Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T16:52:40.024Z Has data issue: false hasContentIssue false

Chapter 2 - Bioenergy

Published online by Cambridge University Press:  05 December 2011

Ottmar Edenhofer
Affiliation:
Potsdam Institute for Climate Impact Research
Ramón Pichs-Madruga
Affiliation:
Centro de Investigaciones de la Economía Mundial (CIEM)
Youba Sokona
Affiliation:
The Sahara and Sahel Observatory
Kristin Seyboth
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Susanne Kadner
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Timm Zwickel
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Patrick Eickemeier
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Gerrit Hansen
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Steffen Schlömer
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Christoph von Stechow
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Patrick Matschoss
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Get access

Summary

Executive Summary

Bioenergy has a significant greenhouse gas (GHG) mitigation potential, provided that the resources are developed sustainably and that efficient bioenergy systems are used. Certain current systems and key future options including perennial cropping systems, use of biomass residues and wastes and advanced conversion systems are able to deliver 80 to 90% emission reductions compared to the fossil energy baseline. However, land use conversion and forest management that lead to a loss of carbon stocks (direct) in addition to indirect land use change (d+iLUC) effects can lessen, and in some cases more than neutralize, the net positive GHG mitigation impacts. Impacts of climate change through temperature increases, rainfall pattern changes and increased frequency of extreme events will influence and interact with biomass resource potential. This interaction is still poorly understood, but it is likely to exhibit strong regional differences. Climate change impacts on biomass feedstock production exist but if global temperature rise is limited to less than 2°C compared with the pre-industrial record, it may pose few constraints. Combining adaptation measures with biomass resource production can offer more sustainable opportunities for bioenergy and perennial cropping systems.

Biomass is a primary source of food, fodder and fibre and as a renewable energy (RE) source provided about 10.2% (50.3 EJ) of global total primary energy supply (TPES) in 2008. Traditional use of wood, straws, charcoal, dung and other manures for cooking, space heating and lighting by generally poorer populations in developing countries accounts for about 30.7 EJ, and another 20 to 40% occurs in unaccounted informal sectors including charcoal production and distribution.

Type
Chapter
Information
Renewable Energy Sources and Climate Change Mitigation
Special Report of the Intergovernmental Panel on Climate Change
, pp. 209 - 332
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, T., and Abbasi, S.A. (2010). Biomass energy and the environmental impacts associated with its production and utilization. Renewable and Sustainable Energy Reviews, 14(3), pp. 919–937.CrossRefGoogle Scholar
Adam, J.C. (2009). Improved and more environmentally friendly charcoal production system using a low-cost retort-kiln (Eco-charcoal). Renewable Energy, 34(8), pp. 1923–1925.CrossRefGoogle Scholar
Adams, P.W., Hammond, G.P., McManus, M.C., and Mezzullo, W.G. (2011). Barriers to and drivers for UK bioenergy development. Renewable and Sustainable Energy Reviews, 15(2), pp. 1217–1227.CrossRefGoogle Scholar
Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., and Lukas, J. (2002). Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. NREL/TP-510-32438, National Renewable Energy Laboratory, Golden, Colorado, USA, 154 pp.CrossRefGoogle Scholar
Ahrens, T.D., Lobell|J.I., D.B.Li, Ortiz- MonasterioY., and Matson, P.A. (2010). Narrowing the agronomic yield gap with improved nitrogen use efficiency: a modeling approach. Ecological Applications, 20(1), pp. 91–100.CrossRefGoogle ScholarPubMed
Ainsworth, E.A., and Long, S.P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), pp. 351–372.CrossRefGoogle ScholarPubMed
Al-Riffai, P., Dimaranan, B., and Laborde, L. (2010). Global Trade and Environmental Impact Study of the EU Biofuels Mandate. Project Report - Specific Contract No SI2.537.787 implementing Framework Contract No TRADE/07/A2, International Food Policy Research Institute, Washington, DC, USA, 123 pp.Google Scholar
Alexandratos, N. (2009). World food and agriculture to 2030/50: highlights and views from mid-2009. In: Proceedings of the Expert Meeting on How to Feed the World in 2050, Rome, Italy, 24–26 June 2009. Economic and Social Development Department, Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 78. Available at: www.fao.org/docrep/012/ak542e/ak542e00.htm.Google Scholar
Alfstad, T. (2008). World Biofuels Study: Scenario Analysis of Global Biofuels Markets. BNL-80238-2008, Brookhaven National Laboratory, New York, NY, USA, 67 pp.CrossRefGoogle Scholar
Allen, J., Browne, M., Hunter, A., Boyd, J., and Palmer, H. (1998). Logistics management and costs of biomass fuel supply. International Journal of Physical Distribution & Logistics Management, 28(6), pp. 463–477.CrossRefGoogle Scholar
Allen, M.R., Frame, D.J., Huntingford, C., Jones, C.D., Lowe, J.A., Meinshausen, M., and Meinshausen, N. (2009). Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458(7242), pp. 1163–1166.CrossRefGoogle ScholarPubMed
Alper, H., and Stephanopoulos, G. (2009). Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?Nature Reviews Microbiology, 7(10), pp. 715–723.CrossRefGoogle ScholarPubMed
Anderson-Teixeira, K.J., Davis, S.C., Masters, M.D., and Delucia, E.H. (2009). Changes in soil organic carbon under biofuel crops. Global Change Biology Bioenergy, 1(1), pp. 75–96.CrossRefGoogle Scholar
,APEC (2003). The New Brunswick Forest Industry: The Potential Economic Impact of Proposals to Increase the Wood Supply. Atlantic Provinces Economic Council, Halifax, Canada.
Armendariz, C.A., Edwards, R.D., Johnson, M., Zuk, M., Rojas, L., Jimenez, R.D., Riojas-Rodriguez, H., and Masera, O. (2008). Reduction in personal exposures to particulate matter and carbon monoxide as a result of the installation of a Patsari improved cook stove in Michoacan Mexico. Indoor Air, 18(2), pp. 93–105.Google Scholar
Arndt, C., Benfica, R., Tarp, F., and Uaiene, R. (2010). Biofuels, poverty, and growth: A computable general equilibrium analysis of Mozambique. Environment and Development Economics, 15(1), pp. 81–105.CrossRefGoogle Scholar
Asikainen, A., Liiri, H., Peltola, S., Karjalainen, T., and Laitila, J. (2008). Forest Energy Potential in Europe (EU 27). Working Papers of the Finnish Forest Research Institute, No. 69, Finnish Forest Research Institute, Helsinki, Finland, 33 pp.
Asikainen, A., Anttila, P., Heinimö, J., Smith, T., Stupak, I., and Quirino, W. Ferreira (2010). Forest and bioenergy production. In: Forest and Society – Responding to Global Drivers of Change. Mery, G., Katila, P., Galloway, G., Alfaro, R.I., Kanninen, M., Lobovikov, M., and Varjo, J. (eds.). International Union of Forest Research Organizations, Vienna, Austria, pp. 183–200.Google Scholar
Astbury, G. (2008). A review of the properties and hazards of some alternative fuels. Process Safety and Environmental Protection, 86(6), pp. 397–414.CrossRefGoogle Scholar
Ausubel, J.H. (2000). The great reversal: nature's chance to restore land and sea. Technology in Society, 22, pp. 289–301.CrossRefGoogle Scholar
Azar, C., Lindgren, K., Obersteiner, M., Riahi, K., Vuuren, D., Elzen, K., Mollersten, K., and Larson, E. (2010). The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Climatic Change, 100(1), pp. 195–202.CrossRefGoogle Scholar
Bacovsky, D., Dallos, M., and Worgetter, M. (2010a). Status of 2nd Generation Biofuels Demonstration Facilities in June 2010. T39-P1b, IEA Bioenergy Task 39, 126 pp. Available at: www.ascension-publishing.com/BIZ/IEATask39-0610.pdf.
Bacovsky, D., Mabee, W., and Worgetter, M. (2010b). How close are second-generation biofuels?Biofuels, Bioproducts and Biorefining, 4(3), pp. 249–252.CrossRefGoogle Scholar
Badger, P. (2000). New process for torrefied wood manufacturing. Bioenergy Update, 2(4), pp. 1–4. Available at: www.bioenergyupdate.com/magazine/security/ NL0400/gbinl0400.pdf.Google Scholar
Badgley, C., Moghtader, J., Quintero, E., Zakem, E., Chappell, M.J., Aviles-Vazquez, K., Samulon, A., and Perfecto, I. (2007). Organic agriculture and the global food supply. Renewable Agriculture and Food Systems, 22(02), pp. 86–86.CrossRefGoogle Scholar
Baffes, J., and Haniotis, T. (2010). Placing the 2006/08 Commodity Price Boom into Perspective. Policy Research Working Paper 5371, The World Bank Group, Washington, DC, USA, 42 pp.Google Scholar
Bai, Z.G., Dent, D.L., Olsson, L., and Schaepman, M.E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24(3), pp. 223–234.CrossRefGoogle Scholar
Bailis, R., Cowan, A., Berrueta, V., and Masera, O. (2009). Arresting the killer in the kitchen: The promises and pitfalls of commercializing improved cookstoves. World Development, 37(10), pp. 1694–1705.CrossRefGoogle Scholar
Bain, R.L. (2007). World Biofuels Assessment, Worldwide Biomass Potential: Technology Characterizations. NREL/MP-510-42467, National Renewable Energy Laboratory, Golden, CO, USA, 140 pp.Google Scholar
Bain, R.L. (2011). Biopower Technologies in Renewable Electricity Alternative Futures. National Renewable Energy Laboratory, Golden, CO, USA, in press.Google Scholar
Bain, R.L., Amos, W.P., Downing, M., and Perlack, R.L. (2003). Biopower Technical Assessment: State of the Industry and the Technology. TP-510-33123, National Renewable Energy Laboratory, Golden, CO, USA, 277 pp.
Bairiganjan, S., Cheung, R., Delio, E.A., Fuente, D., Lall, S., and Singh, S. (2010). Power to the People: Investing in Clean Energy for the Base of the Pyramid in India. Centre for Development Finance, c/o Institute for Financial Management and Research, World Resources Institute, Washington, DC, USA, 74 pp.
Balat, M. (2011). Potential alternatives to edible oils for biodiesel production - A review of current work. Energy Conversion and Management, 52(2), pp. 1479–1492.CrossRefGoogle Scholar
Ball, B.C., Bingham, I., Rees, R.M., Watson, C.A., and Litterick, A. (2005). The role of crop rotations in determining soil structure and crop growth conditions. Canadian Journal of Soil Science, 85, pp. 557–577.CrossRefGoogle Scholar
Balmford, A., Green, R.E., and Scharlemann, J.P.W. (2005). Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production. Global Change Biology, 11(10), pp. 1594–1605.CrossRefGoogle Scholar
Barker, W.T., Lura, C.L., and Richardson, J.L. (2009). Soil organic matter and native plant production on the Missouri Coteau. North Dakota Farm Research, 44(2), pp. 14–21.Google Scholar
Barth, T., and Kleinert, M. (2008). Motor fuels from biomass pyrolysis. Chemical Engineering & Technology, 31(5), pp. 773–781.CrossRefGoogle Scholar
Bauen, A., Berndes, G., Junginger, M., Londo, M., Vuille, F., Ball, R., Bole, T., Chudziak, C., Faaij, A., and Mozaffarian, H. (2009a). Bioenergy: A Sustainable and Reliable Energy Source: A Review of Status and Prospects. IEA Bioenergy: ExCo:2009:06, 108 pp.
Bauen, A., Vuille, F., Watson, P., and Vad, K. (2009b). The RSB GHG accounting scheme. Feasibility of a meta-methodology and way forward. E4tech version 4.1, Roundtable on Sustainable Biofuels., Lausanne, Switzerland, 91 pp. Available at: rsb.epfl.ch/files/content/sites/rsb2/files/Biofuels/Documents%20and%20 Resources/09-10-08_E4Tech%20Report%20GHG%20Accounting_V4%20 1_08October09.pdf.
Baum, C., Leinweber, P., M. Weih N., Lamersdorf, and Dimitriou, I. (2009). Effects of short rotation coppice with willows and poplar on soil ecology. Landbauforschung vTI Agriculture and Forestry Research, 59(3), pp. 183–186.Google Scholar
Baum, S., Weih, M., Busch, G., Kroiher, F., and Bolte, A. (2009). The impact of Short Rotation Coppice plantations on phytodiversity. Landbauforschung vTI Agriculture and Forestry Research, 59(3), pp. 163–170.Google Scholar
Beer, T., and Grant, T. (2007). Life-cycle analysis of emissions from fuel ethanol and blends in Australian heavy and light vehicles. Journal of Cleaner Production, 15(8–9), pp. 833–837.CrossRefGoogle Scholar
Beer, T., Grant, T., Brown, R., Edwards, J., Nelson, P., Watson, H., and Williams, D. (2000). Life Cycle Emissions Analysis of Alternative Fuels for Heavy Vehicles. Atmospheric Research Report C/0411/1.1/F2, Australian Commonwealth Scientific and Research Organization, Aspendale, Australia, 148 pp.Google Scholar
Beer, T., Grant, T., Morgan, G., Lapszewicz, J., Anyon, P., Edwards, J., Nelson, P., Watson, H., and Williams, D. (2001). Comparison of Transport Fuels. EV45A/2/F3C, Australian Commonwealth Scientific and Research Organization, Aspendale, Australia, 485 pp.Google Scholar
Beringer, T.I.M., Lucht, W., and Schaphoff, S. (2011). Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Global Change Biology Bioenergy, doi:10.1111/j.1757-1707.2010.01088.x.CrossRefGoogle Scholar
Berndes, G. (2002). Bioenergy and water–the implications of large-scale bioenergy production for water use and supply. Global Environmental Change, 12(4), pp. 253–271.CrossRefGoogle Scholar
Berndes, G. (2008a). Future biomass energy supply: The consumptive water use perspective. International Journal of Water Resources Development, 24(2), pp. 235–245.CrossRefGoogle Scholar
Berndes, G. (2008b). Water Demand for Global Bioenergy Production: Trends, Risks and Opportunities. Report commissioned by the German Advisory Council on Global Change. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen, Berlin, Germany, 46 pp.Google Scholar
Berndes, G., and Hansson, J. (2007). Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels. Energy Policy, 35(12), pp. 5965–5979.CrossRefGoogle Scholar
Berndes, G., Hoogwijk, M., and Broek, R. (2003). The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25(1), pp. 1–28.CrossRefGoogle Scholar
Berndes, G., Fredrikson, F., and Borjesson, P. (2004). Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden. Agriculture, Ecosystems & Environment, 103(1), pp. 207–223.CrossRefGoogle Scholar
Berndes, G., Borjesson, P., Ostwald, M., and Palm, M. (2008). Multifunctional biomass production systems – an overview with presentation of specific applications in India and Sweden. Biofuels, Bioproducts and Biorefining, 2(1), pp. 16–25.CrossRefGoogle Scholar
Berndes, G., Bird, N., and Cowie, A. (2010). Bioenergy, Land Use Change and Climate Change Mitigation. IEA Bioenergy: ExCo:2010:03, International Energy Agency, Whakarewarewa, Rotorua, New Zealand, 20 pp. Available at: www.ieabioenergy. com/LibItem.aspx?id=6770.Google Scholar
Berrueta, V.M., Edwards, R.D., and Masera, O.R. (2008). Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy, 33(5), pp. 859–870.CrossRefGoogle Scholar
Bessou, C., Ferchaud, F., Gabrielle, B., and Mary, B. (2010). Biofuels, greenhouse gases and climate change. A review. Agronomy for Sustainable Development, doi:10.1051/agro/2009039, 132 pp.Google Scholar
Bhagwat, S.A., Willis, K.J., Birks, H.J.B., and Whittaker, R.J. (2008). Agroforestry: a refuge for tropical biodiversity?Trends in Ecology & Evolution, 23(5), pp. 261–267.CrossRefGoogle ScholarPubMed
Bhojvaid, P.P. (2007). Recent trends in biodiesel production. In: Biofuels: Towards a Greener and Secure Energy Future. Bhojvaid, P.P. (ed.), The Energy and Resources Institute (TERI) Press, New Delhi, India, pp. 119–136.Google Scholar
Bickel, P., and Friedrich, R. (eds.) (2005). ExternE - Externalities of Energy: Methodology 2005 Update. European Commission, Brussels, Belgium, 270 pp.Google Scholar
Biran, A., Abbot, J., and Mace, R. (2004). Families and firewood: A comparative analysis of the costs and benefits of children in firewood collection and use in two rural communities in sub-Saharan Africa. Human Ecology, 32(1), pp. 1–25.CrossRefGoogle Scholar
Blanco-Canqui, H., and Lal, R. (2009). Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Science Society of America Journal, 73(2), pp. 418–426.CrossRefGoogle Scholar
Blanco-Canqui, H., Lal, R., Post, W.M., Izaurralde, R.C., and Owens, L.B. (2006). Rapid changes in soil carbon and structural properties due to stover removal from no-till corn plots. Soil Science, 171(6), pp. 468–482.CrossRefGoogle Scholar
,BNDES/CGEE (2008). Sugarcane-Based Bioethanol: Energy for Sustainable Development. Brazilian Development Bank and Center for Strategic Studies and Management Science, Technology and Innovation, Rio de Janeiro, Brazil, 304 pp.Google Scholar
Bohlmann, G.M., and Cesar, M.A. (2006). The Brazilian opportunity for biorefineries. Industrial Biotechnology, 2(2), pp. 127–132.CrossRefGoogle Scholar
Boman, C., Forsberg, B., and Sandstrom, T. (2006). Shedding new light on wood smoke: a risk factor for respiratory health. European Respiratory Journal, 27(3), pp. 446–447.CrossRefGoogle ScholarPubMed
Bon, E.P.S., and Ferrara, M.A. (2007). Bioethanol production via enzymatic hydrolysis of cellulosic biomass. In: FAO Symposium on the Role of Agricultural Biotechnologies for Production of Bioenergy in Developing Countries, 12 October 2007, Food and Agriculture Organization, Rome, Italy, 11 pp. Available at: http://www.fao.org/biotech/docs/bon.pdf.Google Scholar
Börjesson, P. (2000). Economic valuation of the environmental impact of logging residue recovery and nutrient compensation. Biomass and Bioenergy, 19(3), pp. 137–152.CrossRefGoogle Scholar
Borjesson, P. (2009). Good or bad bioethanol from a greenhouse gas perspective – What determines this?Applied Energy, 86(5), pp. 589–594.CrossRefGoogle Scholar
Borjesson, P., and Berndes, G. (2006). The prospects for willow plantations for wastewater treatment in Sweden. Biomass and Bioenergy, 30(5), pp. 428–438.CrossRefGoogle Scholar
Borowitzka, M.A., Osinga, R., Tramper, J., Burgess, J.G., and Wijffels, R.H. (1999). Commercial production of microalgae: ponds, tanks, and fermenters. Progress in Industrial Microbiology, 35, pp. 313–321.CrossRefGoogle Scholar
Bouwman, A.F., Boumans, L.J.M., and Batjes, N.H. (2002). Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16(4), 13 pp.CrossRefGoogle Scholar
Bradley, D., Diesenreiter, F., Wild, M., and Tromborg, E. (2009). World Biofuel Maritime Shipping Study. IEA Bioenergy Task 40, IEA, Paris, France, 38 pp.Google Scholar
Bradley, R.L., Olivier, A., Thevathasan, N., and Whalen, J. (2008). Environmental and economic benefits of tree-based intercropping systems. Policy Options, February, pp. 46–49. Available at: www.irpp.org/po/archive/feb08/bradley.pdf.Google Scholar
Bravo, R., Masera, O., Chalico, T., Pandey, D., Riegelhaupt, E., and Uhlig, A. (2010). Case-studies from Brazil, India and Mexico. Food and Agriculture Organization, Rome, Italy, 80 pp.Google Scholar
Bridgwater, A., Czernik, S., Diebold, J., Meier, D., Oasmaa, A., Peacocke, C., Piskorz, J., and Radlein, D. (2003). Fast Pyrolysis of Biomass: A Handbook. CPL Press, Berks, UK, 180 pp.Google Scholar
Bridgwater, A. Ed. (2007). Success & Visions for Bioenergy: Thermal processing of biomass for bioenergy, biofuels and bioproducts. CPL Scientific Publishing Services Ltd., CD-ROM, ISBN 9781872691282.Google Scholar
Bringezu, S., Schuetz, H., Brien, M. O, Kauppi, L., Howarth, R., and McNeely, J. (2009). Towards Sustainable Production and Use of Resources: Assessing Biofuels. United Nations Environment Programme, Paris, France, 102 pp.Google Scholar
Bruce, N., Rehfuess, E., Mehta, S., Hutton, G., and Smith, K.R. (2006). Indoor air pollution. In: Disease Control Priorities in Developing Countries. 2nd ed. World Bank Group, Washington, DC, USA, pp. 793–815.
