New extended model of hadrons. Physical Review D, 9:3471–3495, 1974.Google Scholar
[338] N. K., Glendenning and F., Weber. Nuclear solid crust on rotating strange quark stars. Astrophysics Journal, 400:647–658, 1992.Google Scholar
[339] V. V., Usov, T., Harko, and K. S., Cheng. Structure of the electrospheres of bare strange stars. Astrophysics Journal, 620:915–921, 2005.Google Scholar
[340] B., Paczynski. Gamma-ray bursters at cosmological distances. Astrophysics Journal, 308:L43–L46, 1986.Google Scholar
[341] B., Paczynski. Super-Eddington winds from neutron stars. Astrophysics Journal, 363:218–226, 1990.Google Scholar
[342] O. M., Grimsrud and I. Wasserman. Non-equilibrium effects in steady relativistic eˆ+eˆ-gamma winds. Monthly Notices of the Royal Astronomical Society, 300:1158–1180, 1998.Google Scholar
[343] A. G., Aksenov, M., Milgrom, and V. V., Usov. Radiation from hot, bare, strange stars. Monthly Notices of the Royal Astronomical Society, 343:L69–L72, 2003.Google Scholar
[344] A. G., Aksenov, M., Milgrom, and V. V., Usov. Pair winds in Schwarzschild spacetime with application to hot bare strange stars. Astrophysics Journal, 632:567–575, 2005.Google Scholar
[345] Z. G., Dai and K. S., Cheng. Properties of dense matter in a supernova core in the relativistic mean-field theory. Astronomy and Astrophysics, 330:569–577, 1998.Google Scholar
[346] V. V., Usov. The response of bare strange stars to the energy input onto their surfaces. Astrophysics Journal, 559:L135–L138, 2001.Google Scholar
[347] V. V., Usov. Strange star heating events as a model for giant flares of soft-gamma-ray repeaters. Physical Review Letters, 87(2):021101, 2001.Google Scholar
[348] R. X., Xu, G. J., Qiao, and B., Zhang. Are pulsars bare strange stars? In M., Kramer, N., Wex, and R., Wielebinski, editors, IAU Colloq. 177: Pulsar Astronomy – 2000 and Beyond, volume 202 of Astronomical Society of the Pacific Conference Series, page 665, 2000.
[349] C., Thompson and R. C., Duncan. The soft gamma repeaters as very strongly magnetized neutron stars – I. Radiative mechanism for outbursts. Monthly Notices of the Royal Astronomical Society, 275:255–300, 1995.Google Scholar
[350] K., Hurley. The 4.5+/-0.5 soft gamma repeaters in review. In R. M., Kippen, R. S., Mallozzi, and G. J., Fishman, editors, Gamma-Ray Bursts, 5th Huntsville Symposium, volume 526 of American Institute of Physics Conference Series, pages 763– 770, 2000.
[351] M., Feroci, K., Hurley, R. C., Duncan, and C., Thompson. The giant flare of 1998 August 27 from SGR 1900+14. I. An interpretive study of BeppoSAX and Ulysses observations. Astrophysics Journal, 549:1021–1038, 2001.Google Scholar
[352] E., Gögüs, C., Kouveliotou, P. M., Woods, C., Thompson, R. C., Duncan, and M. S., Briggs. Temporal and spectral characteristics of short bursts from the soft gamma repeaters 1806-20 and 1900+14. Astrophysics Journal, 558:228–236, 2001.Google Scholar
[353] A. I., Ibrahim, T. E., Strohmayer, P.M., Woods et al. An unusual burst from soft gamma repeater SGR 1900+14: Comparisons with giant flares and implications for the magnetar model. Astrophysics Journal, 558:237–252, 2001.Google Scholar
[354] J. F., Caron and A. R., Zhitnitsky. Bremsstrahlung emission from quark stars. Physical Review D, 80(12):123006, 2009.Google Scholar
[355] B. G., Zakharov. Photon emission from bare quark stars. Soviet Journal of Experimental and Theoretical Physics, 112:63–76, 2011.Google Scholar
[356] J., Trümper. X-ray observations of neutron stars and the equation of state at supranuclear densities. New Astronomy Reviews, 54:122–127, 2010.Google Scholar
[357] G., Ghisellini, A., Celotti, G., Fossati, L., Maraschi, and A., Comastri. A theoretical unifying scheme for gamma-ray bright blazars. Monthly Notices of the Royal Astronomical Society, 301:451–468, 1998.Google Scholar
[358] R. A., Sunyaev and L. G., Titarchuk. Comptonization of X-rays in plasma clouds – Typical radiation spectra. Astronomy and Astrophysics, 86:121–138, 1980.Google Scholar
[359] L., Titarchuk. Generalized Comptonizationmodels and application to the recent highenergy observations. Astrophysics Journal, 434:570–586, 1994.Google Scholar
[360] J., Poutanen and R., Svensson. The two-phase pair corona model for active galactic nuclei and X-ray binaries: How to obtain exact solutions. Astrophysics Journal, 470:249, 1996.Google Scholar
[361] P., Mészáros and M. J., Rees. Steep slopes and preferred breaks in gamma-ray burst spectra: The role of photospheres and Comptonization. Astrophysics Journal, 530:292–298, 2000.Google Scholar
[362] S., Bonometto and M. J., Rees. On possible observable effects of electron pairproduction in QSOs. Monthly Notices of the Royal Astronomical Society, 152:21, 1971.Google Scholar
[363] Y. B., Zeldovich, V. G., Kurt, and R. A., Syunyaev. Recombination of hydrogen in the hot model of the universe. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 55:278–286, 1968.Google Scholar
[364] Y. B., Zeldovich, A. F., Illarionov, and R. A., Syunyaev. Influence of energy release on the radiation spectrum in the hot model of the universe. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 62:1217, 1972.Google Scholar
[365] R., Khatri and R. A., Sunyaev. Beyond y and μ: The shape of the CMB spectral distortions in the intermediate epoch, 1.5×104z 2×105. Journal of Cosmology and Astroparticle Physics, 9:16, 2012.Google Scholar
[366] Y. B., Zeldovich and R. A., Sunyaev. The interaction of matter and radiation in a hotmodel universe. Ap&SS, 4:301–316, 1969.
[367] R. A., Sunyaev and Y. B., Zeldovich. Small-scale fluctuations of relic radiation. Ap&SS, 7:3–19, 1970.
[368] R. A., Sunyaev and Y. B., Zeldovich. The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Comments on Astrophysics and Space Physics, 4:173, 1972.Google Scholar
[369] C. D., Dermer and G., Menon. High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos. Princeton Univerisity Press, 2009.
[370] M. S., Longair. High Energy Astrophysics. 3rd ed. Cambridge University Press, 2011.
[371] S., Dodelson. Modern Cosmology. Academic Press, 2003.
[372] P. D., Naselsky, D. I., Novikov, and I. D., Novikov. The Physics of the Cosmic Microwave Background. Cambridge University Press, 2011.
[373] A. S., Kompaneets. The establishment of thermal equilibrium between quanta and electrons. Soviet Journal of Experimental and Theoretical Physics, 4:730, 1956.Google Scholar
[374] Y. B., Zel'dovich. Interaction of free electrons with electromagnetic radiation. Soviet Physics Uspekhi, 18:79–98, 1975.Google Scholar
[375] W., Hu, D., Scott, and J., Silk. Reionization and cosmic microwave background distortions: A complete treatment of second-order Compton scattering. Physical Review D, 49:648–670, 1994.Google Scholar
[376] J., Bernstein and S., Dodelson. Aspects of the Zel'dovich-Sunyaev mechanism. Physical Review D, 41:354–373, 1990.Google Scholar
[377] R., Weymann. Diffusion approximation for a photon gas interacting with a plasma via the Compton effect. Physics of Fluids, 8:2112–2114, 1965.Google Scholar
[378] A. E., Dubinov and I. N., Kitayev. Exact solutions of the Kompaneets equation for photon “Comptonization” kinetics. Astrophysics, 57:401–407, 2014.Google Scholar
[379] D. I., Nagirner, V. M., Loskutov, and S. I., Grachev. Exact and numerical solutions of the Kompaneets equation: Evolution of the spectrum and average frequencies. Astrophysics, 40:227–236, 1997.Google Scholar
[380] A. A., Penzias and R. W., Wilson. A measurement of excess antenna temperature at 4080 Mc/s. Astrophysics Journal, 142:419–421, 1965.Google Scholar
[381] J. R., Peterson and A. C., Fabian. X-ray spectroscopy of cooling clusters. Physical Reports, 427:1–39, 2006.Google Scholar
[382] J. E., Carlstrom, G. P., Holder, and E. D., Reese. Cosmology with the Sunyaev- Zel'dovich effect. ARA&A, 40:643–680, 2002.
[383] Z., Staniszewski, P. A. R., Ade, K. A., Aird et al. Galaxy clusters discovered with a Sunyaev-Zel'dovich effect survey. Astrophysics Journal, 701:32–41, 2009.Google Scholar
[384] C. L., Reichardt, B., Stalder, L. E., Bleem et al. Galaxy clusters discovered via the Sunyaev-Zel'dovich effect in the first 720 square degrees of the South Pole Telescope Survey. Astrophysics Journal, 763:127, 2013.Google Scholar
[385] R. A., Sunyaev and I. B., Zeldovich. The velocity of clusters of galaxies relative to the microwave background – The possibility of its measurement. Monthly Notices of the Royal Astronomical Society, 190:413–420, 1980.Google Scholar
[386] R. A., Sunyaev and I. B., Zeldovich. Intergalactic gas in clusters of galaxies, the microwave background, and cosmology. Astrophysics and Space Physics Reviews, 1:1–60, 1981.Google Scholar
[387] Y., Rephaeli. Comptonization of the cosmic microwave background: The Sunyaev- Zeldovich effect. ARA&A, 33:541–580, 1995.
[388] M., Birkinshaw. The Sunyaev-Zel'dovich effect. Physical Reports, 310:97–195, 1999.Google Scholar
[389] E. L., Wright. Distortion of the microwave background by a hot intergalactic medium. Astrophysics Journal, 232:348–351, 1979.Google Scholar
[390] P. R., Phillips. Calculation of the kinetic Sunyaev-Zeldovich effect from the Boltzmann equation. Astrophysics Journal, 455:419, 1995.Google Scholar
[391] R. A., Sunyaev and I. B., Zeldovich. Microwave background radiation as a probe of the contemporary structure and history of the universe. ARA&A, 18:537–560, 1980.
[392] R. J., Foley, K., Andersson, G., Bazin et al. Discovery and cosmological implications of SPT-CL J2106-5844, themostmassive known cluster at z > 1. Astrophysics Journal, 731:86, 2011.Google Scholar
[393] B. A., Benson, T. de, Haan, J. P., Dudley et al. Cosmological constraints from Sunyaev- Zel'dovich-selected clusters with X-ray observations in the first 178 deg2 of the South Pole Telescope Survey. Astrophysics Journal, 763:147, 2013.Google Scholar
[394] R. A., Remillard and J. E., McClintock. X-ray properties of black-hole binaries. ARA&A, 44:49–92, 2006.
[395] R. F., Mushotzky, C., Done, and K. A., Pounds. X-ray spectra and time variability of active galactic nuclei. ARA&A, 31:717–761, 1993.