Bruinsma, J. (2009). The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050? In: Expert Meeting on How to Feed the World in 2050, 24–26 June 2009, Economic and Social Development Department, Food and Agriculture Organization of the United Nations, Rome, Italy, 33 pp.Google Scholar
Brunner, A.M., DiFazio, S.P., and Groover, A.T. (2007). Forest genomics grows up and branches out. New Phytologist, 174(4), pp. 710–713.CrossRefGoogle ScholarPubMed
Buchholz, T., Rametsteiner, E., Volk, T., and Luzadis, V. (2009). Multi Criteria Analysis for bioenergy systems assessments. Energy Policy, 37(2), pp. 484–495.CrossRefGoogle Scholar
Bureau, J.-C., Guyomard, H., Jacquet, F., and Treguer, D. (2010). European biofuel policy: How far will public support go? In: Handbook of Bioenergy Economics and Policy. Khanna, M., Scheffran, J., and Zilberman, D. (eds.), Springer, Heidelberg, Germany, pp. 401–423.CrossRefGoogle Scholar
Bush, D.R., and Leach, J.E. (2007). Translational genomics for bioenergy production: There's room for more than one model. The Plant Cell, 19(10), pp. 2971–2973.CrossRefGoogle ScholarPubMed
Calder, I., Amezaga, J., Bosch, J., Aylward, B., and Fuller, L. (2004). Forest and water policies: the need to reconcile public and science conceptions. Geologica acta, 2(2), pp. 157–166.Google Scholar
Campbell, J.E., Lobell, D.B., and Field, C.B. (2009). Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science, 324(5930), pp. 1055–1057.CrossRefGoogle ScholarPubMed
,CARB (2009). Proposed Regulation to Implement the Low Carbon Fuel Standard. California Environmental Protection Agency, Air Resources Board, Stationary Source Division, Sacramento, California, 374 pp.
Carlsson-Kanyama, A., and Shanahan, H. (2003). Food and life cycle energy inputs: consequences of diet and ways to increase efficiency. Ecological Economics, 44(2–3), pp. 293–307.CrossRefGoogle Scholar
Carolan, J., Joshi, S., and Dale, B.E. (2007). Technical and financial feasibility analysis of distributed bioprocessing using regional biomass pre-processing centers. Journal of Agricultural & Food Industrial Organization, 5(2) Article 10, 29 pp. Available at: www.bepress.com/jafio/vol5/iss2/art10.CrossRefGoogle Scholar
Carpita, N.C., and McCann, M.C. (2008). Maize and sorghum: genetic resources for bioenergy grasses. Trends in Plant Science, 13(8), pp. 415–420.CrossRefGoogle ScholarPubMed
Carslaw, K.S., Boucher, O., Spracklen, D.V., Mann, G.W., Rae, J.G.L., Woodward, S., and Kulmala, M. (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10(4), pp. 1701–1737.CrossRefGoogle Scholar
Cascone, R. (2008). Biobutanol: a replacement for bioethanol? In: Chemical Engineering Progress Special Edition Biofuels, 104, pp. S4–S9.Google Scholar
Cassman, K.G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 96(11), pp. 5952–5959.CrossRefGoogle ScholarPubMed
Cassman, K.G., Dobermann, A., Walters, D.T., and Yang, H. (2003). Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources, 28(1), pp. 315–358.CrossRefGoogle Scholar
Castiglioni, P., Warner, D., Bensen, R.J., Anstrom, D.C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., D'Ordine, R., Navarro, S., Back, S., Fernandes, M., Targolli, J., Dasgupta, S., Bonin, C., Luethy, M.H., and Heard, J.E. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology, 147(2), pp. 446–455.CrossRefGoogle ScholarPubMed
,CBOT (2006). CBOT® Soybean Crush Reference Guide. Board of Trade of the City of Chicago, Chicago, IL, USA.
Chakravorty, U., Hubert, M., and Nostbakken, L. (2009). Fuel versus food. Annual Review of Resource Economics, 1(1), pp. 645–663.CrossRefGoogle Scholar
Chapotin, S.M., and Wolt, J. (2007). Genetically modified crops for the bioeconomy: meeting public and regulatory expectations. Transgenic Research, 16(6), pp. 675–688.CrossRefGoogle ScholarPubMed
Chapple, C., Ladisch, M., and Meilan, R. (2007). Loosening lignin's grip on biofuel production. Nature Biotechnology, 25(7), pp. 746–748.CrossRefGoogle ScholarPubMed
Cheng, J.J., and Timilsina, G.R. (2010). Advanced Biofuel Technologies: Status and Barriers. Policy Research Working Paper 5411, The World Bank, Washington, DC, USA, 47 pp.Google Scholar
Cherubini, F., and Stromman, A.H. (2010). Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresource Technology, 102(2), pp. 437–451.CrossRefGoogle ScholarPubMed
Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., and Woess-Gallasch, S. (2009a). Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling, 53(8), pp. 434–447.CrossRefGoogle Scholar
Cherubini, F., Jungmeier, G., Mandl, M., M. Wellisch C., Philips, and Joergensen, H. (2009b). Biorefineries: Adding Value to the Sustainable Utilisation of Biomass. IEA Bioenergy Publication T42:2009:01, IEA Bioenergy Task 42 on Biorefineries, 16 pp.Google Scholar
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), pp. 294–306.CrossRefGoogle ScholarPubMed
Chiu, Y.-W., Walseth, B., and Suh, S. (2009). Water embodied in bioethanol in the United States. Environmental Science & Technology, 43(8), pp. 2688–2692.CrossRefGoogle ScholarPubMed
Chum, H.L., and Overend, R.P. (2003). Biomass and bioenergy in the United States. In: Advances in Solar Energy: An Annual Review of Research and Development. Vol. 15. Goswami, D.Y. (ed.), American Solar Energy Society (ASES), Boulder, CO, USA, pp. 83–148.Google Scholar
Cirne, D.G., Lehtomaki, A., Bjornsson, L., and Blackall, L.L. (2007). Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. Journal of Applied Microbiology, 103(3), pp. 516–527.CrossRefGoogle ScholarPubMed
Clayton, R., McDougall, G., Perry, M., Doyle, D., Doyle, J., and O'Connor, D. (2010). A Study of Employment Opportunities from Biofuel Production in APEC Economies. APEC#210-RE-01.9, APEC Energy Working Group, Asia-Pacific Economic Cooperation (APEC), Singapore, Singapore, 82 pp.Google Scholar
Clifton-Brown, J.C., and Lewandowski, I. (2000). Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Annals of Botany, 86(1), pp. 191–200.CrossRefGoogle Scholar
Clifton-Brown, J., Stampfl, P.F., and Jones, M.B. (2004). Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biology, 10(4), pp. 509–518.CrossRefGoogle Scholar
Cline, W.R. (2007). Global Warming and Agriculture: Impact Estimates by Country. Peterson Institute for International Economics, Washington, DC, USA, 201 pp.Google Scholar
Colla, L.M., Oliveira Reinehr, C., Reichert, C., and Costa, J.A.V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), pp. 1489–1493.CrossRefGoogle ScholarPubMed
Cortright, R.D., Davda, R.R., and Dumesic, J.A. (2002). Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418(6901), pp. 964–967.CrossRefGoogle ScholarPubMed
Cremers, M.F.G. (2009). Deliverable 4, Technical Status of Biomass Co-firing. 50831165-Consulting 09-1654, IEA Bioenergy Task 32, Arnhem, The Netherlands, 43 pp.Google Scholar
Crutzen, P., Moiser, A., Smith, K., and Winiwarter, W. (2007). N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 7, pp. 11191–11205.Google Scholar
Curtis, B. (2010). 2008-2009 Review U.S. Biofuels Industry: Mind the Gap. Concentric Energies & Resource Group, Inc., Los Gatos, CA, USA, 52 pp.Google Scholar
Cusick, R.D., Bryan, B., Parker, D.S., Merrill, M.D., Mehanna, M., Kiely, P.D., Liu, G., and Logan, B.E. (2011). Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Applied Microbiology and Biotechnology, 89, pp. 2053–2063.CrossRefGoogle ScholarPubMed
da Costa Sousa, L., Chundawat, S.P.S., Balan, V., and Dale, B.E. (2009). ‘Cradle-tograve’ assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology, 20(3), pp. 339–347.CrossRefGoogle ScholarPubMed
Dale, B.E., Allen, M.S., Laser, M., and Lynd, L.R. (2009). Protein feeds coproduction in biomass conversion to fuels and chemicals. Biofuels, Bioproducts and Biorefining, 3(2), pp. 219–230.CrossRefGoogle Scholar
Dale, B.E., Bals, B.D., Kim, S., and Eranki, P. (2010). Biofuels done right: Land efficient animal feeds enable large environmental and energy benefits. Environmental Science & Technology, 44(22), pp. 8385–8389.CrossRefGoogle ScholarPubMed
Dale, V.H., Efroymson, R.A., and Kline, K.L. (2011). The land use-climate changeenergy nexus. Landscape Ecology, in press.Google Scholar
Damen, K., and Faaij, A. (2006). A greenhouse gas balance of two existing international biomass import chains. Mitigation and Adaptation Strategies for Global Change, 11(5), pp. 1023–1050.CrossRefGoogle Scholar
Danielsen, F., Beukema, H., Burgess, N.D., Parish, F., Bruhl, C.A., Donald, P.F., Murdiyarso, D., Phalan, B.E.N., Reijnders, L., Struebig, M., and Fitzherbert, E.B. (2009). Biofuel plantations on forested lands: Double jeopardy for biodiversity and climate (Plantaciones de biocombustible en terrenos boscosos: Doble peligro para la biodiversidad y el clima). Conservation Biology, 23(2), pp. 348–358.CrossRefGoogle Scholar
Dantas, D.N., Mauad, F.F., and Ometto, A.R. (2009). Potential for generation of thermal and electrical energy from biomass of sugarcane: A exergetic analysis. In: 11th International Conference on Advanced Materials, Rio de Janeiro, Brazil, 20–25 September 2009, p. 131.Google Scholar
Darzins, A., Pienkos, P., and Edye, L. (2010). Current Status and Potential for Algal Biofuels Production. Report T39-02, IEA Bioenergy Task 39, 128 pp.Google Scholar
Daugherty, E. (2001). Biomass Energy Systems Efficiency Analyzed through a LCA Study. Masters Thesis, Lund University, Gothenburg, Sweden, 45 pp.
Davda, R.R., Shabaker, J.W., Huber, G.W., Cortright, R.D., and Dumesic, J.A. (2005). A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 56(1-2), pp. 171–186.CrossRefGoogle Scholar
Davidson, E.A. (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2(9), pp. 659–662.CrossRefGoogle Scholar
Boer, J., Helms, M., and Aiking, H. (2006). Protein consumption and sustainability: Diet diversity in EU-15. Ecological Economics, 59(3), pp. 267–274.CrossRefGoogle Scholar
Fraiture, C., and Berndes, G. (2009). Biofuels and water. In: Biofuels: Environmental Consequences and Interactions with Changing Land Use. Howarth, R.W. and Bringezu, S. (eds.), Proceedings of the SCOPE - Scientific Committee on Problems of the Environment International Biofuels Project Rapid Assessment, Gummersbach, Germany, 22–25 September 2009, pp. 139–152.Google Scholar
Fraiture, C., Giordano, M., and Liao, Y. (2008). Biofuels and implications for agricultural water uses: blue impacts of green energy. Water Policy, 10(S1), pp. 67–81.CrossRefGoogle Scholar
Ugarte, D.G., and Hellwinckel, C.C. (2010). The problem is the solution: The role of biofuels in the transition to a regenerative agriculture. In: Plant Biotechnology for Sustainable Production of Energy and Co-products. Mascia, P.N., Scheffran, J., and Widholm, J.M. (eds.), Springer-Verlag, Berlin and Heidelberg, Germany, 475 pp.Google Scholar
Ugarte, D.G., He, L., Jensen, K.L., and English, B.C. (2010). Expanded ethanol production: Implications for agriculture, water demand, and water quality. Biomass and Bioenergy, 34(11), pp. 1586–1596.CrossRefGoogle Scholar
Wit, M., and Faaij, A. (2010). European biomass resource potential and costs. Biomass and Bioenergy, 34(2), pp. 188–202.CrossRefGoogle Scholar
Wit, M., Junginger, M., Lensink, S., Londo, M., and Faaij, A. (2010). Competition between biofuels: Modeling technological learning and cost reductions over time. Biomass and Bioenergy, 34(2), pp. 203–217.CrossRefGoogle Scholar
,DEFRA (2009). The 2007/08 Agricultural Price Spikes: Causes and Policy Implications. Department for Environment Food and Rural Affairs (DEFRA), HM Government, London, UK, 123 pp.Google Scholar
Delta-T Corporation (1997). Proprietary information. Williamsburg, VA, USA.
DeLucchi, M.A. (2005). A Multi-Country Analysis of Lifecycle Emissions from Transportation Fuels and Motor Vehicles. UCD-ITS-RR-05-10, Institute of Transportation Studies, University of California at Davis, Davis, CA, USA, 205 pp.Google Scholar
DeLucchi, M.A. (2010). A Conceptual Framework for Estimating Bioenergy-Related Land-Use Change and Its Impacts over Time. Biomass and Bioenergy, 1-24, doi:10.1016/j.biombioe.2010.11.028 (2010).CrossRef
DeLuchi, M.A. (1993). Greenhouse-gas emissions from the use of new fuels for transportation and electricity. Transportation Research Part A, 27A(3), pp. 187–191.Google Scholar
DeMeo, E.A., and Galdo, J.F. (1997). Renewable Energy Technology Characterizations. TR-109496, U.S. Department of Energy and Electric Power Research Institute, Washington, DC, USA, 283 pp.Google Scholar
Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50, pp. 14–34.CrossRefGoogle Scholar
Elzen, M., Vuuren, D., and Vliet, J. (2010). Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs. Climatic Change, 99(1), pp. 313–320.CrossRefGoogle Scholar
Dias de Moraes, M.A.F. (2007). Indicadores do mercado de trabalho do sistema agroindustrial da cana-de-açúcar do Brasil no período 1992-2005. Estudos Econ. (São Paulo), 37(4), pp. 875–902.CrossRefGoogle Scholar
Diaz-Balteiro, L., and Rodriguez, L.C.E. (2006). Optimal rotations on Eucalyptus plantations including carbon sequestration – A comparison of results in Brazil and Spain. Forest Ecology and Management, 229(1-3), pp. 247–258.CrossRefGoogle Scholar
DiTomaso, J.M., Reaser, J.K., Dionigi, C.P., Doering, O.C., Chilton, E., Schardt, J.D., and Barney, J.N. (2010). Biofuel vs. bioinvasion: seeding policy priorities. Environmental Science & Technology, 44(18), pp. 6906–6910.CrossRefGoogle ScholarPubMed
Dominguez-Faus, R., Powers, S.E., Burken, J.G., and Alvarez, P.J. (2009). The water footprint of biofuels: A drink or drive issue? Environmental Science & Technology, 43(9), pp. 3005–3010.CrossRefGoogle ScholarPubMed
Dondini, M., Hastings, A., Saiz, G., Jones, M.B., and Smith, P. (2009). The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. Global Change Biology Bioenergy, 1(6), pp. 413–425.CrossRefGoogle Scholar
Donner, S.D., and Kucharik, C.J. (2008). Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proceedings of the National Academy of Sciences, 105(11), pp. 4513–4518.CrossRefGoogle ScholarPubMed
Doornbosch, V., and Steenblik, R. (2008). Biofuels: Is the cure worse than the disease? In: Round Table on Sustainable Development, 11-12 September 2007, Organisation for Economic Co-operation and Development, Paris, France.Google Scholar
Dornburg, V., and Faaij, A.P.C. (2001). Efficiency and economy of wood-fired biomass energy systems in relation to scale regarding heat and power generation using combustion and gasification technologies. Biomass and Bioenergy, 21(2), pp. 91–108.CrossRefGoogle Scholar
Dornburg, V., and Faaij, A.P.C. (2005). Cost and CO2-emission reduction of biomass cascading: methodological aspects and case study of SRF poplar. Climatic Change, 71(3), pp. 373–408.CrossRefGoogle Scholar
Dornburg, V., and Marland, G. (2008). Temporary storage of carbon in the biosphere does have value for climate change mitigation: a response to the paper by Miko Kirschbaum. Mitigation and Adaptation Strategies for Global Change, 13(3), pp. 211–217.CrossRefGoogle Scholar
Dornburg, V., Vandam, J., and Faaij, A. (2007). Estimating GHG emission mitigation supply curves of large-scale biomass use on a country level. Biomass and Bioenergy, 31(1), pp. 46–65.CrossRefGoogle Scholar
Dornburg, V., Faaij, A., Verweij, P., Langeveld, H., Ven, G., Wester, F., Keulen, H., Diepen, K. van, Meeusen, M., Banse, M., Ros, J., Vuuren, D., Born, G.J., Oorschot, M., Smout, F., Vliet, J., Aiking, H., Londo, M., Mozaffarian, H., Smekens, K., Lysen, E., and Egmond, S. (2008). Assessment of Global Biomass Potentials and their Links to Food, Water, Biodiversity, Energy Demand and Economy. WAB 500102 012, The Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands, 108 pp.Google Scholar
Dornburg, V., Vuuren, D., Ven, G., Langeveld, H., Meeusen, M., Banse, M., Oorschot, M., Ros, J., Born, G.J., Aiking, H., Londo, M., Mozaffarian, H., Verweij, P., Lysen, E., and Faaij, A. (2010). Bioenergy revisited: Key factors in global potentials of bioenergy. Energy & Environmental Science, 3, pp. 258–267.CrossRefGoogle Scholar
Drigo, R., Chirici, G., Lasserre, B., and Marchetti, M. (2007). Analisi su base geografica della domanda e dell'offerta di combustibili legnosi in Italia. (Geographical analysis of demand and supply of woody fuel in Italy). L'italia Forestale e Montana, LXII(5/6), pp. 303–324.Google Scholar
Drigo, R., Anschau, A., Marcos, N. Flores, and Carballo, S. (2009). Análisis del balance de energia derivada de biomasa en Argentina – WISDOM Argentina. Project TCP/ARG/3103 of FAO Dendroenergy, FAO Forestry Department, Rome, Italy, 102 pp.Google Scholar
Dudley, T.L. (2000). Arundo donax. In: Invasive Plants of California's Wildlands. Bossard, C. and Randall, J. (eds.), University of California Press, Berkeley, CA, USA, pp. 53–58.Google Scholar
Dufey, A. (2006). Biofuels Production, Trade and Sustainable Development: Emerging Issues. International Institute for Environment and Development, London, UK, 62 pp.Google Scholar
Dupraz, C., and Liagre, F. (2008). Agroforestry: Trees and Crops. La France Agricole, Paris, France.Google Scholar
Dutta, A., Dowe, N.Ibsen, K.N., Schell, D.J., and Aden, A. (2010). An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnology Progress, 26(1), pp. 64–72.Google Scholar
Duvick, D.N., and Cassman, K.G. (1999). Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Science, 39(6), pp. 1622–1630.CrossRefGoogle Scholar
Dymond, C.C., Titus, B.D., Stinson, G., and Kurz, W.A. (2010). Future quantities and spatial distribution of harvesting residue and dead wood from natural disturbances in Canada. Forest Ecology and Management, 260(2), pp. 181–192.CrossRefGoogle Scholar
E4tech (2009). Review of the Potential for Biofuels in Aviation. Committee on Climate Change (CCC) of the U.K. Government, London, UK, 117 pp.