[396] J. I., Katz. Nonrelativistic Compton scattering and models of quasars. Astrophysics Journal, 206:910–916, 1976.Google Scholar
[397] S. L., Shapiro, A. P., Lightman, and D. M., Eardley. A two-temperature accretion disk model for Cygnus X-1 – Structure and spectrum. Astrophysics Journal, 204:187–199, 1976.Google Scholar
[398] L., Titarchuk and Y., Lyubarskij. Power-law spectra as a result of Comptonization of the soft radiation in a plasma cloud. Astrophysics Journal, 450:876, 1995.Google Scholar
[399] G. C., Pomraning. The Equations of Radiation Hydrodynamics. Pergamon Press, 1973.
[400] A., Pe'er. Physics of gamma-ray bursts prompt emission. Advances in Astronomy, 2015:907321, 2015.Google Scholar
[401] J., Fukue, S., Kato, and R., Matsumoto. Radiation hydrodynamics in a moving plasma with Compton scattering. Publications of the Astronomical Society, 37:383–397, 1985.Google Scholar
[402] D., Psaltis and F. K., Lamb. Compton scattering by static and moving media. I. The transfer equation and its moments. Astrophysics Journal, 488:881, 1997.Google Scholar
[403] D., Band, J., Matteson, L., Ford et al. BATSE observations of gamma-ray burst spectra. I – Spectral diversity. Astrophysics Journal, 413:281–292, 1993.Google Scholar
[404] A., Shemi and T., Piran. The appearance of cosmic fireballs. Astrophysics Journal, 365:L55–L58, 1990.Google Scholar
[405] R., Ruffini and G., Vereshchagin. Electron-positron plasma in GRBs and in cosmology. Il Nuovo Cimento, C 36:255, 2013.Google Scholar
[406] A., Pe'er. Temporal evolution of thermal emission from relativistically expanding plasma. Astrophysics Journal, 682:463–473, 2008.Google Scholar
[407] M., Kac. On the partition function of a one-dimensional gas. Physics of Fluids, 2:8–12, 1959.Google Scholar
[408] A., Campa, T., Dauxois, and S., Ruffo. Statistical mechanics and dynamics of solvable models with long-range interactions. Physical Reports, 480:57–159, 2009.Google Scholar
[409] T., Padmanabhan. Statistical mechanics of gravitating systems. Physical Reports, 188:285–362, 1990.Google Scholar
[410] M., Schmidt, R., Kusche, T., Hippler et al. Negative heat capacity for a cluster of 147 sodium atoms. Physical Review Letters, 86:1191–1194, 2001.Google Scholar
[411] D., Lynden-Bell. Negative specific heat in astronomy, physics and chemistry. Physica A, 263:293–304, 1999.Google Scholar
[412] A., Campa, T., Dauxois, D., Fanelli, and S., Ruffo. Physics of Long-Range Interacting Systems. Oxford University Press, 2014.
[413] P. H., Chavanis. Hamiltonian and Brownian systems with long-range interactions: IV. General kinetic equations from the quasilinear theory. Physica A, 387:1504–1528, 2008.Google Scholar
[414] J., Binney and S., Tremaine. Galactic Dynamics. 2nd ed. Princeton University Press, 2008.
[415] H., Mo, F. C. van den, Bosch, and S., White. Galaxy Formation and Evolution. Cambridge University Press, 2010.
[416] P. H., Chavanis. Kinetic theory of spatially inhomogeneous stellar systems without collective effects. Astronomy and Astrophysics, 556:A93, 2013.Google Scholar
[417] I. H., Gilbert. Collisional relaxation in stellar systems. Astrophysics Journal, 152:1043, 1968.Google Scholar
[418] J., Heyvaerts. A Balescu-Lenard-type kinetic equation for the collisional evolution of stable self-gravitating systems. Monthly Notices of the Royal Astronomical Society, 407:355–372, 2010.Google Scholar
[419] P. H., Chavanis. Kinetic theory of long-range interacting systems with angle-action variables and collective effects. Physica A, 391:3680–3701, 2012.Google Scholar
[420] D., Lynden-Bell. Statistical mechanics of violent relaxation in stellar systems. Monthly Notices of the Royal Astronomical Society, 136:101, 1967.Google Scholar
[421] H., Kandrup. Generalized Landau equation for a system with a self-consistent mean field – Derivation from an N-particle Liouville equation. Astrophysics Journal, 244:316, 1981.Google Scholar
[422] S., Chandrasekhar. Principles of Stellar Dynamics. University of Chicago Press, 1942.
[423] D., Merritt. Dynamics and Evolution of Galactic Nuclei. Princeton University Press, 2013.
[424] V., Mukhanov. Physical Foundations of Cosmology. Cambridge University Press, 2005.
[425] J. H., Jeans. The stability of a spherical nebula. Royal Society of London Philosophical Transactions Series A, 199:1–53, 1902.Google Scholar
[426] E. M., Lifshitz. On the gravitational stability of the expanding universe. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 16:587–602, 1946.Google Scholar
[427] J. M., Bardeen. Gauge-invariant cosmological perturbations. Physical Review D, 22:1882–1905, 1980.Google Scholar
[428] G. F. R., Ellis and M., Bruni. Covariant and gauge-invariant approach to cosmological density fluctuations. Physical Review D, 40:1804–1818, 1989.Google Scholar
[429] S. M., Kopeikin, J., Ramirez, B., Mashhoon, and M. V., Sazhin. Cosmological perturbations: A new gauge-invariant approach. Physics Letters A, 292:173–180, 2001.Google Scholar
[430] W. B., Bonnor. Jeans' formula for gravitational instability. Monthly Notices of the Royal Astronomical Society, 117:104, 1957.Google Scholar
[431] I. B., Zeldovich and I. D., Novikov. Relativistic Astrophysics. Volume 2. The Structure and Evolution of the Universe. Rev. and enlarged ed. University of Chicago Press, 1983.