E4tech (2010). Biomass Prices in the Heat and Electricity Sectors in the UK. Report prepared for the UK Department of Energy and Climate Change. URN 10D/546, E4tech, London, UK, 33 pp.
Easterling, W.E., Morton, J., Soussana, J.F., Schmidhuber, J., Tubiello, F.N., Aggarwal, P.K., Batima, P., Brander, K.M., Erda, L., Howden, S.M., and Kirilenko, A. (2007). Food, fibre and forest products. In: Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry, M.L., Canziani, O.F., Palutikof, J.P., Linden, P.J., and Hanson, C.E. (eds.), Cambridge University Press, pp. 273–313.Google Scholar
Eaton, J., McGoff, N., Byrne, K., Leahy, P., and Kiely, G. (2008). Land cover change and soil organic carbon stocks in the Republic of Ireland 1851–2000. Climatic Change, 91(3), pp. 317–334.CrossRefGoogle Scholar
Ecobilan, (2002). Energy and Greenhouse Gas Balances of Biofuels' Production Chains in France. Ecobilan, Neuilly-sur-Seine Cedex, France, 9 pp.Google Scholar
Econ, Poyry (2008). Current Bioenergy Application and Conversion Technologies in the Nordic Countries. 2008-052, Nordic Energy Research, Copenhagen, Denmark, 37 pp.Google Scholar
Edenhofer, O., Knopf, B., Leimbach, M., and Bauer, N. (2010). The economics of low stabilization. The Energy Journal, 31(Special Issue 1), pp. 57–90.CrossRefGoogle Scholar
Edgerton, M.D. (2009). Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiology, 149(1), pp. 7–13.CrossRefGoogle ScholarPubMed
Edwards, R., Mulligan, D., and Marelli, L. (2010). Indirect Land Use Change from Increased Biofuel Demand. Comparison of Models and Results for Marginal Biofuels Production from Different Feedstocks. EUR 24485 EN-2010, European Commission, Joint Research Centre, Institute for Energy, Ispra, Italy, 150 pp.Google Scholar
Edwards, R., Larivé, J.F., Mahieu, V., and Rouveirolles, P. (2007). Well-To-Wheels Analysis of Future Automotive Fuels and Power Trains in the European Context. Version 2c, Joint Research Center, Brussels, Belgium, 88 pp.Google Scholar
Edwards, R., Larivé, J.F., Mahieu, V., and Rouveirolles, P. (2008). Well-To-Wheels analysis of future automotive fuels and power trains in the European context. Version 3, Joint Research Center, Brussels, Belgium, 43 pp.Google Scholar
EEA (2006). How Much Bioenergy can Europe Produce without Harming the Environment? European Environment Agency (EEA), Copenhagen, Denmark, 72 pp.
EEA (2007). Estimating the Environmentally Compatible Bio-energy Potential from Agriculture. European Environment Agency (EEA), Copenhagen, Denmark.
Egsgaard, H.U., Hansen, P., Arendt, J., Glarborg, P., and Nielsen, C. (2009). Combustion and gasification technologies. In: Risø Energy Report 2. Risø, Roskilde, Denmark, pp. 35–39.Google Scholar
EIA (2009). 2006 Energy Consumption by Manufacturers – Data Table 7.2. U.S. Energy Information Administration, U.S. Department of Energy, Washington, DC, USA.
EIA (2010a). Annual Energy Review, DOE/EIA-0384(2009) updated August 2011, Energy Information Administration, U.S. Department of Energy, Washington, DC, USA.
EIA (2010b). Updated Capital Costs for Electricity Generation Plants. U.S. Energy Information Administration, U.S. Department of Energy, Washington, DC, USA.
EISA, 2007. Energy Independence and Security Act, United States Congress, Public Law 110-140. U.S. Government Printing Office, Washington, DC, USA.
Eisenbies, M., Vance, E., Aust, W., and Seiler, J. (2009). Intensive utilization of harvest residues in southern pine plantations: Quantities available and implications for nutrient budgets and sustainable site productivity. BioEnergy Research, 2(3), pp. 90–98.CrossRefGoogle Scholar
Elander, R., Dale, B., Holtzapple, M., Ladisch, M., Lee, Y., Mitchinson, C., Saddler, J., and Wyman, C. (2009). Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose, 16(4), pp. 649–659.CrossRefGoogle Scholar
Elferink, E.V., and Nonhebel, S. (2007). Variations in land requirements for meat production. Journal of Cleaner Production, 15, pp. 1778–1786.CrossRefGoogle Scholar
Elliott, D.C. (2008). Catalytic hydrothermal gasification of biomass. Biofuels, Bioproducts, Biorefining, 2, pp. 254–265.CrossRefGoogle Scholar
Elobeid, A., and Hart, C. (2007). Ethanol expansion in the food versus fuel debate: How will developing countries fare? Journal of Agricultural & Food Industrial Organization, 5(2), pp. 1–21.CrossRefGoogle Scholar
EMBRAPA (2010). Brazilian Sugarcane Agroecological Zoning (in English), Zoneamento Agroecológico da Cana de Açúcar (in Portuguese). Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricultural Research Corporation, EMBRAPA), Brasilia, Brazil, 58 pp.
EPA (2010). Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. EPA-420-R-10-006, Environmental Protection Agency, Washington, DC, USA, 1120 pp.
EPE (2008). Plano Decenal De Expansao De Energia 2008 – 2017. Ministry of Mines and Energy Secretariat of Planning and Energy Development, Brasilia, Brazil, 354 pp.
EPE (2010). 2010 Balanco Energetico Nacional - Ano Base 2009. CDU 620.9:553.04(81), Ministry of Mines and Energy and Energy Planning Enterprise (EPE), Brasilia, Brazil, 271 pp.
EPRI (2008). Technical Performance Indicators for Biomass Energy. Electric Power Research Institute, Palo Alto, CA, USA, 86 pp.
Ericsson, K., and Nilsson, L.J. (2006). Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass and Bioenergy, 30(1), pp. 1–15.CrossRefGoogle Scholar
Ericsson, K., Rosenqvist, H., and Nilsson, L.J. (2009). Energy crop production costs in the EU. Biomass and Bioenergy, 33(11), pp. 1577–1586.CrossRefGoogle Scholar
Erikson, S., and Prior, M. (1990). The Briquetting of Agricultural Wastes for Fuel. FAO paper No. 11, Food and Agriculture Organization, Rome, Italy.Google Scholar
EurObserv'ER (2010). Biofuels barometer/Baromètre Biocarburant Observ'ER. Systèmes Solaires le journal des énergies renouvelables, Paris, France, pp. 72–96.
European Commission (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources. European Commission, Brussels, Belgium.
European Commission (2010). Report from the commission to the council and the European parliament on sustainability requirements for the use of solid and gaseous biomass sources in electricity, heating and cooling. SEC(2010) 65, European Commission, Brussels, Belgium, 20 pp.
Evans, L.T. (2003). Agricultural intensification and sustainability. Outlook on Agriculture, 32(2), pp. 83–89.CrossRefGoogle Scholar
Evenson, R.E., and Gollin, D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000. Science, 300(5620), pp. 758–762.CrossRefGoogle ScholarPubMed
Ezeji, T., Quereshi, N., and Blaschek, H.P. (2007a). Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnology and Bioengineering, 97(6), pp. 1460–1467.CrossRefGoogle ScholarPubMed
Ezeji, T.C., Qureshi, N., and Blaschek, H.P. (2007b). Bioproduction of butanol from biomass: from genes to bioreactors. Current Opinion in Biotechnology, 18(3), pp. 220–227.CrossRefGoogle ScholarPubMed
Ezzati, M., Lopez, A., Hoorn, S. Vander, Rodgers, A., and Murray, C.L.J. (2002). Comparative Risk Assessment Collaborative Group. Selected major risk factors and global regional burden of disease. The Lancet, 360(9343), pp. 1347–1360.CrossRefGoogle Scholar
Ezzati, M., Bailis, R., Kammen, D.M., Holloway, T., Price, L., Cifuentes, L.A., Barnes, B., Chaurey, A., and Dhanapala, K.N. (2004). Energy management and global health. Annual Review of Environment and Resources, 29(1), pp. 383–419.CrossRefGoogle Scholar
Faaij, A. (2006). Modern biomass conversion technologies. Mitigation and Adaptation Strategies for Global Change, 11(2), pp. 335–367.CrossRefGoogle Scholar
Fagernäs, L., Johansson, A., Wilén, C., Sipilä, K., Mäkinen, T., Helynen, S., Daugherty, E., Uil, H., Vehlow, J., Kåberger, T., and Rogulska, M. (2006). Bioenergy in Europe: Opportunities and Barriers. VTT Res. Notes 2532, VTT, Espoo, Finland, 122 pp.Google Scholar
Fallot, A., Saint-Andre, L., Maire, G. Le, Laclau, J.-P., Nouvellon, Y., Marsden, C., Bouillet, J.-P., Silva, T., Piketty, M.-G., and Hamel, O. (2009). Biomass sustainability, availability and productivity. Revue de Métallurgie Paris, 106(10), pp. 410–418.CrossRefGoogle Scholar
FAO (1985). Industrial charcoal making technologies. In: Industrial Charcoal Making. FAO Forestry Paper 63, FAO Forestry Department, Food and Agriculture Organization, Rome, Italy. Available at: www.fao.org/docrep/X5555E/x5555e02. htm#1.1%20what%20are%20industrial%20charcoal%20making%20methods.
FAO (2004). The State of Food and Agriculture 2003-2004 – Agricultural Biotechnology: Meeting the Needs of the Poor? 0081-4539, Food and Agriculture Organization, Rome, Italy, 196 pp.
FAO (2005). World Forest Assessment. Food and Agriculture Organization, Rome, Italy, 166 pp.
FAO (2006). Energy and Gender in Rural Sustainable Development. Food and Agriculture Organization, Rome, Italy, 46 pp.
FAO (2008a). The State of Food and Agriculture 2008 – Biofuels: Prospects, Risks, and Opportunities. Food and Agriculture Organization, Rome, Italy, 138 pp.
FAO (2008b). The role of agricultural biotechnologies for production of bioenergy in developing countries. In: Background Document to Conference 15 of the FAO Biotechnology Forum, 10 November to 14 December 2008, Food and Agriculture Organization, Rome, Italy.
FAO (2010a). What Woodfuels can do to Mitigate Climate Change. 0258-6150, Food and Agricultural Organization (FAO), Rome, Italy, 98 pp.
FAO (2010b). Criteria and Indicators for Sustainable Biofuels. FAO Forestry Paper 160, Food and Agricultural Organization (FAO), Rome, Italy, 102 pp.
FAOSTAT (2011). FAOSTAT. Food and Agriculture Organization, Rome, Italy. Available at:faostat.fao.org/default.aspx.
FAPRI (2009). FAPRI 2009: U.S. and World Agricultural Outlook. Food and Agricultural Policy Research Institute, Ames, Iowa, 411 pp.
Fargione, J., Hill, J., Tilman, D., Polasky, S., and Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), pp. 1235–1238.CrossRefGoogle ScholarPubMed
Farley, K.A., Jobbagy, E.G., and Jackson, R.B. (2005). Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology, 11(10), pp. 1565–1576.CrossRefGoogle Scholar
Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'Hare, M., and Kammen, D.M. (2006). Ethanol can contribute to energy and environmental goals. Science, 311(5760), pp. 506–508.CrossRefGoogle ScholarPubMed
Fearnside, P.M. (2008). The roles and movements of actors in the deforestation of Brazilian Amazonia. Ecology and Society, 13(23), pp. 23–55.CrossRefGoogle Scholar
Feng, Z., Stadt, K.J., and Lieffers, V.J. (2006). Linking juvenile white spruce density, dispersion, stocking, and mortality to future yield. Canadian Journal of Forest Research, 36, pp. 3173–3182.CrossRefGoogle Scholar
Field, C.B., Campbell, J.E., and Lobell, D.B. (2008). Biomass energy: the scale of the potential resource. Trends in Ecology & Evolution, 23(2), pp. 65–72.CrossRefGoogle ScholarPubMed
Fingerman, K.R., Torn, M.H., O'Hare, M.S., and Kammen, D.M. (2010). Accounting for the water impacts of ethanol production. Environmental Research Letters, 5(1), 014020 (7pp.).CrossRefGoogle Scholar
Firbank, L. (2008). Assessing the ecological impacts of bioenergy projects. BioEnergy Research, 1(1), pp. 12–19.CrossRefGoogle Scholar
Fischer, G., and Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy, 20(3), pp. 151–159.CrossRefGoogle Scholar
Fischer, G., Velthuizen, H., Shah, M., and Nachtergaele, F. (2002). Global Agro-ecological Assessment for Agriculture in the 21st Century: Methodology and Results. RR-02-02, International Institute for Applied Systems Analysis, Laxenburg, Austria, 156 pp.Google Scholar
Fischer, G., Nachtergaele, F., Prieler, S., Teixeira, F., Velthuizen, H., Verelst, L., and Wiberg, D. (2008). Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). Version 2, International Institute for Applied Systems Analysis and Food and Agriculture Organization, Laxenburg, Austria and Rome, Italy, 43 pp.Google Scholar
Fischer, G., Hizsnyik, E., Prieler, S., Shah, M., and Velthuizen, H. (2009). Biofuels and Food Security. The OPEC Fund for International Development (OFID) and International Institute of Applied Systems Analysis (IIASA), Vienna, Austria, 228 pp.Google Scholar
Fischer, G., Prieler, S., Velthuizen, H., Berndes, G., Faaij, A., Londo, M., and Wit, M. (2010). Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios. Biomass and Bioenergy, 34(2), pp. 173–187.CrossRefGoogle Scholar
Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Brühl, C.A., Donald, P.F., and Phalan, B. (2008). How will oil palm expansion affect biodiversity? Trends in Ecology & Evolution, 23(10), pp. 538–545.CrossRefGoogle ScholarPubMed
Fleming, J.S., Habibi, S., and MacLean, H.L. (2006). Investigating the sustainability of lignocellulose-derived fuels for light-duty vehicles. Transportation Research Part D: Transport and Environment, 11(2), pp. 146–159.CrossRefGoogle Scholar
Foley, J.A., DeFries, R., Asner, G.P., Carol, B., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., and Snyder, P.K. (2005). Global consequences of land use. Science, 309(5734), pp. 570–574.CrossRefGoogle ScholarPubMed
Folha (2005). Bagaço da cana será usado para fabricação de papel. Folha da Região - Araçatuba. São Paulo, Brazil.
Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., and Holling, C.S. (2004). Regime shifts, resilence, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35(1), pp. 557–581.CrossRefGoogle Scholar
Folke, C., Chapin, F.S., and Olsson, P. (2009). Transformations in ecosystem stewardship. In: Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World. Chapin, F.S. IIIKofinas, G.P., and Folke, C. (eds.), Springer Verlag, New York, NY, USA, pp. 103–128.CrossRefGoogle Scholar
Forman, J. (2003). The introduction of American plant species into Europe: issues and consequences. In: Plant Invasions: Ecological Threats and Management Solutions. Child, L., Brock, J. H., Brundu, G., Prach, K., Pysek, P., Wade, P. M., and Williamson, M. (eds.), Backhuys Publishers, Leiden, Netherlands, pp. 17–39.Google Scholar
Foust, T.D., Aden, A., Dutta, A., and Phillips, S. (2009). Economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion process. Cellulose, 16, pp. 547–565.CrossRefGoogle Scholar
Francis, G., Edinger, R., and Becker, K. (2005). A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Natural Resources Forum, 29(1), pp. 12–24.CrossRefGoogle Scholar
Fritsche, U., Hennenberg, K., and Hünecke, K. (2010). The “iLUC factor” as a Means to Hedge Risks of GHG Emissions from Indirect Land Use Change. Öko Institute, Darmstadt, Germany, 64 pp.Google Scholar
Fulton, L., Howes, T., and Hardy, J. (2004). Biofuels for Transport - An International Perspective. Organization for Economic Cooperation and Development and International Energy Agency, Paris, France, 210 pp.Google Scholar
GAIN (2009a). Biofuel's Impact on Food Crops (China). CH9059, Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 14 pp.
GAIN (2009b). Biofuel's Impact on Food Crops (Indonesia). ID9017, Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, 7 pp.
GAIN (2009c). Biofuel's Impact on Food Crops (Thailand). TH9047, Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 11 pp.
GAIN (2010a). Biofuel's Impact on Food Crops (Argentina). Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 15 pp.
GAIN (2010b). Biofuel's Impact on Food Crops (Brazil). BR10006, Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 52 pp.
GAIN (2010c). Biofuel's Impact on Food Crops (Canada). CA0023, Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 34 pp.
GAIN (2010d). Biofuel's Impact on Food Crops (India). IN1058, Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 11 pp.
GAIN (2010e). Biofuel's Impact on Food Crops (Korea). KS1001, Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 6 pp.
GAIN (2010f). Biofuel's Impact on Food Crops (Malaysia). MY0008, Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 9 pp.
GAIN (2010g). Biofuel's Impact on Food Crops (Peru). Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 7 pp.
GAIN (2010h). Biofuel's Impact on Food Crops (Philippines). Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 21 pp.
GAIN (2010i). Biofuel's Impact on Food Crops (Thailand). TH0098, Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 15 pp.
GAIN (2010j). Biofuel's Impact on Food Crops (Turkey). Global Agriculture Information Network, United States Department of Agriculture, Washington, DC, USA, 6 pp.
Galdos, M.V., Cerri, C.C., Lal, R., Bernoux, M., Feigl, B., and Cerri, C.E.P. (2010). Net greenhouse gas fluxes in Brazilian ethanol production systems. Global Change Biology Bioenergy, 2(1), pp. 37–44.CrossRefGoogle Scholar
Gallagher, E. (2008). The Gallagher Review of the Indirect Effects of Biofuels Production. Renewable Fuels Agency, London, UK, 92 pp.Google Scholar
Gallagher, P., Dikeman, M., Fritz, J., Wailes, E., Gauther, W., and Shapouri, H. (2003). Biomass from Crop Residues: Cost and Supply Estimates. Agricultural Economic Report No. 819, Economic Research Service, United States Department of Agriculture, Washington, DC, USA, 30 pp.Google Scholar
Gan, J. (2007). Supply of biomass, bioenergy, and carbon mitigation: Method and application. Energy Policy, 35(12), pp. 6003–6009.CrossRefGoogle Scholar
Gan, J., and Smith, C. (2010). Integrating biomass and carbon values with soil productivity loss in determining forest residue removals. Biofuels, 1(4), pp. 539–546.CrossRefGoogle Scholar
García-Frapolli, E., Schilmann, A., Berrueta, V.M., Riojas-Rodríguez, H., Edwards, R.D., Johnson, M., Guevara-Sanginés, A., Armendariz, C., and Masera, O. (2010). Beyond fuelwood savings: Valuing the economic benefits of introducing improved biomass cookstoves in the Purépecha region of Mexico. Ecological Economics, 69(12), pp. 2598–2605.CrossRefGoogle Scholar
Garg, V.K. (1998). Interaction of tree crops with a sodic soil environment: potential for rehabilitation of degraded environments. Land Degradation & Development, 9(1), pp. 81–93.3.0.CO;2-R>CrossRefGoogle Scholar
Garrison, T. (2008). Essentials of Oceanography. 5th ed., Brooks/Cole Cengage Learning, Belmont, CA, USA, 464 pp.Google Scholar
GBEP (2008). A Review of the Current State of Bioenergy Development in G8+5 Countries. Global Bioenergy Partnership (GBEP), Food and Agriculture Organization of the United Nations, Rome, Italy, 278 pp.
Gerasimov, Y., and Karjalainen, T. (2009). Estimation of supply and delivery cost of energy wood from Northwest Russia. Working Papers of the Finnish Forest Research Institute Number 123, Finnish Forest Research Institute, Vantaa, Finland, 21 pp.Google Scholar
Gerbens-Leenes, P., and Nonhebel, S. (2002). Consumption patterns and their effects on land required for food. Ecological Economics, 42(1-2), pp. 185–199.CrossRefGoogle Scholar
Gerbens-Leenes, W., Hoekstra, A.Y., and Meer, T.H. (2009). The water footprint of bioenergy. Proceedings of the National Academy of Sciences, 106(25), pp. 10219–10223.CrossRefGoogle ScholarPubMed
Gerber, N. (2008). Bioenergy and Rural Development in Developing Countries: A Review of Existing Studies. Discussion Papers On Development Policy No. 122, Center for Development Research (ZEF), Bonn, Germany, 58 pp.Google Scholar
Gerten, D., Lucht, W.Schaphoff, S., Cramer, W., Hickler, T., and Wagner, W. (2005). Hydrologic resilience of the terrestrial biosphere. Geophysical Research Letters, 32(21), L21408.CrossRefGoogle Scholar
Gibbs, H.K., Johnston, M., Foley, J.A., Holloway, T., Monfreda, C., Ramankutty, N., and Zaks, D. (2008). Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters, 3(3), 034001 (10 pp.).CrossRefGoogle Scholar
Gielen, D., Newman, J., and Patel, M.K. (2008). Reducing industrial energy use and CO2 emissions: The role of materials science. In: MRS Bulletin Harnessing Materials for Energy, 33, pp. 471–477.Google Scholar
Gisladottir, G., and Stocking, M. (2005). Land degradation control and its global environmental benefits. Land Degradation & Development, 16(2), pp. 99–112.CrossRefGoogle Scholar
Glass, R. (2006). Disease control priorities in developing countries. The New England Journal of Medicine, 355(10), pp. 1074–1075.CrossRefGoogle Scholar
Godfray, H.C.J., Toulmin, C., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., and Thomas, S.M. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), pp. 812–818.CrossRefGoogle ScholarPubMed
Goldemberg, J., Coelho, S.T., Nastari, P.M., and O, L. (2004). Ethanol learning curve - the Brazilian experience. Biomass and Bioenergy, 26, pp. 301–304.CrossRefGoogle Scholar
Gorissen, L., Buytaert, V., Cuypers, D., Dauwe, T., and Pelkmans, L. (2010). Why the debate about land use change should not only focus on biofuels. Environmental Science & Technology, 44(11), pp. 4046–4049.CrossRefGoogle Scholar
Grann, H. (1997). The industrial symbiosis at Kalundborg, Denmark. In: The Industrial Green Game. Implications for Environmental Design and Management. Richards, D.J. (ed.), National Academy Press, Washington, DC, USA, pp. 117–123.Google Scholar
Grassi, G., Nardi, A., and Vivarelli, S. (2006). Low cost production of bioethanol from sweet sorghum. In: Proceedings of the 14th European Biomass Conference, Paris, France, 17-21 October 2005, pp. 91–95.Google Scholar
Green, R.E., Cornell, S.J., Scharlemann, J.P.W., and Balmford, A. (2005). Farming and the fate of wild nature. Science, 307(5709), pp. 550–555.CrossRefGoogle ScholarPubMed
Gronowska, M., Joshi, S., and MacLean, H.L. (2009). A review of U.S. and Canadian biomass supply studies. BioResources, 4(1), pp. 341–369.Google Scholar
Grove, S. and Hanula, J. (eds) (2006). Insect Biodiversity and Dead Wood: Proceedings of the 22nd International Congress of Entomology. Report SRS–93, United States Department of Agriculture, Asheville, NC, USA, 109 pp.
Guille, T. (2007). Evaluation of the Potential Uses of Agricultural Residues for Energy Purposes. Master's Thesis, Montpellier SupAgro, Paris, France.
Gunderson, P. (2008). Biofuels and North American agriculture - Implications for the health and safety of North American producers. Journal of Agromedicine, 13(4), pp. 219–224.CrossRefGoogle ScholarPubMed
Gurbuz, E.I., Kunkes, E.L., and Dumesic, J.A. (2010). Dual-bed catalyst system for C–C coupling of biomass-derived oxygenated hydrocarbons to fuel-grade compounds. Green Chemistry, 12(2), pp. 223–227.CrossRefGoogle Scholar
Gustavsson, L., Holmberg, J., Dornburg, V., Sathre, R., Eggers, T., Mahapatra, K., and Marland, G. (2007). Using biomass for climate change mitigation and oil use reduction. Energy Policy, 35(11), pp. 5671–5691.CrossRefGoogle Scholar
Haas, M.J., McAloon, A.J., Yee, W.C., and Foglia, T.A. (2006). A process model to estimate biodiesel production costs. Bioresource Technology, 97(4), pp. 671–678.CrossRefGoogle ScholarPubMed
Haberl, H., Erb, K.H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., and Fischer-Kowalski, M. (2007). Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proceedings of the National Academy of Sciences, 104(31), pp. 12942–12947.CrossRefGoogle ScholarPubMed
Haberl, H., Beringer, T., Bhattacharya, S.C., Erb, K.-H., and Hoogwijk, M. (2010). The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability, 2(5-6), pp. 394–403.CrossRefGoogle ScholarPubMed
Hakala, K., Kontturi, M., and Pahkala, K. (2009). Field biomass as global energy source. Agricultural and Food Science, 18, pp. 347–365.Google Scholar
Hamelinck, C.N. (2004). Outlook for Advanced Biofuels. Master's Thesis, University of Utrecht, Utrecht, The Netherlands, 232 pp.
Hamelinck, C.N., and Faaij, A.P.C. (2002). Future prospects for production of methanol and hydrogen from biomass. Journal of Power Sources, 111(1), pp. 1–22.CrossRefGoogle Scholar
Hamelinck, C.N., and Faaij, A.P.C. (2006). Outlook for advanced biofuels. Energy Policy, 34(17), pp. 3268–3283.CrossRefGoogle Scholar
Hamelinck, C.N., Faaij, A.P.C., Uil, H., and Boerrigter, H. (2004). Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy, 29(11), pp. 1743–1771.CrossRefGoogle Scholar
Hamelinck, C.N., Hooijdonk, G.v., and Faaij, A.P.C. (2005a). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28(4), pp. 384–410.CrossRefGoogle Scholar
Hamelinck, C.N., Suurs, R.A.A., and Faaij, A.P.C. (2005b). International bioenergy transport costs and energy balance. Biomass and Bioenergy, 29(2), pp. 114–134.CrossRefGoogle Scholar
Hartley, M.J. (2002). Rationale and methods for conserving biodiversity in plantation forests. Forest Ecology and Management, 155(1-3), pp. 81–95.CrossRefGoogle Scholar
Headey, D., and Fan, S. (2008). Anatomy of a crisis: the causes and consequences of surging food prices. Agricultural Economics, 39, pp. 375–391.CrossRefGoogle Scholar
Heggenstaller, A.H., Anex, R.P., Liebman, M., Sundberg, D.N., and Gibson, L.R. (2008). Productivity and nutrient dynamics in bioenergy double-cropping systems. Agronomy Journal, 100(6), pp. 1740–1748.CrossRefGoogle Scholar
Heinimö, J., and Junginger, M. (2009). Production and trading of biomass for energy – An overview of the global status. Biomass and Bioenergy, 33(9), pp. 1310–1320.CrossRefGoogle Scholar
Helynen, S., Flyktman, M., Mäkinen, T., Sipilä, K., and Vesterinen, P. (2002). The possibilities of bioenergy in reducing greenhouse gases. VTT Tiedotteita 2145, VTT Technical Research Centre of Finland, Espoo, Finland, 110 pp.Google Scholar
Hemakanthi, D.A., and Heller, D.N. (2010). Multiclass, multiresidue method for the detection of antibiotic residues in distillers grains by liquid chromatography and ion trap tandem mass spectrometry. Journal of Chromatography A, 1217(18), pp. 3076–3084.Google Scholar
Herrero, M., Steeg, J., Lynam, J., Rao, P.P., Macmillan, S., Gerard, B., McDermott, J., Sere, C., Rosegrant, M., Thornton, P.K., Notenbaert, A.M., Wood, S., Msangi, S., Freeman, H.A., Bossio, D., Dixon, J., and Peters, M. (2010). Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science, 327(5967), pp. 822–825.CrossRefGoogle ScholarPubMed
Hertel, T.W., Golub, A.A., Jones, A.D., O'Hare, M., Plevin, R.J., and Kammen, D.M. (2010a). Effects of US maize ethanol on global land use and greenhouse gas emissions: Estimating market mediated responses. BioScience, 60(3), pp. 223–231.CrossRefGoogle Scholar
Hertel, T.W., Tyner, W.E., and Birur, D.K. (2010b). Global impacts of biofuels. Energy Journal, 31(1), pp. 35–100.CrossRefGoogle Scholar
Hettinga, W.G., Junginger, H.M., Hoogwijk, M., McAloon, A., and Hickler, T. (2007). Technological learning in U.S. ethanol production. In: 15th European Biomass Conference and Exhibition, Berlin, Germany, 7-11 May 2007.Google Scholar
Hettinga, W.G., Junginger, H.M., Dekker, S.C., Hoogwijk, M., McAloon, A.J., and Hicks, K.B. (2009). Understanding the reductions in US corn ethanol production costs: An experience curve approach. Energy Policy, 37(1), pp. 190–203.CrossRefGoogle Scholar
Hiederer, R., Ramos, F., Capitani, C., Koeble, R., Blujdea, V., Gomez, O., Mulligan, D., and Marelli, L. (2010). Biofuels: A New Methodology to Estimate GHG Emissions from Global Land Use Change, A methodology involving spatial allocation of agricultural land demand and estimation of CO2 and N2O emissions. EUR 24483 EN - 2010, Joint Research Center, European Commission, Ispa, Italy, 168 pp.Google Scholar
Hill, J. (2007). Environmental costs and benefits of transportation biofuel production from food- and lignocellulose-based energy crops. A review. Agronomy for Sustainable Development, 27(1), pp. 1–12.CrossRefGoogle Scholar
Hill, J., Nelson, E., Tilman, D., Polasky, S., and Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103(30), pp. 11206–11210.CrossRefGoogle ScholarPubMed
Hill, J., Polasky, S., Nelson, E., Tilman, D., Huo, H., Ludwig, L., Neumann, J., Zheng, H., and Bonta, D. (2009). Climate change and health costs of air emissions from biofuels and gasoline. Proceedings of the National Academy of Sciences, 106(6), pp. 2077–2082.CrossRefGoogle ScholarPubMed
Hillier, J., Whittaker, C., Dailey, G., Aylott, M., Casella, E., Richter, G.M., Riche, A., Murphy, R., Taylor, G., and Smith, P. (2009). Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses. Global Change Biology Bioenergy, 1(4), pp. 267–281.CrossRefGoogle Scholar
Hilman, H.J., Gidwani, E., Morris, P., Sagar, S., and Chowdhary, S. (2007). Using Microfinance to Expand Access to Energy Services: The Emerging Experiences in Asia of Self-Employed Women's Association Bank (SEWA), Sarvodaya Economic Enterprise Development Services (SEEDS), Nirdhan Utthan Bank Limited (NUBL), and AMRET. The SEEP Network, Washington, DC, USA, 124 pp.Google Scholar
Himmel, M.E., Xu, Q., Luo, Y., Ding, S.-Y., Lamed, R., and Bayer, E.A. (2010). Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels, 1(2), pp. 323–341.CrossRefGoogle Scholar
Hoefnagels, R., Smeets, E., and Faaij, A. (2010). Greenhouse gas footprints of different biofuel production systems. Renewable and Sustainable Energy Reviews, 14(7), pp. 1661–1694.CrossRefGoogle Scholar
Hoekstra, A.Y., Gerbens-Leenes, P.W., and Meer, T.H. (2010). The water footprint of bio-energy. In: Climate Change and Water: International Perspectives on Mitigation and Adaptation. Howe, C., Smith, J.B., and Henderson, J. (eds.), American Water Works Association, IWA Publishing, London, UK, pp. 81–95.Google Scholar
Hollebone, B.P., and Yang, Z. (2009). Biofuels in the environment: A review of behaviours, fates, effects and possible remediation techniques. In: Proceedings of the 32nd Arctic and Marine Oil Spill Program (AMOP) Technical Seminar on Environmental Contamination and Response, Emergencies Science Division, Environment Canada, Ottawa, Canada, pp. 127–139.Google Scholar
Holmgren, J., Marinangeli, R., Nair, P., Elliott, D., and Bain, R. (2008). Consider upgrading pyrolysis oils into renewable fuels. Hydrocarbon Processing, 87(9), pp. 95–113.Google Scholar
Hoogwijk, M. (2004). On the Global and Regional Potential of Renewable Energy Sources. PhD Thesis, Utrecht University, Utrecht, The Netherlands, 257 pp.
Hoogwijk, M., Faaij, A., Broek, R., Berndes, G., Gielen, D., and Turkenburg, W. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy, 25(2), pp. 119–133.CrossRefGoogle Scholar
Hoogwijk, M., Faaij, A., Eickhout, B., Vries, B., and Turkenburg, W. (2005). Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy, 29(4), pp. 225–257.CrossRefGoogle Scholar
Hoogwijk, M., Faaij, A., Vries, B., and Turkenburg, W. (2009). Exploration of regional and global cost-supply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios. Biomass and Bioenergy, 33(1), pp. 26–43.CrossRefGoogle Scholar
Hooijer, A., Silvius, M., Wösten, H., and Page, S. (2006). PEAT-CO2, Assessment of CO2 Emissions from Drained Peatlands in SE Asia. Delft Hydraulics report Q3943, WL Delft Hydraulics, Delft, The Netherlands, 41 pp.Google Scholar
Howard, D., and Ziller, S. (2008). Alien alert – plants for biofuel may be invasive. Bioenergy Business, July/August, pp. 14–16.Google Scholar
Howarth, R.W., Bringezu, S., Martinelli, L.A., Santoro, R., Messem, D., and Sala, O.E. (2009). Introduction: biofuels and the environment in the 21st century. In: Biofuels: Environmental Consequences and Interactions with Changing Land Use. Howarth, R.W. and Bringezu, S. (eds.), Proceedings of the SCOPE - Scientific Committee on Problems of the Environment International Biofuels Project Rapid Assessment, Gummersbach, Germany, 22-25 September 2009, pp. 15–36.Google Scholar
Hsu, D.D., Inman, D., Heath, G.A., Wolfrum, E.J., Mann, M.K., and Aden, A. (2010). Life cycle environmental impacts of selected U.S. ethanol production and use pathways in 2022. Environmental Science & Technology, 44, pp. 5289–5297.CrossRefGoogle ScholarPubMed
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54, pp. 621–639.CrossRefGoogle ScholarPubMed
Huber, G.W., Cortright, R.D., and Dumesic, J.A. (2004). Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angewandte Chemie, 116(12), pp. 1575–1577.CrossRefGoogle Scholar
Huber, G.W., Chheda, J.N., Barrett, C.J., and Dumesic, J.A. (2005). Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 308(5727), pp. 1446–1450.CrossRefGoogle ScholarPubMed
Huber, G.W., Iborra, S., and Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 106(9), pp. 4044–4098.CrossRefGoogle ScholarPubMed
Huertas, D.A., Berndes, G., Holmen, M., and Sparovek, G. (2010). Sustainability certification of bioethanol. How is it perceived by Brazilian stakeholders?Biomass and Bioenergy, 4(4), pp. 369–384.Google Scholar
Huo, H., Wang, M., Bloyd, C., and Putsche, V. (2009). Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environmental Science & Technology, 43(3), pp. 750–756.CrossRefGoogle ScholarPubMed
IAASTD (2009). Agriculture at a Crossroads. International Assessment of Agricultural Knowledge, Science and Technology for Development, Washington, DC, USA, 606 pp.
IATA (2009). Report on Alternative Fuels. International Air Transport Association, Montreal, Canada, 92 pp.
Ibsen, K., Wallace, R., Jones, S., and Werpy, T. (2005). Evaluating Progressive Technology Scenarios in the Development of the Advanced Dry Mill Biorefinery. FY05-630, National Renewable Energy Laboratory, Golden, CO, USA, 35 pp.Google Scholar
IEA (2000). Experience Curves for Energy Technology Policy. International Energy Agency, Paris, France, 133 pp.
IEA (2006). World Energy Outlook 2006. International Energy Agency, Paris, France, 601 pp.
IEA (2007a). World Energy Outlook 2007. International Energy Agency, Paris, France, 600 pp.
IEA (2007b). Biomass for Power Generation and CHP. Energy Technology Essentials ETE03, International Energy Agency, Paris, France, 4pp.
IEA (2008a). Energy Technology Perspectives 2008. Scenarios and Strategies to 2050. International Energy Agency, Paris, France, 646 pp.
IEA (2008b). World Energy Outlook 2008. International Energy Agency, Paris, France, 578 pp.
IEA (2009). World Energy Outlook 2009. International Energy Agency, Paris, France, 696 pp.
IEA (2010a). World Energy Statistics 2010. International Energy Agency, Paris, France.
IEA (2010b). World Energy Outlook 2010. International Energy Agency, Paris, France, 736 pp.
IEA (2010c). Renewables Information 2010 with 2009 Data. International Energy Agency, Paris, France, 428 pp (ISBN 978-92-64-08416-2).
IEA (2011). Technology Roadmap: Biofuels for Transport. International Energy Agency, Renewable Energy Division, Paris, France, 52 pp.
IEA Bioenergy (2007). Potential Contribution of Bioenergy to the World's Future Energy Demand. IEA Bioenergy: ExCo: 2007:02, 12 pp.
IEA Bioenergy (2009). Bioenergy: A Sustainable and Reliable Energy Source. Main Report. IEA Bioenergy: ExCo:2009:06, 108 pp.
IEA Bioenergy (2010). Algae – The Future for Bioenergy? Summary and conclusions from the IEA Bioenergy ExCo64 Workshop. IEA Bioenergy: ExCo: 2010:02, 16 pp.