[432] A., Raychaudhuri. Relativistic and Newtonian cosmology. Zeitschrift für Astrophysik, 43:161, 1957.Google Scholar
[433] S. R., Green and R. M., Wald. Newtonian and relativistic cosmologies. Physical Review D, 85(6):063512, 2012.Google Scholar
[434] J. R., Bond, G., Efstathiou, and J., Silk. Massive neutrinos and the large-scale structure of the universe. Physical Review Letters, 45:1980–1984, 1980.Google Scholar
[435] J. R., Bond and A. S., Szalay. The collisionless damping of density fluctuations in an expanding universe. Astrophysics Journal, 274:443–468, 1983.Google Scholar
[436] G. F., Smoot, C. L., Bennett, A., Kogut et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophysics Journal, 396:L1–L5, 1992.Google Scholar
[437] P. de, Bernardis, P. A. R., Ade, J. J., Bock et al. A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature, 404:955–959, 2000.Google Scholar
[438] C. L., Bennett, M., Halpern, G., Hinshaw et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophysical Journal Supplement Series, 148:1–27, 2003.Google Scholar
[439] Planck Collaboration, P. A. R., Ade, N., Aghanim, C., Armitage-Caplan et al. Planck 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 571:A16, 2014.
[440] U., Seljak and M., Zaldarriaga. A line-of-sight integration approach to cosmic microwave background anisotropies. Astrophysics Journal, 469:437, 1996.Google Scholar
[441] S., Cole, W. J., Percival, J. A., Peacock et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final data set and cosmological implications. Monthly Notices of the Royal Astronomical Society, 362:505–534, 2005.Google Scholar
[442] M., Tegmark, D. J., Eisenstein, M. A., Strauss et al. Cosmological constraints from the SDSS luminous red galaxies. Physical Review D, 74(12):123507, 2006.Google Scholar
[443] A. G., Sánchez, C. G., Scóccola, A. J., Ross et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the large-scale two-point correlation function. Monthly Notices of the Royal Astronomical Society, 425:415–437, 2012.Google Scholar
[444] D. J., Eisenstein, I., Zehavi, D. W., Hogg et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophysics Journal, 633:560–574, 2005.Google Scholar
[445] H., Kodama and M., Sasaki. Cosmological perturbation theory. Progress of Theoretical Physics Supplement, 78:1, 1984.Google Scholar
[446] V. F., Mukhanov, H. A., Feldman, and R. H., Brandenberger. Theory of cosmological perturbations. Physical Reports, 215:203–333, 1992.Google Scholar
[447] F., Bernardeau, S., Colombi, E., Gaztanaga, and R., Scoccimarro. Large-scale structure of the universe and cosmological perturbation theory. Physical Reports, 367:1–248, 2002.Google Scholar
[448] C. G., Tsagas, A., Challinor, and R., Maartens. Relativistic cosmology and large-scale structure. Physical Reports, 465:61–147, 2008.Google Scholar
[449] K. A., Malik and D., Wands. Cosmological perturbations. Physical Reports, 475:1–51, 2009.Google Scholar
[450] P., Peter and J. P., Uzan. Primordial Cosmology. Oxford University Press, 2013.
[451] J., Bernstein. Kinetic Theory in the Expanding Universe. Cambridge University Press, 1988.
[452] R., Durrer. Gauge invariant cosmological perturbation theory: A general study and its application to the texture scenario of structure formation. Fundamentals of Cosmic Physics, 15:209–339, 1994.Google Scholar
[453] C. P., Ma and E., Bertschinger. Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophysics Journal, 455:7, 1995.Google Scholar
[454] J., Lesgourgues and S., Pastor. Massive neutrinos and cosmology. Physical Reports, 429:307–379, 2006.Google Scholar
[455] A. D., Linde. Particle Physics and Inflationary Cosmology. CRC Press, 1990.
[456] A., Guth. The Inflationary Universe. Addison-Wesley, 1997.
[457] G. S., Bisnovatyi-Kogan and Y. B., Zel'dovich. Growth of perturbations in an expanding universe of free particles. Soviet Astronomy, 14:758, 1971.Google Scholar
[458] A. M., Fridman and V. L., Poliachenko. Physics of Gravitating Systems. I. Equilibrium and Stability. Springer, 1984.
[459] M., Lattanzi, R., Ruffini, and G., Vereshchagin. On the possible role of massive neutrinos in cosmological structure formation. In M., Novello and S. E., Perez Bergliaffa, editors, Cosmology and Gravitation, volume 668 of American Institute of Physics Conference Series, pages 263–287, 2003.
[460] V. D., Shafranov. Electromagnetic waves in a plasma. Reviews of Plasma Physics, 3:1, 1967.Google Scholar
[461] A. D., Dolgov. Neutrinos in cosmology. Physical Reports, 370:333–535, 2002.Google Scholar
[462] P. R., Shapiro, C., Struck-Marcell, and A. L., Melott. Pancakes and the formation of galaxies in a neutrino-dominated universe. Astrophysics Journal, 275:413–429, 1983.Google Scholar
[463] S. D. M., White, C. S., Frenk, and M., Davis. Clustering in a neutrino-dominated universe. Astrophysics Journal, 274:L1–L5, 1983.Google Scholar
[464] Q. R., Ahmad, R. C., Allen, T. C., Andersen et al. Measurement of the rate of νe + d →p + p + e- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Physical Review Letters, 87(7):071301, 2001.Google Scholar
[465] W., Hu, D. J., Eisenstein, and M., Tegmark. Weighing neutrinos with galaxy surveys. Physical Review Letters, 80:5255–5258, 1998.Google Scholar
[466] M., Lattanzi, R., Ruffini, and G. V., Vereshchagin. Joint constraints on the lepton asymmetry of the universe and neutrino mass from the Wilkinson Microwave Anisotropy Probe. Physical Review D, 72(6):063003, 2005.Google Scholar
[467] Planck Collaboration, P. A. R., Ade, N., Aghanim, M., Arnaud et al. Planck 2015 results. XIII. Cosmological parameters. Astronomy and Astrophysics, 594:A13, 2016.