IEA Renewable Energy Division (2010). Sustainable Production of Second-Generation Biofuels: Potential and Perspectives in Major Economies and Developing Countries. International Energy Agency, Paris, France, 217 pp.
IFPRI (2008). High Food Prices: The What, Who, and How of Proposed Policy Actions. International Food Policy Research Institute, Washington, DC, USA, 12 pp.
Ileleji, K.E., Sokhansanj, S., and Cundiff, J.S. (2010). Farm-gate to plant-gate delivery of lignocellulosic feedstocks from plant biomass for biofuel production. In: Biofuels from Agricultural Wastes and Byproducts. Blaschek, H.P., Ezeji, T., and Scheffran, J. (eds.), Wiley-Blackwell, Oxford, UK, pp. 117–159.CrossRefGoogle Scholar
Imhoff, M.L., Bounoua, L., Ricketts, T., Loucks, C., Harriss, R., and Lawrence, W.T. (2004). Global patterns in human consumption of net primary production. Nature, 429(6994), pp. 870–873.CrossRefGoogle ScholarPubMed
IPCC (1996). Climate Change 1995: Impacts, Adaptation, and Mitigation: Scientific-Technical Analyses. R.T., WatsonZinyowera, M.C., and Moss, R.H. (eds.), Cambridge University Press, 878 pp.
IPCC (2000a). Special Report on Emissions Scenarios. N., Nakicenovic and Swart, R. (eds.), Cambridge University Press, 570 pp.
IPCC (2000b). Land Use, Land Use Change and Forestry. R.T., Watson, Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J. and Dokken, D.J. (eds.), Cambridge University Press, 375 pp.
IPCC (2005). Special Report on Carbon Dioxide Capture and Storage. B., Metz, Davidson, O., Coninck, H.Loos, M., and Meyer, L. (eds.), Cambridge University Press, 431 pp.
IPCC (2007a). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. M.L., Parry, Canziani, O.F., Palutikof, J.P., Linden, P.J., and Hanson, C.E. (eds.), Cambridge University Press, 979 pp.
IPCC (2007b). Climate Change 2007: Synthesis Report. Contributions of Working Groups I, II and II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K., Pachauri, and Reisinger, A. (eds.), Cambridge University Press, 104 pp.
IPCC (2007c). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S., Solomon, Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (eds.), Cambridge University Press, 996 pp.
IPCC (2007d). Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. B., Metz, Davidson, O.R., Bosch, P.R., Dave, R., and Meyer, L.A. (eds.), Cambridge University Press, 851 pp.
IUCN (2009). Guidelines on Biofuels and Invasive Species. IUCN, Gland, Switzerland, 20 pp. (ISBN: 978-2-8317-1222-2).
Ivanic, M., and Martin, W. (2008). Implications of higher global food prices for poverty in low-income countries. Agricultural Economics, 39, pp. 405–416.CrossRefGoogle Scholar
Jackson, R.B., Murray, B.C., Jobbagy, E.G., Avissar, R., Roy, S.B., Barrett, D.J., Cook, C.W., Farley, K.A., Maitre, D.C., and McCarl, B.A. (2005). Trading water for carbon with biological carbon sequestration. Science, 310(5756), pp. 1944–1947.CrossRefGoogle ScholarPubMed
Jacobsen, N.B. (2006). Industrial symbiosis in Kalundborg, Denmark: A quantitative assessment of economic and environmental aspects. Journal of Industrial Ecology, 10(1–2), pp. 239–255.CrossRefGoogle Scholar
Jaggard, K.W., Qi, A., and Ober, E.S. (2010). Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), pp. 2835–2851.CrossRefGoogle ScholarPubMed
Jauhiainen, J., Limin, S., Silvennoinen, H., and Vasander, H. (2008). Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology, 89(12), pp. 3503–3514.CrossRefGoogle ScholarPubMed
Jechura, J. (2005). Dry Mill Cost-By-Area: ASPEN Case Summary. National Renewable Energy Laboratory, Golden, CO, USA, 2 pp.Google Scholar
Jeffries, T.W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17(3), pp. 320–326.CrossRefGoogle ScholarPubMed
Jeffries, T.W., Grigoriev, I.V., Grimwood, J., Laplaza, J.M., Aerts, A., Salamov, A., Schmutz, J., Lindquist, E., Dehal, P., Shapiro, H., Jin, Y.-S., Passoth, V., and Richardson, P.M. (2007). Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnology, 25(3), pp. 319–326.CrossRefGoogle ScholarPubMed
Jensen, E.S. (1996). Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant and Soil, 182(1), pp. 25–38.CrossRefGoogle Scholar
Jetter, J.J., and Kariher, P. (2009). Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass and Bioenergy, 33(2), pp. 294–305.CrossRefGoogle Scholar
Johansson, D., and Azar, C. (2007). A scenario based analysis of land competition between food and bioenergy production in the US. Climatic Change, 82(3), pp. 267–291.CrossRefGoogle Scholar
Johnson, J.M.F., Reicosky, D., Sharratt, B., Lindstrom, M., Voorhees, W., and Carpenter-Boggs, L. (2004). Characterization of soil amended with the by-product of corn stover fermentation. Soil Science Society of America Journal, 68(1), pp. 139–147.CrossRefGoogle Scholar
Johnson, M., Edwards, R., Ghilardi, A., Berrueta, V., Gillen, D., Frenk, C.A., and Masera, O. (2009). Quantification of carbon savings from improved biomass cookstove projects. Environmental Science & Technology, 43(7), pp. 2456–2462.CrossRefGoogle Scholar
Johnson, T.M., Alatorre, C., Romo, Z., and Liu, F. (2009). Low-Carbon Development for Mexico. The International Bank for Reconstruction and Development, The World Bank, Washington, DC, USA.CrossRefGoogle Scholar
Johnston, M., and Holloway, T. (2007). A global comparison of national biodiesel production potentials. Environmental Science & Technology, 41(23), pp. 7967–7973.CrossRefGoogle ScholarPubMed
Johnston, M., Foley, J.A., Holloway, T., Kucharik, C., and Monfreda, C. (2009). Resetting global expectations from agricultural biofuels. Environmental Research Letters, 4(1), 014004.CrossRefGoogle Scholar
Jongschaap, R.E.E., Corré, W.J., Bindraban, P.S., and Brandenburg, W.A. (2007). Claims and Facts on Jatropha curcas L. Global Jatropha curcas Evaluation, Breeding And Propagation Programme. Report 158, Plant Research International BV, Wageningen, The Netherlands and Stichting Het Groene Woudt, Laren, The Netherlands, 66 pp.Google Scholar
Junginger, M. (2007). Lessons from (European) Bioenergy Policies; Results of a Literature Review for IEA Bioenergy Task 40. Utrecht University, Utrecht, Netherlands, 14 pp. Available at: www.bioenergytrade.org/downloads/jungingerlessonsfromeuropeanbioenergypolicies.pdf.Google Scholar
Junginger, M., Faaij, A., Broek, R.Koopmans, A., and Hulscher, W. (2001). Fuel supply strategies for large-scale bio-energy projects in developing countries. Electricity generation from agricultural and forest residues in Northeastern Thailand. Biomass and Bioenergy, 21(4), pp. 259–275.CrossRefGoogle Scholar
Junginger, M., Faaij, A., Björheden, R., and Turkenburg, W.C. (2005). Technological learning and cost reductions in wood fuel supply chains in Sweden. Biomass and Bioenergy, 29(6), pp. 399–418.CrossRefGoogle Scholar
Junginger, M., Visser, E., Hjort-Gregersen, K., Koornneef, J., Raven, R., Faaij, A., and Turkenburg, W. (2006). Technological learning in bioenergy systems. Energy Policy, 34(18), pp. 4024–4041.CrossRefGoogle Scholar
Junginger, M., Bolkesjø, T., Bradley, D., Dolzan, P., Faaij, A., Heinimö, J., Hektor, B., Leistad, Ø., Ling, E., Perry, M., Piacente, E., Rosillo-Calle, F., Ryckmans, Y., Schouwenberg, P.-P., Solberg, B., Trømborg, E.Walter, A.d.S., and Wit, M.d. (2008). Developments in international bioenergy trade. Biomass and Bioenergy, 32(8), pp. 717–729.CrossRefGoogle Scholar
Junginger, M., Faaij, A.Dam, J., Zarrilli, S., Mohammed, A., and Marchal, D. (2010). Opportunities and Barriers for International Bioenergy Trade and Strategies to Overcome Them. IEA Bioenergy Task 40, 17 pp. Available at: www.bioenergytrade.org/downloads/t40opportunitiesandbarriersforbioenergytradefi.pdf.Google Scholar
Jungk, N., and Reinhardt, G. (2000). Landwirtschaftliche Referenzsysteme in Ökologischen Bilanzierungen: eine Basis Analyse. Institute für Energie- und Umweltforschung, Heidelberg, Germany.Google Scholar
Kaliyan, N., Morey, R.V., and Tiffany, D.G. (2010). Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants. Biomass and Bioenergy, 35(3), pp. 1103–1113.CrossRefGoogle Scholar
Kalnes, T.N., Koers, K.P.Marker, T., and Shonnard, D.R. (2009). A technoeconomic and environmental life cycle comparison of green diesel to biodiesel and syndiesel. Environmental Progress & Sustainable Energy, 28(1), pp. 111–120.CrossRefGoogle Scholar
Kamm, B., Gruber, P.R., and Kamm, M. (eds.) (2006). Biorefineries - Industrial Processes and Products: Status Quo and Future Directions. Wiley-VCH, Weinheim, UK, 949 pp.
Kang, S., Khanna, M., Scheffran, J., Zilberman, D., Önal, H., Ouyang, Y., and Tursun, Ü.D. (2010). Optimizing the biofuels infrastructure: Transportation networks and biorefinery locations in Illinois. In: Handbook of Bioenergy Economics and Policy. Khanna, M.Scheffran, J., and Zilberman, D. (eds.), SpringerNew York, New York, NY, USA, pp. 151–173.CrossRefGoogle Scholar
Karekezi, S., and Majoro, L. (2002). Improving modern energy services for Africa's urban poor. Energy Policy, 30(11–12), pp. 1015–1028.CrossRefGoogle Scholar
Karekezi, S., and Turyareeba, P. (1995). Woodstove dissemination in Eastern Africa - a review. Energy for Sustainable Development, 1(6), pp. 12–19.CrossRefGoogle Scholar
Karlen, D.L. (2010). Corn stover feedstock trials to support predictive modeling. Global Change Biology Bioenergy, 2(5), pp. 235–247.CrossRefGoogle Scholar
Karp, A., and Shield, I. (2008). Bioenergy from plants and the sustainable yield challenge. New Phytologist, 179(1), pp. 15–32.CrossRefGoogle ScholarPubMed
Kartha, S., Hazel, P., and Pachauri, R.K. (2006). Environmental effects of bioenergy. In: Bioenergy and Agriculture: Promises and Challenges. Hazell, P.B.R. and Pachauri, R.K. (eds.), International Food Policy Research Institute, Washington, D.C., USA, 2 pp.Google Scholar
Kazi, F.K., Fortman, J.A., Anex, R.P., Hsu, D.D., Aden, A., Dutta, A., and Kothandaraman, G. (2010). Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89(Supplement 1), pp. S20–S28.CrossRefGoogle Scholar
Keasling, J.D., and Chou, H. (2008). Metabolic engineering delivers next-generation biofuels. Nature Biotechnology, 26(3), pp. 298–299.CrossRefGoogle ScholarPubMed
Keeney, D., and Hertel, T.W. (2008). Yield Response to Prices: Implications for Policy Modeling. Working paper 08/13, Department of Agricultural Economics, Purdue University, West Lafayette, IN, USA, 37 pp.Google Scholar
Keeney, D., and Hertel, T.W. (2009). The indirect land use impacts of United States biofuel policies: The importance of acreage, yield, and bilateral trade responses. American Journal of Agricultural Economics, 91, pp. 895–909.CrossRefGoogle Scholar
Keeney, D., and Muller, M. (2006). Water Use by Ethanol Plants: Potential Challenges. Institute for Agriculture and Trade Policy, Minneapolis, MN, USA, 7 pp.Google Scholar
Keeney, R., and Hertel, T. (2005). GTAP-AGR: A Framework for Assessing the Implications of Multilateral Changes in Agricultural Policies. GTAP Technical Paper No.24, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, West Lafayette, IN, USA, 61 pp.
Kendall, A., Chang, B., and Sharpe, B. (2009). Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations. Environmental Science & Technology, 43(18), pp. 7142–7147.CrossRefGoogle ScholarPubMed
Keys, E., and McConnell, W. (2005). Global change and the intensification of agriculture in the tropics. Global Environmental Change, 15(4), pp. 320–337.CrossRefGoogle Scholar
Kheshgi, H.S., Prince, R.C., and Marland, G. (2000). The potential of biomass fuels in the context of global climate change: Focus on transportation fuels. Annual Review of Energy and the Environment, 25(1), pp. 199–244.CrossRefGoogle Scholar
Kim, H., Kim, S., and Dale, B.E. (2009). Biofuels, land use change, and greenhouse gas emissions: Some unexplored variables. Environmental Science & Technology, 43(3), pp. 961–967.CrossRefGoogle ScholarPubMed
Kim, S., and Dale, B. (2002). Allocation procedure in ethanol production system from corn grain i. system expansion. The International Journal of Life Cycle Assessment, 7(4), pp. 237–243.CrossRefGoogle Scholar
Kim, S., and Dale, B.E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26(4), pp. 361–375.CrossRefGoogle Scholar
Kinchin, C. and Bain, R.L. (2009). Hydrogen Production from Biomass via Indirect Gasification: The Impact of NREL Process Development Unit Gasifier Correlations. NREL Report No. TP-510-44868. National Renewable Energy Laboratory, Golden, CO, USA, 27 pp.CrossRefGoogle Scholar
King, C.W., and Webber, M.E. (2008). Water intensity of transportation. Environmental Science & Technology, 42(21), pp. 7866–7872.CrossRefGoogle ScholarPubMed
King, D., Inderwildi, O.R., and Williams, A. (2010). The Future of Industrial Biorefineries. 210610, World Economic Forum White Paper, Cologn/Geneva, Switzerland, 40 pp.Google Scholar
Kirkels, A., and Verbong, G. (2011). Biomass gasification: Still promising? A 30-year global overview. Renewable and Sustainable Energy Reviews, 15(1), pp. 471–481.CrossRefGoogle Scholar
Kirkinen, J., Sahay, A., and Savolainen, I. (2009). Greenhouse impact of fossil, forest residues and Jatropha diesel: a static and dynamic assessment. Progress in Industrial Ecology, An International Journal, 6, pp. 185–206.CrossRefGoogle Scholar
Kirschbaum, M.U.F. (2003). To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass and Bioenergy, 24(4–5), pp. 297–310.CrossRefGoogle Scholar
Kirschbaum, M.U.F. (2006). Temporary carbon sequestration cannot prevent climate change. Mitigation and Adaptation Strategies for Global Change, 11(5), pp. 1151–1164.CrossRefGoogle Scholar
Kishore, V.V.N., Bhandari, P.M., and Gupta, P. (2004). Biomass energy technologies for rural infrastructure and village power – opportunities and challenges in the context of global climate change concerns. Energy Policy, 32(6), pp. 801–810.CrossRefGoogle Scholar
Kituyi, E. (2004). Towards sustainable production and use of charcoal in Kenya: exploring the potential in life cycle management approach. Journal of Cleaner Production, 12(8–10), pp. 1047–1057.CrossRefGoogle Scholar
Kline, K.L., and Dale, V.H. (2008). Biofuels: Effects on land and fire. Science, 321(5886), pp. 199–201.CrossRefGoogle ScholarPubMed
Kline, K.L., Oladosu, G., Wolfe, A., Perlack, R.D., and McMahon, M. (2007). Biofuel Feedstock Assessment for Selected Countries. ORNL/TM-2007/224, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 243 pp.Google Scholar
Knothe, G. (2010). Biodiesel and renewable diesel: a comparison. Progress in Energy and Combustion Science, 36(3), pp. 364–373.CrossRefGoogle Scholar
Knowler, D.J. (2004). The economics of soil productivity: local, national and global perspectives. Land Degradation & Development, 15(6), pp. 543–561.CrossRefGoogle Scholar
Koh, L.P., and Ghazoul, J. (2008). Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation, 141(10), pp. 2450–2460.CrossRefGoogle Scholar
Köhlin, G., and Ostwald, M. (2001). Impact of plantations on forest use and forest status in Orissa, India. AMBIO, 30(1), pp. 37–42.CrossRefGoogle ScholarPubMed
Koizumi, T., and Ohga, K. (2008). Biofuels policies in Asian countries: Impact of the expanded biofuels programs on world agricultural markets. Journal of Agricultural & Food Industrial Organization, 5(2), Article 8, 22 pp.Google Scholar
Koning, N. (2008). Long-term global availability of food: continued abundance or new scarcity? NJAS - Wageningen Journal of Life Sciences, 55(3), pp. 229–292.CrossRefGoogle Scholar
Körner, C., Morgan, J.A., and Norby, R.J. (2007). CO2 fertilization: When, where and how much? In: Terrestrial ecosystems in a changing world. Springer, Berlin, Germany, pp. 9–22.CrossRefGoogle Scholar
Koukouzas, N., Katsiadakis, A., Karlopoulos, E., and Kakaras, E. (2008). Co-gasification of solid waste and lignite - A case study for Western Macedonia. Waste Management, 28(7), pp. 1263–1275.CrossRefGoogle ScholarPubMed
Krausmann, F., Erb, K.-H., Gingrich, S., Lauk, C., and Haberl, H. (2008). Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecological Economics, 65(3), pp. 471–487.CrossRefGoogle Scholar
Kreutz, T.G., Larson, E.D.Liu, G., and Williams, R.H. (2008). Fischer-Tropsch fuels from coal and biomass. In: Proceedings of the 25th International Pittsburgh Coal Conference. Princeton Environmental Institute, Pittsburgh, PA, 29 September – 2 October 2008.Google Scholar
Krewitt, W., Nienhaus, K., Kleßmann, C., Capone, C., Stricker, E., Graus, W., Hoogwijk, M., Supersberger, N., Winterfeld, U., and Samadi, S. (2009). Role and Potential of Renewable Energy and Energy Efficiency for Global Energy Supply. ISSN 1862-4359, Federal Environment Agency, Dessau-Roßlau, Germany, 336 pp.Google Scholar
Krey, V., and Clarke, L. (2011). Role of renewable energy in climate change mitigation: A synthesis of recent scenarios. Climate Policy, in press.Google Scholar
Krich, K., Augenstein, D., Batmale, J.P., Benemann, J., Rutledge, B., and Salour, D. (2005). Biomethane from Dairy: A Sourcebook for the Production and Use of Renewable Natural Gas in California. Report prepared for Western United Dairymen with funding from USDA Rural Development, Washington, DC, USA, 282 pp. Available at: www.suscon.org/cowpower/biomethaneSourcebook/Full_Report.pdf.Google Scholar
Kumar, B.M. (2006). Agroforestry: the new old paradigm for Asian food security. Journal of Tropical Agriculture, 44(1–2), pp. 1–14.Google Scholar
Kumar, L.N.V., and Maithel, S. (2007). Alternative feedstock for Bio-ethanol production in India. In: Biofuels: Towards a Greener and Secure Energy Future. Bhojvaid, P.P. (ed.), The Energy Resources Institute Press (TERI Press), New Delhi, India, pp. 89–104.Google Scholar
Kurz, W.A., Stinson, G., and Rampley, G. (2008a). Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1501), pp. 2259–2268.CrossRefGoogle ScholarPubMed
Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., Carroll, A.L., Ebata, T., and Safranyik, L. (2008b). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452(7190), pp. 987–990.CrossRefGoogle ScholarPubMed
Kuuva, K., and Ruska, L. (2009). Final Report of Feed-in Tariff Task Force. 59/2009, Ministry of Employment and the Economy of Finland, Helsinki, Finland, 101 pp.Google Scholar
Laird, D.A. (2008). The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100(1), pp. 178–181.CrossRefGoogle Scholar
Laird, D.A., Brown, R.C.Amonette, J.E., and Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts and Biorefining, 3(5), pp. 547–562.CrossRefGoogle Scholar
Lal, R. (2003). Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation & Development, 14(3), pp. 309–322.CrossRefGoogle Scholar
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), pp. 1623–1627.CrossRefGoogle ScholarPubMed
Lal, R. (2005). World crop residues production and implications of its use as a biofuel. Environment International, 31(4), pp. 575–584.CrossRefGoogle ScholarPubMed
Lal, R. (2008). Crop residues as soil amendments and feedstock for bioethanol production. Waste Management, 28(4), pp. 747–758.CrossRefGoogle ScholarPubMed
Lal, R., and Pimentel, D. (2007). Bio-fuels from crop residues. Soil & Tillage Research, 93(2), pp. 237–238.CrossRefGoogle Scholar
Lamers, P., Hamelinck, C.Junginger, M., and Faaij, A. (2011). International Bioenergy, Trade - A Review of Past Developments in the Liquid Biofuels Market. Renewable and Sustainable Energy Reviews, 15(6), pp. 2655–2676.CrossRefGoogle Scholar
Lapola, D.M., Schaldach, R., Alcamo, J., Bondeau, A., Koch, J., Koelking, C., and Priess, J.A. (2010). Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proceedings of the National Academy of Sciences, 107(8), pp. 3388–3393.CrossRefGoogle Scholar
Larson, E. (2006). A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy for Sustainable Development, 10(2), pp. 109–126.CrossRefGoogle Scholar
Larson, E.D., Fiorese, G., Liu, G., Williams, R.H., Kreutz, T.G., and Consonni, S. (2009). Co-production of synfuels and electricity from coal + biomass with zero net carbon emissions: An Illinois case study. Energy Procedia, 1(1), pp. 4371–4378.CrossRefGoogle Scholar
Larson, E.D., Fiorese, G., Liu, G., Williams, R.H., Kreutz, T.G., and Consonni, S. (2010). Co-production of decarbonized synfuels and electricity from coal + biomass with CO2 capture and storage: an Illinois case study. Energy & Environmental Science, 3(1), pp. 28–42.CrossRefGoogle Scholar
Laser, M., Larson, E., Dale, B., Wang, M., Greene, N., and Lynd, L.R. (2009). Comparative analysis of efficiency, environmental impact, and process economics for mature biomass refining scenarios. Biofuels, Bioproducts and Biorefining, 3(2), pp. 247–270.CrossRefGoogle Scholar
Lattimore, B., Smith, C.T., Titus, B.D., Stupak, I., and Egnell, G. (2009). Environmental factors in woodfuel production: Opportunities, risks, and criteria and indicators for sustainable practices. Biomass and Bioenergy, 33(10), pp. 1321–1342.CrossRefGoogle Scholar
Laurance, W.F. (2007). Switch to corn promotes Amazon deforestation. Science, 318(5857), pp. 1721–1724.CrossRefGoogle ScholarPubMed
Lawrence, C.J., and Walbot, V. (2007). Translational genomics for bioenergy production from fuelstock grasses: Maize as the model species. Plant Cell, 19(7), pp. 2091–2094.CrossRefGoogle ScholarPubMed
Lee, D.R., Barrett, C.B., and McPeak, J.G. (2006). Policy, technology, and management strategies for achieving sustainable agricultural intensification. Agricultural Economics, 34(2), pp. 123–127.CrossRefGoogle Scholar
Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56(1), pp. 1–24.CrossRefGoogle ScholarPubMed
Lee, S.K., Chou, H., Ham, T.S., Lee, T.S., and Keasling, J.D. (2008). Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 19(6), pp. 556–563.CrossRefGoogle Scholar
Leemans, R., Amstel, A., Battjes, C., Kreileman, E., and Toet, S., (1996). The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. Global Environmental Change, 6(4), pp. 335–357.CrossRefGoogle Scholar
Legros, G., Havet, I., Bruce, N., and Bonjour, S. (2009). The Energy Access Situation in Developing Countries: A Review Focusing on the Least Developed Countries and Sub-Saharan Africa. United Nations Development Programme and the World Health Organization, New York, NY, USA, 142 pp.Google Scholar
Lehtomäki, A., Huttunen, S., and Rintala, J.A. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resources, Conservation and Recycling, 51(3), pp. 591–609.CrossRefGoogle Scholar
Leng, R., Wang, C., Zhang, C., Dai, D., and Pu, G. (2008). Life cycle inventory and energy analysis of cassava-based fuel ethanol in China. Journal of Cleaner Production, 16(3), pp. 374–384.CrossRefGoogle Scholar
Levasseur, A., Lesage, P., Margni, M., Deschenes, L., and Samson, R. (2010). Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. Environmental Science & Technology, 44(8), pp. 3169–3174.CrossRefGoogle ScholarPubMed
Lewis, S.L., Lopez-Gonzalez, G., Sonke, B., Affum-Baffoe, K., Baker, T.R., Ojo, L.O., Phillips, O.L., Reitsma, J.M., White, L., Comiskey, J.A.K, M.-N.D., Ewango, C.E.N., Feldpausch, T.R., Hamilton, A.C., Gloor, M., Hart, T., Hladik, A., Lloyd, J., Lovett, J.C., Makana, J.-R., Malhi, Y., Mbago, F.M., Ndangalasi, H.J., Peacock, J., Peh, K.S.H., Sheil, D., Sunderland, T., Swaine, M.D., Taplin, J., Taylor, D., Thomas, S.C., Votere, R., and Woll, H. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), pp. 1003–1006.CrossRefGoogle ScholarPubMed
Li, W., Fu, R., and Dickinson, R.E. (2006). Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. Journal of Geophysical Research, 111(D2), D02111.CrossRefGoogle Scholar
Liebig, M., Schmer, M., Vogel, K., and Mitchell, R. (2008). Soil carbon storage by switchgrass grown for bioenergy. BioEnergy Research, 1(3), pp. 215–222.CrossRefGoogle Scholar
Lindenmayer, D.B., and Nix, H.A. (1993). Ecological principles for the design of wildlife corridors. Conservation Biology, 7(3), pp. 627–631.CrossRefGoogle Scholar
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M.J., and Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), pp. 698–709.CrossRefGoogle Scholar
Lioubimtseva, E., and Adams, J.M. (2004). Possible implications of increased carbon dioxide levels and climate change for desert ecosystems. Environmental Management, 33(Supplement 1), pp. S388-S404.CrossRefGoogle Scholar
Liska, A.J., and Perrin, R.K. (2010). Securing foreign oil: A case for including military operations in the climate change impact of fuels. Environment: Science and Policy for Sustainable Development, 52(4), pp. 9–12.Google Scholar
Lobell, D.B., and Burke, M.B. (2008). Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environmental Research Letters, 3(3), 034007.CrossRefGoogle Scholar
Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P., and Naylor, R.L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), pp. 607–610.CrossRefGoogle ScholarPubMed
Londo, M., Faaij, A., Junginger, M., Berndes, G., Lensink, S., Wakker, A., Fischer, G., Prieler, S., Velthuizen, H., and Wit, M. (2010). The REFUEL EU road map for biofuels in transport: Application of the project's tools to some short-term policy issues. Biomass and Bioenergy, 34(2), pp. 244–250.CrossRefGoogle Scholar
López, R., and Galinato, G.I. (2007). Should governments stop subsidies to private goods? Evidence from rural Latin America. Journal of Public Economics, 91(5-6), pp. 1071–1094.CrossRefGoogle Scholar
Lotze-Campen, H., Popp, A., Beringer, T., Muller, C., Bondeau, A., Rost, S., and Lucht, W. (2009). Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling, 221(18), pp. 2188–2196.CrossRefGoogle Scholar
Loustau, D., Bosc, A., Colin, A., Ogee, J., Davi, H., Francois, C., Dufrene, E., Deque, M., Cloppet, E., Arrouays, D., Bas, C. Le, Saby, N., Pignard, G., Hamza, N., Granier, A., Breda, N., Ciais, P., Viovy, N., and Delage, F. (2005). Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiology, 25(7), pp. 813–823.CrossRefGoogle ScholarPubMed
Low, T., and Booth, C. (2007). The Weedy Truth about Biofuels. Invasive Species Council, Melbourne, Fairfield, Australia, 46 pp.Google Scholar
Luyssaert, S., Schulze, E.D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., Ciais, P., and Grace, J. (2008). Old-growth forests as global carbon sinks. Nature, 455(7210), pp. 213–215.CrossRefGoogle ScholarPubMed
Lywood, W. (2008). Indirect Effects of Biofuels. Renewable Fuels Agency, East Sussex, UK.Google Scholar
Lywood, W., Pinkney, J., and Cockerill, S.A.M. (2009a). Impact of protein concentrate coproducts on net land requirement for European biofuel production. Global Change Biology Bioenergy, 1(5), pp. 346–359.CrossRefGoogle Scholar
Lywood, W., Pinkney, J., and Cockerill, S.A.M. (2009b). The relative contributions of changes in yield and land area to increasing crop output. Global Change Biology Bioenergy, 1(5), pp. 360–369.CrossRefGoogle Scholar
Macedo, I.C., and Seabra, J.E.A. (2008). Mitigation of GHG emissions using sugarcane bioethanol. In: Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment. Zuubier, P. and Vooren, J. (eds.), Wageningen Academic Publishers, Wageningen, The Netherlands, pp. 95–112.Google Scholar
Macedo, I.C., Seabra, J.E.A., and Silva, J.E.A.R. (2008). Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, 32(7), pp. 582–595.CrossRefGoogle Scholar
Madsen, A.M. (2006). Exposure to airborne microbial components in autumn and spring during work at Danish biofuel plants. Annals of Occupational Hygiene, 50(8), pp. 821–831.Google ScholarPubMed
Madsen, A.M., Martensson, L., Schneider, T., and Larsson, L. (2004). Microbial dustiness and particle release of different biofuels. Annals of Occupational Hygiene, 48(4), pp. 327–338.Google ScholarPubMed
Maes, W., Achten, W., and Muys, B. (2009). Use of inadequate data and methodological errors lead to a dramatic overestimation of the water footprint ofJatropha curcas. Nature Precedings, hdl:10101/npre.2009.3410.1, 3 pp.Google Scholar
Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., Rapidel, B., Tourdonnet, S., and Valantin-Morison, M. (2009). Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 29(1), pp. 43–62.CrossRefGoogle Scholar
Malmer, A., Murdiyarso, D., Bruijnzeel, L.A.S., and Lstedt, U. (2010). Carbon sequestration in tropical forests and water: a critical look at the basis for commonly used generalizations. Global Change Biology, 16(2), pp. 599–604.CrossRefGoogle Scholar
Markewitz, D. (2006). Fossil fuel carbon emissions from silviculture: Impacts on net carbon sequestration in forests. Forest Ecology and Management, 236(2-3), pp. 153–161.CrossRefGoogle Scholar
Marlair, G., Rotureau, P., Breulet, S., and Brohez, S. (2009). Booming development of biofuels for transport: Is fire safety of concern?Fire and Materials, 33(1), pp. 1–19.CrossRefGoogle Scholar
Marland, G., and Schlamadinger, B. (1997). Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis. Biomass and Bioenergy, 13(6), pp. 389–397.CrossRefGoogle Scholar
Marland, G., Obersteiner, M., and Schlamadinger, B. (2007). The carbon benefits of fuels and forests. Science, 318(5853), pp. 1066.CrossRefGoogle ScholarPubMed
Martens, W., and Böhm, R. (2009). Overview of the ability of different treatment methods for liquid and solid manure to inactivate pathogens. Bioresource Technology, 100(22), pp. 5374–5378.CrossRefGoogle ScholarPubMed
Martinelli, L.A., and Filoso, S. (2007). Polluting effects of Brazil's sugar-ethanol industry. Nature, 445(7126), pp. 364–364.CrossRefGoogle ScholarPubMed
Masera, O.R., and Navia, J. (1997). Fuel switching or multiple cooking fuels: Understanding interfuel substitution patterns in rural Mexican households. Biomass and Bioenergy, 12(5), pp. 347–361.CrossRefGoogle Scholar
Masera, O.R., Saatkamp, B.D., and Kammen, D.M. (2000). From linear fuel switching to multiple cooking strategies: A critique and alternative to the energy ladder model. World Development, 28(12), pp. 2083–2103.CrossRefGoogle Scholar
Masera, O.R., Diaz, R., and Berrueta, V. (2005). From cookstoves to cooking systems: the integrated program on sustainable household energy use in Mexico. Energy for Sustainable Development, 9(1), pp. 25–36.CrossRefGoogle Scholar
Masera, O., Ghilardi, A., Drigo, R., and Trossero, M. Angel (2006). WISDOM: A GISbased supply demand mapping tool for woodfuel management. Biomass and Bioenergy, 30(7), pp. 618–637.CrossRefGoogle Scholar
Matsuoka, S., Ferro, J., and Arruda, P. (2009). The Brazilian experience of sugarcane ethanol industry. In Vitro Cellular & Developmental Biology – Plant, 45(3), pp. 372–381.CrossRefGoogle Scholar
Matthews, H.D., and Caldeira, K. (2008). Stabilizing climate requires near-zero emissions. Geophysical Research Letters, 35(4), L04705.CrossRefGoogle Scholar
Matthews, H.D., Gillett, N.P., Stott, P.A., and Zickfeld, K. (2009). The proportionality of global warming to cumulative carbon emissions. Nature, 459(7248), pp. 829–832.CrossRefGoogle ScholarPubMed
Maués, J.A. (2007). Maximizacao da geracao eletrica a partir do bagaco e palha em usinas de acucar e alcool. Revista Engenharia, 583, pp. 88–98.Google Scholar
Mayfield, C.A., Foster, C.D., Smith, C.T., Gan, J., and Fox, S. (2007). Opportunities, barriers, and strategies for forest bioenergy and bio-based product development in the Southern United States. Biomass & Bioenergy, 31, pp. 631–637.CrossRefGoogle Scholar
McAloon, A., Taylor, F., Lee, W., Ibsen, K., and Wooley, R. (2000). Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks. NREL/TP-580-28893, National Renewable Energy Laboratory, Golden, CO, USA, 43 pp.Google Scholar
McCoy, M. (2006). Glycerin surplus. Chemical & Engineering News, 83(4), pp. 21–22.CrossRefGoogle Scholar
McDonald, A., and Schrattenholzer, L. (2001). Learning rates for energy technologies. Energy Policy, 29(4), pp. 255–261.CrossRefGoogle Scholar
McGowin, C. (2008). Renewable Energy Technical Assessment Guide. TAG-RE:2007, Electric Power Research Institute, Palo Alto, CA, USA.Google Scholar
McKeough, P., and Kurkela, E. (2008). Process Evaluations and Design Studies in the UCG Project 2004-2007. VTT Research Notes 2434, VTT Technical Research Centre of Finland, Espoo, Finland, 49 pp.Google Scholar
McKeough, P., Solantausta, Y., Kyllönen, H., Faaij, A., Hamelinck, C., Wagener, M., Beckman, D. and Kjellström, B. (2005). Technoeconomic Analysis of Biotrade Chains: Upgraded Biofuels from Russia and Canada to the Netherlands. VTT Research Notes 2312, VTT Technical Research Centre of Finland, Espoo, Finland, 65 pp.Google Scholar
McLeod, J.E., Nunez, J.E., and Rivera, S.S. (2008). A discussion about how to model biofuel plants for the risk optimization. In: Proceedings of the World Congress on Engineering 2008, Vol. II, London, UK, 2-4 July 2008, pp. 1214–1219.Google Scholar
McWhorter, C. (1971). Introduction and spread of johnsongrass in the United States. Weed Science, 19(5), pp. 496–500.Google Scholar
Melillo, J.M., Reilly, J.M., Kicklighter, D.W., Gurgel, A.C., Cronin, T.W., Paltsev, S., Felzer, B.S., Wang, X., Sokolov, A.P., and Schlosser, C.A. (2009). Indirect emissions from biofuels: How important?Science, 326(5958), pp. 1397–1399.CrossRefGoogle ScholarPubMed
Menichetti, E., and Otto, M. (2009). Energy balance and greenhouse gas emissions of biofuels from a product life-cycle perspective. In: Biofuels: Environmental Consequences and Interactions with Changing Land Use. Howarth, R.W. and Bringezu, S. (eds.), Proceedings of the SCOPE - Scientific Committee on Problems of the Environment International Biofuels Project Rapid Assessment, Gummersbach, Germany, 22-25 September 2009, pp. 81–109.Google Scholar
Metzger, J.O., and Huttermann, A. (2009). Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften, 96(2), pp. 279–288.CrossRefGoogle ScholarPubMed
Milbrandt, A., and Overend, R.P. (2008). Future of Liquid Biofuels for APEC Economies. NREL/TP-6A2-43709, report prepared for Asia-Pacific Economic Cooperation by the National Renewable Energy Laboratory, Golden, CO, USA, 103 pp. Available at: www.biofuels.apec.org/pdfs/ewg_2008_liquid_biofuels.pdf.CrossRefGoogle Scholar
Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being. Island Press, Washington, DC, USA, 36 pp.
Mishra, V., Dai, X., Smith, K., and Mike, L. (2004). Maternal exposure to biomass smoke and reduced birth weight in Zimbabwe. Annals of Epidemiology, 14(10), pp. 740–747.CrossRefGoogle ScholarPubMed
Mitchell, D. (2008). A Note on Rising Food Prices. Policy Research Working Paper 4682, The World Bank Group, Washington, DC, USA, 22 pp.CrossRefGoogle Scholar
Molden, D. (ed.) (2007). Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan, London, UK.