[468] V. M., Lobashev. The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of study it in the project KATRIN. Nuclear Physics A, 719:C153–C160, 2003.Google Scholar
[469] C., Kraus, B., Bornschein, L., Bornschein et al. Final results from phase II of the Mainz neutrino mass searchin tritium ﹛β﹜ decay. European Physical Journal C, 40:447–468, 2005.Google Scholar
[470] M., Fukugita and T., Yanagida. Barygenesis without grand unification. Physics Letters B, 174:45–47, 1986.Google Scholar
[471] W., Buchmüller, P. Di, Bari, and M., Plümacher. Leptogenesis for pedestrians. Annals of Physics, 315:305–351, 2005.Google Scholar
[472] A. D., Dolgov, S. H., Hansen, S., Pastor, S. T., Petcov, G. G., Raffelt, and D. V., Semikoz. Cosmological bounds on neutrino degeneracy improved by flavor oscillations. Nuclear Physics B, 632:363–382, 2002.Google Scholar
[473] J., Birrell, C. T., Yang, P., Chen, and J., Rafelski. Fugacity and reheating of primordial neutrinos. Modern Physics Letters A, 28:1350188, 2013.Google Scholar
[474] J., Birrell, C. T., Yang, P., Chen, and J., Rafelski. Relic neutrinos: Physically consistent treatment of effective number of neutrinos and neutrino mass. Physical Review D, 89(2):023008, 2014.Google Scholar
[475] T. M. R., Filho, A., Figueiredo, and M. A., Amato. Entropy of classical systems with long-range interactions. Physical Review Letters, 95(19):190601, 2005.Google Scholar
[476] P. H., Chavanis and F., Bouchet. On the coarse-grained evolution of collisionless stellar systems. Astronomy and Astrophysics, 430:771–778, 2005.Google Scholar
[477] L. A., Artsimovich and R. Z., Sagdeev. Plasma Physics for Physicists. Atomizdat, 1979. (in Russian)
[478] S., Tremaine, M., Henon, and D., Lynden-Bell. H-functions and mixing in violent relaxation. Monthly Notices of the Royal Astronomical Society, 219:285–297, 1986.Google Scholar
[479] Y., Levin, R., Pakter, F. B., Rizzato, T. N., Teles, and F. P. C., Benetti. Nonequilibrium statistical mechanics of systems with long-range interactions. Physical Reports, 535:1–60, 2014.Google Scholar
[480] F. H., Shu. On the statistical mechanics of violent relaxation. Astrophysics Journal, 225:83–94, 1978.Google Scholar
[481] T. K., Nakamura. Statistical mechanics of a collisionless system based on the maximum entropy principle. Astrophysics Journal, 531:739–743, 2000.Google Scholar
[482] I., Arad and D., Lynden-Bell. Inconsistency in theories of violent relaxation. Monthly Notices of the Royal Astronomical Society, 361:385–395, 2005.Google Scholar
[483] S. D. M., White. Simulations of merging galaxies. Monthly Notices of the Royal Astronomical Society, 184:185–203, 1978.Google Scholar
[484] S. J., Aarseth and J., Binney. On the relaxation of galaxies and clusters from aspherical initial conditions. Monthly Notices of the Royal Astronomical Society, 185:227–244, 1978.Google Scholar
[485] T. S. van, Albada. Dissipationless galaxy formation and the R to the 1/4-power law. Monthly Notices of the Royal Astronomical Society, 201:939–955, 1982.Google Scholar
[486] F., Hohl and M. R., Feix. Numerical experiments with a one-dimensional model for a self-gravitating star system. Astrophysics Journal, 147:1164, 1967.Google Scholar
[487] R. H., Miller. Numerical experiments in collisionless systems. Ap&SS, 14:73–90, 1971.Google Scholar
[488] G. B., Rybicki. Exact statistical mechanics of a one-dimensional self-gravitating system. Ap&SS, 14:56–72, 1971.Google Scholar
[489] M., Joyce and T., Worrakitpoonpon. Quasistationary states in the self-gravitating sheet model. Physical Review E, 84(1):011139, 2011.Google Scholar
[490] T. N., Teles, Y., Levin, and R., Pakter. Statistical mechanics of 1D self-gravitating systems: The core-halo distribution. Monthly Notices of the Royal Astronomical Society, 417:L21–L25, 2011.Google Scholar
[491] J. J., Aly. Thermodynamics of a two-dimensional self-gravitating system. Physical Review E, 49:3771–3783, 1994.Google Scholar
[492] R. H., Miller, K. H., Prendergast, and W. J., Quirk. Numerical experiments on spiral structure. Astrophysics Journal, 161:903, 1970.Google Scholar
[493] A. G., Doroshkevich, E. V., Kotok, A. N., Poliudov, S. F., Shandarin, I. S., Sigov, and I. D., Novikov. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe. Monthly Notices of the Royal Astronomical Society, 192:321–337, 1980.Google Scholar
[494] T. N., Teles, Y., Levin, R., Pakter, and F. B., Rizzato. Statistical mechanics of unbound two-dimensional self-gravitating systems. Journal of Statistical Mechanics: Theory and Experiment, 5:05007, 2010.Google Scholar
[495] S. D., Mathur. Existence of oscillation modes in collisionless gravitating systems. Monthly Notices of the Royal Astronomical Society, 243:529–536, 1990.Google Scholar
[496] B. B., Kadomtsev and O. P., Pogutse. Collisionless relaxation in systems with Coulomb interactions. Physical Review Letters, 25:1155–1157, 1970.Google Scholar
[497] Y., Levin, R., Pakter, and F. B., Rizzato. Collisionless relaxation in gravitational systems: From violent relaxation to gravothermal collapse. Physical Review E, 78(2):021130, 2008.Google Scholar
[498] T., Worrakitpoonpon. Relaxation of Isolated Self-Gravitating Systems in One and Three Dimensions. PhD thesis, University Pierre and Marie CURIE, 2011. https://tel.archives-ouvertes.fr/tel-00607774/fr/.