Molina Grima, E., Belarbi, E.H., Fernandez, F.G. Acien, Medina, A. Robles, and Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20(7-8), pp. 491–515.CrossRefGoogle ScholarPubMed
Möllersten, K., Yan, J., and Moreira, J.R. (2003). Potential market niches for biomass energy with CO2 capture and storage – Opportunities for energy supply with negative CO2 emissions. Biomass and Bioenergy, 25(3), pp. 273–285.CrossRefGoogle Scholar
Molofsky, J., Morrison, S.L., and Goodnight, C.J. (1999). Genetic and environmental controls on the establishment of the invasive grass, Phalaris arundinacea. Biological Invasions, 1(2), pp. 181–188.CrossRefGoogle Scholar
Moral, R., Paredes, C., Bustamante, M.A., Marhuenda-Egea, F., and Bernal, M.P. (2009). Utilisation of manure composts by high-value crops: Safety and environmental challenges. Bioresource Technology, 100(22), pp. 5454–5460.CrossRefGoogle ScholarPubMed
Moreira, J.R. (2006). Bioenergy and Agriculture, Promises and Challenges: Brazil's Experience with Bioenergy. International Food Policy Research Institute, Washington, DC, USA, 2 pp.Google Scholar
Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., and Cleemput, O. (1998). Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems, 52(2-3), pp. 1385–1314.CrossRefGoogle Scholar
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., and Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), pp. 673–686.CrossRefGoogle ScholarPubMed
Mozaffarian, H., Zwart, R.W.R., Boerrigeter, H., and Deurwaarder, E.P. (2004). Biomass and waste-related SNG production technologies; technical, economic and ecological feasibility. In: 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy, 10-14 May 2004. Available at: www.biosng.com/fileadmin/biosng/user/documents/reports/rx04024.pdf.Google Scholar
Mukunda, H.S., Dasappa, S., Paul, P.J., Rajan, N.K.S., Yagnaraman, M., Kumar, D.R., and Deogaonkar, M. (2010). Gasifier stoves - science, technology and field outreach. Current Science (Bangalore), 98(5), pp. 627–638.Google Scholar
Müller, C. (2007). Anaerobic Digestion of Biodegradable Solid Waste in Low-and Middle-Income Countries - Overview Over Existing Technologies and Relevant Case Studies. Eawag Aquatic Research, Dübendorf, Switzerland, 63 pp.Google Scholar
Myles, R. (2001). Implementation of Household Biogas Plant by NGOs in India-Practical Experience in Implementation Household Biogas Technology, Lessons Learned, Key Issues and Future Approach for Sustainable Village Development. In: VODO International Conference on Globalisation and Sustainable Development, Antwerp, Brussels, 19-21 Nov 2001, 19 pp. Available at: www. inseda.org/Additional%20material/Lessons%20learnt%20NGOs%20Biogas%20 programme.pdf.Google Scholar
Nabuurs, G.-J., Pussinen, A., Karjalainen, T., Erhard, M., and Kramer, K. (2002). Stemwood volume increment changes in European forests due to climate change–a simulation study with the EFISCEN model. Global Change Biology, 8(4), pp. 304–316.CrossRefGoogle Scholar
Nabuurs, G.J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, E., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W.A., Matsumoto, M., Oyhantcabal, W., Ravindranath, N.H., Sanchez, M.Z. Sanz, and Zhang, X. (2007). Forestry. In: Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., and Meyer, L.A. (eds.), Cambridge University Press, pp. 541–584.Google Scholar
Nagatomi, Y., Hiromi, Y., Kenji, Y., Hiroshi, I., and Koichi, Y. (2008). A system analysis of energy utilization and competing technology using oil palm residue in Malaysia. Journal of Japan Society of Energy and Resources, 29(5), pp. 1–7.Google Scholar
Narayanan, D., Zhang, Y., and Mannan, M.S. (2007). Engineering for Sustainable Development (ESD) in bio-diesel production. Process Safety and Environmental Protection, 85(5), pp. 349–359.CrossRefGoogle Scholar
Näslund-Eriksson, L., and Gustavsson, L. (2008). Biofuels from stumps and small roundwood – Costs and CO2 benefits. Biomass and Bioenergy, 32(10), pp. 897–902.CrossRefGoogle Scholar
Nassar, A., Harfurch, L., Moreira, M.M.R., Bachion, L.C., Antoniazzi, L.B., and Sparovek, G. (2009). Impacts on Land Use and GHG Emissions from a Shock on Brazilian Sugarcane Ethanol Exports to the United States using the Brazilian Land Use Model (BLUM). EPA HQ OAR 2005 0161, Institute for International Negotiations, Geneva, Switzerland, 32 pp.Google Scholar
Nassar, A., Antoniazzi, L.B., Moreira, M.R., Chiodi, L., and Harfurch, L. (2010). An Allocation Methodology to Assess GHG Emissions Associated with Land Use Change. Institute for International Negotiations, Geneva, Switzerland, 31 pp.Google Scholar
NRC (2008). Water Implications of Biofuels Production in the United States. National Research Council, The National Academies Press, Washington, DC, USA, 88 pp.
NRC (2009a). Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Impacts. National Research Council, National Academies Press, Washington, DC, USA, 50 pp.
NRC (2009b). America's Energy Future: Electricity from Renewable Resources: Status, Prospects, and Impediments. National Research Council, The National Academies Press, Washington, DC, 367 pp.
NRC (2010). Impact of Genetically Engineered Crops on Farm Sustainability in the United States, 2010. Committee on the Impact of Biotechnology on Farm-Level Economics and Sustainability; National Research Council, Washington, DC, USA, 35 pp.
Nehlsen, J., Mukherjee, M., and Porcelli, R.V. (2007). Apply an integrated approach to catalytic process design. Chemical Engineering Progress, 103(2), pp. 31–41.Google Scholar
Nelson, D.E., Repetti, P.P., Adams, T.R., Creelman, R.A., Wu, J., Warner, D.C., Anstrom, D.C., Bensen, R.J., Castiglioni, P.P., Donnarummo, M.G., Hinchey, B.S., Kumimoto, R.W., Maszle, D.R., Canales, R.D., Krolikowski, K.A., Dotson, S.B., Gutterson, N., Ratcliffe, O.J., and Heard, J.E. (2007). Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences, 104(42), pp. 16450–16455.CrossRefGoogle ScholarPubMed
NETL (2008). Development of Baseline Data and Analysis of Life Cycle Greenhouse Gas Emissions of Petroleum-Based Fuels. DOE/NETL-2009/1362, National Energy Technology Laboratory, Pittsburgh, PA, USA.
NETL (2009a). An Evaluation of the Extraction, Transport and Refining of Imported Crude Oils and the Impact on Life Cycle Greenhouse Gas Emissions. DOE/NETL-2009/1362, National Energy Technology Laboratory, Pittsburgh, PA, USA.
NETL (2009b). Affordable, Low Carbon Diesel Fuel from Domestic Coal and Biomass. DOE/NETL-2009/1349, National Energy Technology Laboratory, Pittsburgh, PA, USA.
Neumann, K., Verburg, P.H.Stehfest, E., and Müller, C. (2010). The yield gap of global grain production: A spatial analysis. Agricultural Systems, 103(5), pp. 316–326.CrossRefGoogle Scholar
Nguyen, T.L.T., and Gheewala, S.H. (2008). Life cycle assessment of fuel ethanol from Cassava in Thailand. International Journal of Life Cycle Assessment, 13(2), pp. 147–154.CrossRefGoogle Scholar
Nishi, T., Konishi, M., and Hasebe, S. (2005). An autonomous decentralized supply chain planning system for multi-stage production processes. Journal of Intelligent Manufacturing, 16(3), pp. 259–275.CrossRefGoogle Scholar
Nohrstedt, H.O. (2001). Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences. Scandinavian Journal of Forest Research, 16(6), pp. 555–573.CrossRefGoogle Scholar
Nusser, M., Hüsing, B., and Wydra, S. (2007). Potenzialanalyse der Industriellen, Weißen Biotechnologie, Karlsruhe. Fraunhofer-Institut für System-und Innovationsforschung, Karlsruhe, Germany, 426 pp.Google Scholar
O'Hare, M., Plevin, R.J., Martin, J.I., Jones, A.D., Kendall, A., and Hopson, E. (2009). Proper accounting for time increases crop-based biofuels' greenhouse gas deficit versus petroleum. Environmental Research Letters, 4(2), 024001 (7 pp.).Google Scholar
OANDA (2011). Historical Exchange Rates. Oanda Corporation, New York, NY, USA. Available at: www.oanda.com/currency/historical-rates/.
Obernberger, I., and Thek, G. (2004). Techno-economic evaluation of selected decentralised CHP applications based on biomass combustion in IEA partner countries. BIOS Bioenergiesysteme GmbH, Graz, Austria, 87 pp.Google Scholar
Obernberger, I., Thek, G., and Reiter, D. (2008). Economic evaluation of decentralised CHP applications based on biomass combustion and biomass gasification. BIOS Bioenergiesysteme GmbH, Graz, Austria, 19 pp.Google Scholar
Obersteiner, M., Mollersten, K., Moreira, J., Nilsson, S., Read, P., Riahi, K., Schlamadinger, B., Yamagata, Y., Yan, J., Ypserle, J.P., Azar, C., and Kauppi, P. (2001). Managing climate risk. Science, 294(5543), pp. 786–787.CrossRefGoogle ScholarPubMed
OECD-FAO (2008). Agricultural Outlook 2008-2017. Organisation for Economic Cooperation and Development and Food and Agriculture Organization, Paris, France, 73 pp.
Okada, M., Lanzatella, C., Saha, M.C., Bouton, J., Wu, R., and Tobias, C.M. (2010). Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics, 185(3), pp. 745–760.CrossRefGoogle ScholarPubMed
Oliveira, F.C.R. (2009). Ocupação, emprego e remuneração na cana-de-açúcar e em outras atividades agropecuárias no Brasil, de 1992 a 2007. Master's Thesis, Universidade de São Paulo, São Paulo, Brazil, 168 pp.
Oliver, R.J., Finch, J.W., and Taylor, G. (2009). Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and the implications for yield. Global Change Biology Bioenergy, 1(2), pp. 97–114.CrossRefGoogle Scholar
Oliverio, J.L. (2006). Technological evolution of the Brazilian sugar and alcohol sector: Dedini's contribution. International Sugar Journal, 108(1287), pp. 120–129.Google Scholar
Oliverio, J.L., and Ribeiro, J.E. (2006). Cogeneration in Brazilian sugar and bioethanol mills: Past, present and challenges. International Sugar Journal, 108(191), pp. 391–401.Google Scholar
Openshaw, K. (2000). A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass and Bioenergy, 19(1), pp. 1–15.CrossRefGoogle Scholar
Pacca, S., and Moreira, J.R. (2009). Historical carbon budget of the Brazilian ethanol program. Energy Policy, 37(11), pp. 4863–4873.CrossRefGoogle Scholar
Patel, M.K., Crank, M., Dornburg, V., Hermann, B., Roes, L., Hüsing, B., Overbeek, L., Terragni, F., and Recchia, E. (2006). Medium and Long-Term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources. Copernicus Institute for Sustainable Development and Innovation, Utrecht, The Netherlands, 420 pp.Google Scholar
Paustian, K., Antle, J.M., Sheehan, J., and Eldor, A.P. (2006). Agriculture's Role in Greenhouse Gas Mitigation. Pew Center on Global Climate Change, Arlington, VA, USA.Google Scholar
Peksa-Blanchard, M., Dolzan, P., Grassi, A., Heinimö, J., Junginger, M., Ranta, T., and Walter, A. (2007). Global Wood Pellets Markets and Industry: Policy Drivers, Market Status and Raw Material Potential. IEA Bioenergy Task 40 Publication, 120 pp. Available at: www.canbio.ca/documents/publications/ieatask40pelletandrawmaterialstudynov2007final.pdf.
Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., and Erbach, D.C. (2005). Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply. ORNL/TM-2005/66, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 78 pp.CrossRefGoogle Scholar
Perry, J.A. (2009). Catastrophic incident prevention and proactive risk management in the new biofuels industry. Environmental Progress & Sustainable Energy, 28(1), pp. 72–82.CrossRefGoogle Scholar
Persson, U.M., and Azar, C. (2010). Preserving the world's tropical forests – A price on carbon may not do. Environmental Science & Technology, 44(1), pp. 210–215.CrossRefGoogle Scholar
Petersson, A. and Wellinger, A. (2009). Biogas Upgrading Technologies – Developments and Innovations. IEA Bioenergy Task 37 publication, Malmo, Sweden, 20 pp. Available at: www.biogasmax.com/media/iea_2biogas_upgrading_tech__025919000_1434_30032010.pdf.Google Scholar
Phillips, S., Aden, A., Jechura, J., Dayton, D., and Eggeman, T. (2007). Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass. NREL/TP-510-41168, National Renewable Energy Laboratory, Golden, CO, USA, 132 pp.Google Scholar
Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C., O'Connell, C., Wong, E., Russel, L., Zern, J., Aquino, T., and Tsomondo, T. (2001). Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosystems & Environment, 84(1), pp. 1–20.CrossRefGoogle Scholar
Pimentel, D., Hepperly, P., Hanson, J., Douds, D., and Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience, 55(7), pp. 573–582.CrossRefGoogle Scholar
Pingali, P.L., and Heisey, P.W. (1999). Cereal Crop Productivity in Developing Counties: Past Trends and Future Prospects. Working Paper 99-03, International Maize and Wheat Improvement Center, Texcoco, Mexico, 34 pp.Google Scholar
Plevin, R.J. (2009). Modeling corn ethanol and climate. Journal of Industrial Ecology, 13(4), pp. 495–507.CrossRefGoogle Scholar
Plevin, R.J., Michael, O.H., Jones, A.D., Torn, M.S., and Gibbs, H.K. (2010). Greenhouse gas emissions from biofuels indirect land use change are uncertain but may be much greater than previously estimated. Environmental Science & Technology, 44(21), pp. 8015–8021.CrossRefGoogle ScholarPubMed
Practical Action Consulting (2009). Small Scale Bioenergy can Benefit Poor: Brief Description and Preliminary Lessons on Livelihood Impacts from Case Studies in Asia, Latin America and Africa. Food and Agriculture Organization and Policy Innovation Systems for Clean Energy Security, Rome, Italy, 142 pp.
Purdon, M., Bailey-Stamler, S., and Samson, R. (2009). Better bioenergy: Rather than picking bioenergy “winners,” effective policy should let a lifecycle analysis decide. Alternatives Journal, 35(2), pp. 23–29.Google Scholar
Rabaey, K., and Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23(6), pp. 291–298.CrossRefGoogle ScholarPubMed
Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J. Jr., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., and Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), pp. 484–489.CrossRefGoogle ScholarPubMed
Raghu, S., Anderson, R.C., Daehler, C.C., Davis, A.S., Wiedenmann, R.N., Simberloff, D., and Mack, R.N. (2006). Adding biofuels to the invasive species fire?Science, 313(5794), pp. 1742.CrossRefGoogle ScholarPubMed
Rajagopal, D., Hochman, G., and Zilberman, D. (2011). Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies. Energy Policy, 39(1), pp. 228–233.CrossRefGoogle Scholar
Ramanathan, V., and Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), pp. 221–227.CrossRefGoogle Scholar
Randall, J.M. (1996). Plant Invaders: How Non-native Species Invade & Degrade Natural Areas Invasive Plants. In: Weeds of the Global Garden. Marinelli, J. and Randall, J.M. (eds.), Brooklyn Botanic Garden, Brooklyn, NY, pp. 7–12.Google Scholar
Ranius, T., and Fahrig, L. (2006). Targets for maintenance of dead wood for biodiversity conservation based on extinction thresholds. Scandinavian Journal of Forest Research, 21(3), pp. 201–208.CrossRefGoogle Scholar
Rauch, R. (2010). Indirect Gasification. In: IEA Bioenergy Joint Tasks 32 &33 Workshop, State-of-the-Art Technologies for Small Biomass Co-generation, International Energy Agency, Copenhagen, Denmark, 7 Oct 2010. Available at: www.ieabcc.nl/meetings/task32_Copenhagen/09%20TU%20Vienna.pdf.Google Scholar
Ravindranath, N.H., Balachandra, P., Dasappa, S., and Rao, K. Usha (2006). Bioenergy technologies for carbon abatement. Biomass and Bioenergy, 30(10), pp. 826–837.CrossRefGoogle Scholar
Regalbuto, J.R. (2009). Cellulosic biofuels – got gasoline?Science, 325(5942), pp. 822–824.CrossRefGoogle ScholarPubMed
Reijnders, L. (2008). Ethanol production from crop residues and soil organic carbon. Resources, Conservation and Recycling, 52(4), pp. 653–658.CrossRefGoogle Scholar
Reinhardt, G. (1991). Biofuels: Energy and GHG balances: Methodology and Case Study Rape Seed Biodiesel. Institut für Energie-und Umweltforschung Heidelberg, Heidelberg, Germany.Google Scholar
Reinhardt, G., Gartner, S., Patyk, A., and Rettenmaier, N. (2006). Ökobilanzen zu BTL: Eine ökologische Einschätzung. 2207104, ifeu Institut für Energie- und Umweltforschung Heidelberg gGmbH, Heidelberg, Germany, 108 pp.Google Scholar
REN21 (2007). Global Status Report. Renewable Energy Policy Network for the 21st Century Secretariat, Paris, France, 54 pp.
REN21 (2009). Renewables Global Status Report: 2009 Update. Renewable Energy Policy Network for the 21st Century Secretariat, Paris, France, 42 pp.
Rendleman, C.M., and Shapouri, H. (2007). New Technologies in Ethanol Production. Report Number 842, United States Department of Agriculture, Washington, DC, USA.Google Scholar
RFA (2010). U.S. Cellulosic. Renewable Fuels Association, Washington, DC, USA. Available at: www.ethanolrfa.org/pages/cellulosic-ethanol
RFA (2011). Biorefinery Plant Locations. Renewable Fuels Association, Washington, DC, USA. Available at: www.ethanolrfa.org/bio-refinery-locations/.
Rentizelas, A.A., Tolis, A.J., and Tatsiopoulos, I.P. (2009). Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renewable and Sustainable Energy Reviews, 13(4), pp. 887–894.CrossRefGoogle Scholar
Reynolds, M.P., and Borlaug, N.E. (2006). Applying innovations and new technologies for international collaborative wheat improvement. The Journal of Agricultural Science, 144(02), pp. 95–95.CrossRefGoogle Scholar
Rhodes, J.S., and Keith, D.W. (2008). Biomass with capture: negative emissions within social and environmental constraints: an editorial comment. Climatic Change, 87(3-4), pp. 321–328.CrossRefGoogle Scholar
Righelato, R., and Spracklen, D.V. (2007). Carbon mitigation by biofuels or by saving and restoring forests?Science, 317(5840), pp. 902.CrossRefGoogle ScholarPubMed
Ringer, M., Putsche, V., and Scahill, J. (2006). Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis. TP-510-37779, National Renewable Energy Laboratory, Golden, CO, USA, 93 pp.Google Scholar
Riviére, C., and Marlair, G. (2009). BIOSAFUEL®, a pre-diagnosis tool of risks pertaining to biofuels chains. Journal of Loss Prevention in the Process Industries, 22(2), pp. 228–236.CrossRefGoogle Scholar
Riviére, C., and Marlair, G. (2010). The use of multiple correspondence analysis and hierarchical clustering to identify incident typologies pertaining to the biofuel industry. Biofuels, Bioproducts and Biorefining, 4(1), pp. 53–65.CrossRefGoogle Scholar
Robertson, G.P., Dale, V.H., Doering, O.C., Hamburg, S.P., Melillo, J.M., Wander, M.M., Parton, W.J., Adler, P.R., Barney, J.N., Cruse, R.M., Duke, C.S., Fearnside, P.M., Follett, R.F., Gibbs, H.K., Goldemberg, J., Mladenoff, D.J., Ojima, D., Palmer, M.W., Sharpley, A., Wallace, L., Weathers, K.C., Wiens, J.A., and Wilhelm, W.W. (2008). Sustainable biofuels redux. Science, 322(5898), pp. 49–50.CrossRefGoogle ScholarPubMed
Rockstrom, J., Lannerstad, M., and Falkenmark, M. (2007). Assessing the water challenge of a new green revolution in developing countries. Proceedings of the National Academy of Sciences, 104(15), pp. 6253–6260.CrossRefGoogle ScholarPubMed
Rockstrom, J., Karlberg, L., Wani, S.P., Barron, J., Hatibu, N., Oweis, T., Bruggeman, A., Farahani, J., and Qiang, Z. (2010). Managing water in rainfed agriculture – The need for a paradigm shift. Agricultural Water Management, 97(4), pp. 543–550.CrossRefGoogle Scholar
Romieu, I., Riojas-Rodriguez, H., Marron-Mares, A.T., Schilmann, A., Perez-Padilla, R., and Masera, O. (2009). Improved biomass stove intervention in rural Mexico: Impact on the respiratory health of women. American Journal of Respiratory and Critical Care Medicine, 180(7), pp. 649–656.CrossRefGoogle Scholar
Rosegrant, M.W., Zhu, T., Msangi, S., and Sulser, T. (2008). Biofuels: Long-run implications for food security and the environment. Review of Agricultural Economics, 30(3), pp. 495–505.CrossRefGoogle Scholar
Rosillo-Calle, F., Bajay, S.V., and Rothman, H. (eds.) (2000). Industrial Uses of Biomass Energy: The Example of Brazil. Taylor & Francis, London, UK.CrossRefGoogle Scholar
Ross, A.B., Anastasakis, K., Kubacki, M., and Jones, J.M. (2009). Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. Journal of Analytical and Applied Pyrolysis, 85(1-2), pp. 3–10.CrossRefGoogle Scholar
Rost, S., Gerten, D., Hoff, H., Lucht, W., Falkenmark, M., and Rockstrom, J. (2009). Global potential to increase crop production through water management in rainfed agriculture. Environmental Research Letters, 4(4), 044002 (9 pp.).CrossRefGoogle Scholar
Rowe, R., Whitaker, J., Chapman, J., Howard, D., and Talor, G. (2008). Life-Cycle Assessment in Bioenergy Sector: Developing a Systematic Review Working Paper. UKERC/WP/FSE/2008/002, UK Energy Research Centre, London, UK, 20 pp.