[499] S., Chandrasekhar. An Introduction to the Study of Stellar Structure. University of Chicago Press, 1939.
[500] V. A., Antonov. Most probable phase distribution in spherical star systems and conditions for its existence. Vestnik Leningradskogo Universiteta, Leningrad: University, 7:135, 1962.Google Scholar
[501] V. A., Antonov. Most probable phase distribution in spherical star systems and conditions for its existence. In J., Goodman and P., Hut, editors, Dynamics of Star Clusters, volume 113 of IAU Symposium, page 525, 1985.
[502] D., Lynden-Bell and R., Wood. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Monthly Notices of the Royal Astronomical Society, 138:495, 1968.Google Scholar
[503] Z., Roupas. Relativistic gravothermal instabilities. Classical and Quantum Gravity, 32(13):135023, 2015.Google Scholar
[504] R. C., Tolman. Static solutions of Einstein's field equations for spheres of fluid. Physical Review, 55:364–373, 1939.Google Scholar
[505] J. R., Oppenheimer and G. M., Volkoff. On massive neutron cores. Physical Review, 55:374–381, 1939.Google Scholar
[506] R. C., Tolman. On the weight of heat and thermal equilibrium in general relativity. Physical Review, 35:904–924, 1930.Google Scholar
[507] R. C., Tolman and P., Ehrenfest. Temperature equilibrium in a static gravitational field. Physical Review, 36:1791–1798, 1930.Google Scholar
[508] O., Klein. On the thermodynamical equilibrium of fluids in gravitational fields. Reviews of Modern Physics, 21:531–533, 1949.Google Scholar
[509] N., Kaiser. On the spatial correlations of Abell clusters. Astrophysics Journal, 284:L9–L12, 1984.Google Scholar
[510] R., Massey, J., Rhodes, R., Ellis et al. Dark matter maps reveal cosmic scaffolding. Nature, 445:286–290, 2007.Google Scholar
[511] J. F., Navarro, C. S., Frenk, and S. D. M., White. The structure of cold dark matter halos. Astrophysics Journal, 462:563, 1996.Google Scholar
[512] J., Einasto. On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters. Trudy Astrofizicheskogo Instituta Alma-Ata, 5:87–100, 1965.Google Scholar
[513] A., Burkert. The structure of dark matter halos in dwarf galaxies. Astrophysics Journal, 447:L25, 1995.Google Scholar
[514] D., Merritt, A. W., Graham, B., Moore, J., Diemand, and B., Terzic. Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models. AJ, 132:2685–2700, 2006.
[515] W., Baade and F., Zwicky. On super-novae. Proceedings of the National Academy of Sciences, 20:254–259, 1934.Google Scholar
[516] W., Baade and F., Zwicky. Cosmic rays from super-novae. Proceedings of the National Academy of Sciences, 20:259–263, 1934.Google Scholar
[517] H. T., Janka. Explosion mechanisms of core-collapse supernovae. Annual Review of Nuclear and Particle Science, 62:407–451, 2012.Google Scholar
[518] S. J., Smartt. Progenitors of core-collapse supernovae. ARA&A, 47:63–106, 2009.
[519] G. J. M., Graves, P. M., Challis, R. A., Chevalier et al. Limits from the Hubble Space Telescope on a point source in SN 1987A. Astrophysics Journal, 629:944–959, 2005.Google Scholar
[520] G., Gamow and M., Schoenberg. Neutrino theory of stellar collapse. Physical Review, 59:539–547, 1941.Google Scholar
[521] H., Bethe and R., Peierls. The neutrino. Nature, 133:532, 1934.Google Scholar
[522] W. A., Fowler and F., Hoyle. Neutrino processes and pair formation in massive stars and supernovae. Astrophysical Journal Supplement Series, 9:201, 1964.Google Scholar
[523] K., Hirata, T., Kajita, M., Koshiba, M., Nakahata, and Y., Oyama. Observation of a neutrino burst from the supernova SN1987A. Physical Review Letters, 58:1490–1493, 1987.Google Scholar
[524] R. M., Bionta, G., Blewitt, C. B., Bratton, D., Casper, and A., Ciocio. Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. Physical Review Letters, 58:1494–1496, 1987.Google Scholar
[525] E. N., Alekseev, L. N., Alekseeva, V. I., Volchenko, and I. V., Krivosheina. Possible detection of a neutrino signal on 23 February 1987 at the Baksan underground scintillation telescope of the Institute of Nuclear Research. Soviet Journal of Experimental and Theoretical Physics Letters, 45:589, 1987.Google Scholar
[526] N. Y., Agafonova, M., Aglietta, P., Antonioli et al. Implication for the core-collapse supernova rate from 21 years of data of the large volume detector. Astrophysics Journal, 802:47, 2015.Google Scholar
[527] A., Mirizzi, I., Tamborra, H. T., Janka et al. Supernova neutrinos: production, oscillations and detection. Nuovo Cimento Rivista Serie, 39:1–112, 2016.Google Scholar
[528] N., Langer. Presupernova evolution of massive single and binary stars. ARA&A, 50:107–164, 2012.
[529] V. S., Imshennik and V. M., Chechetkin. Thermodynamics under conditions of hot matter neutronization and the hydrodynamic stability of stars at late stages of evolution. Astronomicheskii Zhurnal, 47:929, 1970.Google Scholar
[530] L. N., Ivanova and V. M., Chechetkin. The collapse of degenerate iron stellar cores and the model of a supernova. Soviet Astronomy, 25:584, 1981.Google Scholar
[531] G., Gamow and M., Schoenberg. The possible role of neutrinos in stellar evolution. Physical Review, 58:1117–1117, 1940.Google Scholar
[532] S. A., Colgate and R. H., White. The hydrodynamic behavior of supernovae explosions. Astrophysics Journal, 143:626, 1966.Google Scholar
[533] H. A., Bethe and J., R.Wilson. Revival of a stalled supernova shock by neutrino heating. Astrophysics Journal, 295:14–23, 1985.Google Scholar
[534] H. A., Bethe. Supernova mechanisms. Reviews of Modern Physics, 62:801–866, 1990.Google Scholar
[535] H. T., Janka, K., Langanke, A., Marek, G., Martínez-Pinedo, and B., Müller. Theory of core-collapse supernovae. Physical Reports, 442:38–74, 2007.Google Scholar
[536] G. S., Bisnovatyi-Kogan. The explosion of a rotating star as a supernova mechanism. Soviet Astronomy, 14:652, 1971.Google Scholar
[537] J. M., LeBlanc and J. R., Wilson. A numerical example of the collapse of a rotating magnetized star. Astrophysics Journal, 161:541, 1970.Google Scholar
[538] J. P., Ostriker and J. E., Gunn. Do pulsars make supernovae? Astrophysics Journal, 164:L95, 1971.Google Scholar
[539] D. L., Meier, R. I., Epstein, W. D., Arnett, and D. N., Schramm. Magnetohydrodynamic phenomena in collapsing stellar cores. Astrophysics Journal, 204:869–878, 1976.Google Scholar
[540] J. C., Wheeler, D. L., Meier, and J. R., Wilson. Asymmetric supernovae from magnetocentrifugal jets. Astrophysics Journal, 568:807–819, 2002.Google Scholar
[541] N. V., Ardeljan, G. S., Bisnovatyi-Kogan, and S. G., Moiseenko. Magnetorotational supernovae. Monthly Notices of the Royal Astronomical Society, 359:333–344, 2005.Google Scholar
[542] P., Mösta, S., Richers, C. D., Ott, R., Haas, A. L., Piro, K., Boydstun, E., Abdikamalov, C., Reisswig, and E., Schnetter. Magnetorotational core-collapse supernovae in three dimensions. Astrophysics Journal, 785:L29, 2014.Google Scholar
[543] D., Arnett. Mass dependence in gravitational collapse of stellar cores. Canadian Journal of Physics, 45:1621–1641, 1967.Google Scholar
[544] V. S., Imshennik and D. K., Nadezhin. Neutrino thermal conductivity in collapsing stars. Soviet Journal of Experimental and Theoretical Physics, 36:821, 1973.Google Scholar
[545] D. K., Nadezhin. The collapse of iron-oxygen stars – Physical and mathematical formulation of the problem and computational method. Ap&SS, 49:399–425, 1977.
[546] P., Haensel, A. Y., Potekhin, and D. G., Yakovlev, editors. Neutron Stars 1: Equation of State and Structure, volume 326 of Astrophysics and Space Science Library, 2007.
[547] M. L., Alme and J., R.Wilson. X-ray emission from a neutron star accreting material. Astrophysics Journal, 186:1015–1026, 1973.Google Scholar
[548] A., Mezzacappa and S. W., Bruenn. Type II supernovae and Boltzmann neutrino transport – The infall phase. Astrophysics Journal, 405:637–668, 1993.Google Scholar
[549] A., Mezzacappa and S. W., Bruenn. Stellar core collapse – A Boltzmann treatment of neutrino-electron scattering. Astrophysics Journal, 410:740–760, 1993.Google Scholar
[550] A., Mezzacappa, M., Liebendörfer, O. E., Messer, W. R., Hix, F. K., Thielemann, and S. W., Bruenn. Simulation of the spherically symmetric stellar core collapse, bounce, and postbounce evolution of a star of 13 solar masses with Boltzmann neutrino transport, and its implications for the supernova mechanism. Physical Review Letters, 86:1935–1938, 2001.Google Scholar
[551] E. J., Lentz, A., Mezzacappa, O. E. B., Messer, M., Liebendörfer, W. R., Hix, and S. W., Bruenn. On the requirements for realistic modeling of neutrino transport in simulations of core-collapse supernovae. Astrophysics Journal, 747:73, 2012.Google Scholar
[552] P., Ledoux. Stellar models with convection and with discontinuity of themean molecular weight. Astrophysics Journal, 105:305, 1947.Google Scholar
[553] G. S., Bisnovatyj-Kogan. Physical Problems of the Theory of Stellar Evolution. Moscow, Nauka, 1989 (in Russian).
[554] L., Dessart, A., Burrows, E., Livne, and C. D., Ott. The proto-neutron star phase of the collapsar model and the route to long-soft gamma-ray bursts and hypernovae. Astrophysics Journal, 673:L43, 2008.Google Scholar
[555] F. D., Swesty and E. S., Myra. A numerical algorithm for modeling multigroup neutrino-radiation hydrodynamics in two spatial dimensions. Astrophysical Journal Supplement Series, 181:1–52, 2009.Google Scholar
[556] B., Müller, H. T., Janka, and H., Dimmelmeier. A new multi-dimensional general relativistic neutrino hydrodynamic code for core-collapse supernovae. I. Method and code tests in spherical symmetry. Astrophysical Journal Supplement Series, 189:104–133, 2010.Google Scholar
[557] J. W., Murphy and C., Meakin. A global turbulence model for neutrino-driven convection in core-collapse supernovae. Astrophysics Journal, 742:74, 2011.Google Scholar
[558] J. C., Dolence, A., Burrows, andW., Zhang. Two-dimensional core-collapse supernova models with multi-dimensional transport. Astrophysics Journal, 800:10, 2015.Google Scholar
[559] S. M., Couch and C. D., Ott. Revival of the stalled core-collapse supernova shock triggered by precollapse asphericity in the progenitor star. Astrophysics Journal, 778:L7, 2013.Google Scholar
[560] A., Wongwathanarat, E., Müller, and H. T., Janka. Three-dimensional simulations of core-collapse supernovae: From shock revival to shock breakout. Astronomy and Astrophysics, 577:A48, 2015.Google Scholar
[561] S. M., Couch and C. D., Ott. The role of turbulence in neutrino-driven core-collapse supernova explosions. Astrophysics Journal, 799:5, 2015.Google Scholar
[562] D., Radice, C. D., Ott, E., Abdikamalov, S. M., Couch, R., Haas, and E., Schnetter. Neutrino-driven convection in core-collapse supernovae: High-resolution simulations. Astrophysics Journal, 820:76, 2016.Google Scholar
[563] J. M., Blondin, A., Mezzacappa, and C., DeMarino. Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophysics Journal, 584:971–980, 2003.Google Scholar
[564] I., Tamborra, F., Hanke, H. T., Janka, B., Müller, G. G., Raffelt, and A., Marek. Selfsustained asymmetry of Lepton-number emission: A new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophysics Journal, 792:96, 2014.Google Scholar
[565] M., Liebendörfer, O. E. B., Messer, A., Mezzacappa, S. W., Bruenn, C. Y., Cardall, and F. K., Thielemann. A finite difference representation of neutrino radiation hydrodynamics in spherically symmetric general relativistic spacetime. Astrophysical Journal Supplement Series, 150:263–316, 2004.Google Scholar
[566] E., O'Connor and C. D., Ott. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes. Classical and Quantum Gravity, 27(11):114103, 2010.Google Scholar
[567] T., A.Weaver, G. B., Zimmerman, and S., E.Woosley. Presupernova evolution of massive stars. Astrophysics Journal, 225:1021–1029, 1978.Google Scholar
[568] K., Nomoto and M., Hashimoto. Presupernova evolution of massive stars. Physical Reports, 163:13–36, 1988.Google Scholar
[569] S. I., Blinnikov, N. V., Dunina-Barkovskaya, and D. K., Nadyozhin. Equation of state of a Fermi gas: Approximations for various degrees of relativism and degeneracy. Astrophysical Journal Supplement Series, 106:171, 1996.Google Scholar
[570] J. I., Castor. Radiative transfer in spherically symmetric flows. Astrophysics Journal, 178:779–792, 1972.Google Scholar
[571] S. L., Shapiro and S. A., Teukolsky. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. 1983.
[572] A. G., Aksenov and V. M., Chechetkin. Computations of the collapse of a stellar iron core allowing for the absorption, emission, and scattering of electron neutrinos and anti-neutrinos. Astronomy Reports, 56:193–206, 2012.Google Scholar
[573] S. W., Bruenn. Neutrinos from SN1987A and current models of stellar-core collapse. Physical Review Letters, 59:938–941, 1987.Google Scholar
[574] E. S., Myra and A., Burrows. Neutrinos from type II supernovae – The first 100 milliseconds. Astrophysics Journal, 364:222–231, 1990.Google Scholar
[575] G. I., Zatsepin. Probability of determining the upper limit of the neutrino mass from the time of flight. Soviet Journal of Experimental and Theoretical Physics Letters, 8:205, 1968.Google Scholar
[576] A. G., Aksenov and D. K., Nadyozhin. The calculation of a collapse of iron-oxygen stellar core in one-group energy approximation. Astronomy Letters, 24:703–715, 1998.Google Scholar
[577] A. G., Aksenov. Computing the collapse of iron-oxygen stellar cores with allowance for the absorption and emission of electron neutrinos and antineutrinos. Astronomy Letters, 25:307–317, Springer, 1999.
[578] K. R., Lang. Astrophysical Formulae. 1999.
[579] V. M., Chechetkin, S. D., Ustyugov, A. A., Gorbunov, and V. I., Polezhaev. On the neutrino mechanism of supernova explosions. Astronomy Letters, 23:30–36, 1997.Google Scholar
[580] V. M., Suslin, S. D., Ustyugov, V. M., Chechetkin, and G. P., Churkina. Simulation of neutrino transport by large-scale convective instability in a proto-neutron star. Astronomy Reports, 45:241–247, 2001.Google Scholar
[581] I. V., Baikov, V. M., Suslin, V. M., Chechetkin, V. Bychkov, and L. Stenflo. Radiation of a neutrino mechanism for type II supernovae. Astronomy Reports, 51:274–281, 2007.Google Scholar
[582] A. G., Aksenov and V. M., Chechetkin. Neutronization of matter in a stellar core and convection during gravitational collapse. Astronomy Reports, 60:655668, 2016.Google Scholar
[583] L. O., Silva. Physical problems (microphysics) in relativistic plasma flows. In P. A., Hughes and J. N., Bregman, editors, Relativistic Jets: The Common Physics of AGN, Microquasars, and Gamma-Ray Bursts, volume 856 of American Institute of Physics Conference Series, pages 109–128, 2006.
[584] D. L., Tubbs and D. N., Schramm. Neutrino opacities at high temperatures and densities. Astrophysics Journal, 201:467–488, 1975.Google Scholar
[585] V. S., Imshennik and V. M., Chechetkin. Thermodynamics under conditions of hot matter neutronization and the hydrodynamic stability of stars at late stages of evolution. Soviet Astronomy, 14:747, 1971.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×