Royal Society (2008). Sustainable Biofuels: Prospects and Challenges. Policy document 01/08, The Royal Society, London, UK, 90 pp.
Rude, M.A., and Schirmer, A. (2009). New microbial fuels: a biotech perspective. Current Opinion in Microbiology, 12(3), pp. 274–281.CrossRefGoogle ScholarPubMed
(S&T)2 Consultants (2009). An Examination of the Potential for Improving Carbon/Energy Balance of Bioethanol. T39-TR1, (S&T)2Consultants Inc., Delta, Canada, 72 pp.
Saarinen, V.-M. (2006). The effects of slash and stump removal on productivity and quality of forest regeneration operations – preliminary results. Biomass and Bioenergy, 30(4), pp. 349–356.CrossRefGoogle Scholar
Saarsalmi, A., and Mälkönen, E. (2001). Forest fertilization research in Finland: A literature review. Scandinavian Journal of Forest Research, 16(6), pp. 514–535.CrossRefGoogle Scholar
Sala, O.E., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., and Jackson, R.B. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), pp. 1770–1774.CrossRefGoogle ScholarPubMed
Sanchez, O.J., and Cardona, C.A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99(13), pp. 5270–5295.CrossRefGoogle ScholarPubMed
Sannigrahi, P., Ragauskas, A.J., and Tuskan, G.A. (2010). Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels, Bioproducts and Biorefining, 4(2), pp. 209–226.CrossRefGoogle Scholar
Sawin, J.L. (2004). National Policy Instruments: Policy Lessons for the Advancement and Diffusion of Renewable Energy Technologies around the World. World Watch Institute, Washington, DC, USA.Google Scholar
SCBD (2006). Global Biodiversity Outlook 2. Secretariat of the Convention on Biological Diversity, Montreal, Canada, 92 pp. (ISBN-92-9225-040-X).
Schei, M.A., Hessen, J.O., Smith, K.R., Bruce, N., McCracken, J., and Lopez, V. (2004). Childhood asthma and indoor woodsmoke from cooking in Guatemala. Journal of Exposure Analysis and Environmental Epidemiology, 14, pp. S110-S117.CrossRefGoogle ScholarPubMed
Schlamadinger, B., Bohlin, F., Gustavsson, L., Jungmeier, G., Marlandii, G., Pingoudt, K., and Savolaine, I. (1997). Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass and Bioenergy, 13(6), pp. 359–375.CrossRefGoogle Scholar
Schlamadinger, B., Grubb, M., Azar, C., Bauen, A., and Berndes, G. (2001). Carbon sinks and the CDM: could a bioenergy linkage offer a constructive compromise?Climate Policy, 1, pp. 411–417.CrossRefGoogle Scholar
Schlamadinger, B., Bosquet, B., Streck, C., Noble, I., Dutschke, M., and Bird, N. (2005). Can the EU emission trading scheme support CDM forestry. Climate Policy, 5, pp. 199–208.CrossRefGoogle Scholar
Schmidhuber, J. (2008). Impact of an increased biomass use on agricultural markets, prices and food security: A longer-term perspective. In: Energy Security in Europe: Proceedings from the Conference ‘Energy Security in Europe', Lund, Sweden, 24-25 September 2007, Lund University, Lund, Sweden, pp. 133–170. Available at: www.cfe.lu.se/upload/LUPDF/CentrumforEuropaforskning/Confpap2.pdf.Google Scholar
Schneider, U.E., McCarl, B. A., and Schmid, E. (2007). Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry. Agricultural Systems, 94 (2), pp. 128–140CrossRefGoogle Scholar
Schouten, J.C., Rebrov, E.V., and Croon, M.H.J.M. (2002). Miniaturization of heterogeneous catalytic reactors: prospects for new developments in catalysis and process engineering. CHIMIA International Journal for Chemistry, 56(11), pp. 627–635.CrossRefGoogle Scholar
Schulz, U., Brauner, O., and Gruss, H. (2009). Animal diversity on short-rotation coppices – a review. Landbauforschung vTI Agriculture and Forestry Research 3, 59(3), pp. 171–182.Google Scholar
Schwaiger, H.P., and Bird, D.N. (2010). Integration of albedo effects caused by land use change into the climate balance: Should we still account in greenhouse gas units?Forest Ecology and Management, 260(3), pp. 278–286.CrossRefGoogle Scholar
Schwilch, G., Bachmann, F., and Liniger, H. (2009). Appraising and selecting conservation measures to mitigate desertification and land degradation based on stakeholder participation and global best practices. Land Degradation & Development, 20(3), pp. 308–326.CrossRefGoogle Scholar
Scolforo, J.R. (2008). Mundo Eucalipto – Os Fatos E Mitos De Sua Cultura. Editora Mar de Ideias, Rio de Janeiro, Brazil, 72 pp.Google Scholar
Seabra, J.E.A., Tao, L., Chum, H.L., and Macedo, I.C. (2010). A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass and Bioenergy, 34(8), pp. 1065–1078.CrossRefGoogle Scholar
Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., and Yu, T.H. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319, pp. 1238–1240.CrossRefGoogle ScholarPubMed
Seidenberger, T., Thran, D., Offermann, R., Seyfert, U., Buchhorn, M., and Zeddies, J. (2008). Global Biomass Potentials. Report prepared for Greenpeace International by the German Biomass Research Center, Leipzig, Germany, 137 pp.Google Scholar
Semere, T., and Slater, F. (2007). Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass and Bioenergy, 31(1), pp. 20–29.CrossRefGoogle Scholar
Sepp, S. (2008). Analysis of Charcoal Value Chains – General Considerations. GTZ Household Energy Programme, Eschborn, Germany, 11 pp.Google Scholar
Shah, S. (2007). Modular mini-plants: A new paradigm. Chemical Engineering Progress, 103(3), pp. 36–41.Google Scholar
Shapouri, H., and Salassi, M. (2006). The Economic Feasibility of Ethanol Production in the United States. United States Department of Agriculture, Washington, DC, USA, 69 pp.Google Scholar
Sharma, M.M. (2002). Strategies of conducting reactions on a small scale. Selectivity engineering and process intensification. Pure and Applied Chemistry, 74(12), pp. 2265–2269.CrossRefGoogle Scholar
Sheehan, J., Dunahay, T., Benemann, J., Roessler, G., and Weissman, C. (1998a). A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae. NREL/TP-580-24190, National Renewable Energy Laboratory, Golden, CO, USA, 295 pp.Google Scholar
Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., and Shapouri, H. (1998b). Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus. NREL/SR-580-24089, National Renewable Energy Laboratory, Golden, CO, USA, 314 pp.Google Scholar
Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., and Nelson, R. (2003). Energy and environmental aspects of using corn stover for fuel ethanol. Journal of Industrial Ecology, 7(3-4), pp. 117–146.
Shen, L., Haufe, J., and Patel, M.K. (2009). Product Overview and Market Projection of Emerging Bio-based Plastics: PRO-BIP 2009. Copernicus Institute for Sustainable Development and Innovation for the European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics, Utrecht University, Utrecht, The Netherlands, 78 pp.Google Scholar
Sikkema, R., Junginger, M., Pichler, W., Hayes, S., and Faaij, A.P.C. (2010). The international logistics of wood pellets for heating and power production in Europe: Costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands. Biofuels, Bioproducts and Biorefining, 4(2), pp. 132–153.CrossRefGoogle Scholar
Sikkema, R., Steiner, M., Junginger, M., Hiegl, W., Hansen, M.T., and Faaij, A. (2011). The European wood pellet markets: current status and prospects for 2020. Biofuels, Bioproducts and Biorefining, doi:10.1002/bbb.277.CrossRefGoogle Scholar
Simpson, T.W., Sharpley, A.N., Howarth, R.W., Paerl, H.W., and Mankin, K.R. (2008). The new gold rush: Fueling ethanol production while protecting water quality. Journal of Environmental Quality, 37(2), pp. 318–324.CrossRefGoogle ScholarPubMed
Simpson, T.W., Martinelli, L.A., Sharpley, A.N., Howarth, R.W., and Bringezu, S. (2009). Impact of ethanol production on nutrient cycles and water quality: the United States and Brazil as case studies. In: Biofuels: Environmental Consequences and Interactions with Changing Land Use. Howarth, R.W. and Bringezu, S. (eds.), Proceedings of the SCOPE - Scientific Committee on Problems of the Environment International Biofuels Project Rapid Assessment, Gummersbach, Germany, 22-25 September 2009, pp. 153–167.Google Scholar
Sims, R. (ed.) (2007). Renewables for Heating and Cooling. An Untapped Potential. Joint report for the Renewable Energy Technology Deployment Implementing Agreement and the Renewable Energy Working Party published by the International Energy Agency, Paris, France, 210 pp.Google Scholar
Sims, R., Taylor, M., Saddler, J., Mabee, W., and Riese, J. (2008). From 1st-to 2nd Generation Biofuel Technologies. An overview of current industry and R&D activities. IEA Bioenergy, Paris, France, 124 pp.Google Scholar
Sims, R.E.H., Mabee, W., Saddler, J.N., and Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101(6), pp. 1570–1580.CrossRefGoogle ScholarPubMed
Skjoldborg, B. (2010). Optimization of I/S Skive District Heating Plant. In: IEA Joint Task 32 & 33 Workshop, State-of-the-Art Technologies for Small Biomass Co-generation, International Energy Agency, Copenhagen, Denmark, 7 Oct 2010. Available at: www.ieabcc.nl/meetings/task32_Copenhagen/11%20Skive.pdf.Google Scholar
Smeets, E.M.W., and Faaij, A.P.C. (2007). Bioenergy potentials from forestry in 2050. Climatic Change, 81(3-4), pp. 353–390.CrossRefGoogle Scholar
Smeets, E.M.W., Faaij, A., Lewandowski, I., and Turkenburg, W. (2007). A bottomup assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science, 33(1), pp. 56–106.CrossRefGoogle Scholar
Smeets, E.M.W., Bouwman, L.F., Stehfest, E., Vuuren, D.P., and Posthuma, A. (2009). Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Global Change Biology, 15(1), pp. 1–23.CrossRefGoogle Scholar
Smil, V. (2002). Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzyme and Microbial Technology, 30(3), pp. 305–311.CrossRefGoogle Scholar
Smith, K.R., and Haigler, E. (2008). Co-benefits of climate mitigation and health protection in energy systems: Scoping methods. Annual Review of Public Health, 29(1), pp. 11–25.CrossRefGoogle ScholarPubMed
Smith, K.R., Uma, R., Kishore, V.V.N., Zhang, J., Joshi, V., and Khalil, M.A.K. (2000). Greenhouse implications of household stoves: An analysis for India. Annual Review of Energy and the Environment, 25(1), pp. 741–763.CrossRefGoogle Scholar
Soimakallio, S., Antikainen, R., and Thun, R. (2009a). Assessing the Sustainability of Liquid Biofuels from Evolving Technologies. VTT Research Notes 2482, VTT Technical Research Centre of Finland, Espoo, Finland, 268 pp.Google Scholar
Soimakallio, S., Makinen, T., Ekholm, T., Pahkala, K., Mikkola, H., and Paappanen, T. (2009b). Greenhouse gas balances of transportation biofuels, electricity and heat generation in Finland – Dealing with the uncertainties. Energy Policy, 37(1), pp. 80–90.CrossRefGoogle Scholar
Solomon, S., Plattner, G.K., Knutti, R., and Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences, 106(6), pp. 1704–1709.CrossRefGoogle ScholarPubMed
Sparovek, G., Berndes, G., Egeskog, A., Freitas, F.L.M., Gustafsson, S., and Hansson, J. (2007). Sugarcane ethanol production in Brazil: an expansion model sensitive to socioeconomic and environmental concerns. Biofuels, Bioproducts and Biorefining, 1(4), pp. 270–282.CrossRefGoogle Scholar
Spatari, S., and MacLean, H.L. (2010). Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels. Environmental Science & Technology, 44(22), pp. 8773–8780.CrossRefGoogle ScholarPubMed
Spranger, T., Hettelingh, J.P., Slootweg, J., and Posch, M. (2008). Modelling and mapping long-term risks due to reactive nitrogen effects: An overview of LRTAP convention activities. Environmental Pollution, 154(3), pp. 482–487.CrossRefGoogle ScholarPubMed
Steenblik, R. (2007). Subsidies: The Distorted Economics of Biofuels. Discussion Paper No. 2007-3, International Transport Forum, Organisation for Economic Co-operation and Development, Geneva, Switzerland, 66 pp.CrossRefGoogle Scholar
Stehfest, E., and Bouwman, L. (2006). N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), pp. 207–228.CrossRefGoogle Scholar
Stehfest, E., Bouwman, L., Vuuren, D.P., Elzen, M.G.J., Eickhout, B., and Kabat, P. (2009). Climate benefits of changing diet. Climatic Change, 95(1-2), pp. 83–102.CrossRefGoogle Scholar
Still, D., Pinnell, M., Ogle, D., and Appel, B. (2003). Insulative ceramics for improved cooking stoves. Boiling Point, 49, pp. 7–10.Google Scholar
Stoft, S. (2010). Renewable Fuel and the Global Rebound Effect. Research Paper No. 10-06, Global Energy policy Center, Berkeley, CA, USA, 19 pp.Google Scholar
Strengers, B., Leemans, R., Eickhout, B., Vries, B., and Bouwman, L. (2004). The land-use projections and resulting emissions in the IPCC SRES scenarios as simulated by the IMAGE 2.2 model. GeoJournal, 61(4), pp. 381–393.CrossRefGoogle Scholar
Sulser, T.B., Ringler, C., Zhu, T., Msangi, S., Bryan, E., and Rosegrant, M.W. (2010). Green and blue water accounting in the Ganges and Nile basins: Implications for food and agricultural policy. Journal of Hydrology, 384(3-4), pp. 276–291.CrossRefGoogle Scholar
Sumner, S.A., and Layde, P.M. (2009). Expansion of renewable energy industries and implications for occupational health. Journal of the American Medical Association, 302(7), pp. 787–789.CrossRefGoogle ScholarPubMed
Sustainable Transport Solutions (2006). Biogas as a Road Transport Fuel: An Assessment of the Potential Role of Biogas as a Renewable Transport Fuel. National Society for Clean Air and Environmental Protection, London, UK, 66 pp.
Swanson, R.M., Platon, A., Satrio, J.A., and Brown, R.C. (2010). Technoeconomic analysis of biomass-to-liquids production based on gasification. Fuel, 89(Supplement 1), pp. S11-S19.CrossRefGoogle Scholar
Tabeau, A., Eickhout, B., and Meijl, H. (2006). Endogenous agricultural land supply: estimation and implementation in the GTAP model. In: Ninth Annual Conference on Global Economic Analysis, Addis Ababa, Ethiopia, 15-17 June 2006. Available at: https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=2007.Google Scholar
Tao, L., and Aden, A. (2009). The economics of current and future biofuels. In Vitro Cellular & Developmental Biology - Plant, 45(3), pp. 199–217.CrossRefGoogle Scholar
Thorn, J., Brisman, J., and Toren, K. (2001). Adult-onset asthma is associated with self-reported mold or environmental tobacco smoke exposures in the home. Allergy, 56(4), pp. 287–292.CrossRefGoogle ScholarPubMed
Thornley, P., Rogers, J., and Huang, Y. (2008). Quantification of employment from biomass power plants. Renewable Energy, 33(8), pp. 1922–1927.CrossRefGoogle Scholar
Thornley, P., Upham, P., Huang, Y., Rezvani, S., Brammer, J., and Rogers, J. (2009). Integrated assessment of bioelectricity technology options. Energy Policy, 37(3), pp. 890–903.CrossRefGoogle Scholar
Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., and Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), pp. 671–677.CrossRefGoogle ScholarPubMed
Tilman, D., Hill, J., and Lehman, C. (2006a). Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 314(5805), pp. 1598–1600.CrossRefGoogle ScholarPubMed
Tilman, D., Reich, P.B., and Knops, J.M.H. (2006b). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441(7093), pp. 629–632.CrossRefGoogle Scholar
Titus, B.D., Maynard, D.G., Dymond, C.C., Stinson, G., and Kurz, W.A. (2009). Wood energy: Protect local ecosystems. Science, 324(5933), pp. 1389–1390.CrossRefGoogle ScholarPubMed
Tobias, C.M., Sarath, G., Twigg, P., Lindquist, E., Pangilinan, J., Penning, B.W., Barry, K., McCann, M.C., Carpita, N.C., and Lazo, G.R. (2008). Comparative genomics in switchgrass using 61,585 high-quality expressed sequence tags. The Plant Genome, 1(2), pp. 111–124.CrossRefGoogle Scholar
Tonkovich, A.Y., Perry, S., Wang, Y., Qiu, D., LaPlante, T., and Rogers, W.A. (2004). Microchannel process technology for compact methane steam reforming. Chemical Engineering Science, 59(22-23), pp. 4819–4824.CrossRefGoogle Scholar
Towle, D.W., and Pearse, J.S. (1973). Production of the giant kelp, Macrocystis, estimated by in situ incorporation of 14C in polyethylene bags. American Society of Limnology and Oceanography, 18(1), pp. 155–159.CrossRefGoogle Scholar
Turhollow, A. (1994). The economics of energy crop production. Biomass and Bioenergy, 6(3), pp. 229–241.CrossRefGoogle Scholar
Tyner, W.E., and Taheripour, F. (2008). Policy options for integrated energy and agricultural markets. Applied Economic Perspectives and Policy, 30(3), pp. 387–396.Google Scholar
Tyner, W., Taheripour, F., Zhuang, Q., Birur, D., and Baldos, U. (2010). Land Use Changes and Consequent CO2 Emissions due to U.S. Corn Ethanol Production: A Comprehensive Analysis. GTAP Resource 3288, Department of Agricultural Economics, Purdue University, West Lafayette, IN, USA, 90 pp.Google Scholar
UN-Water (2007). Coping with Water Scarcity: Challenge of the Twenty-First Century. Prepared for World Water Day 2007, United Nations, New York, NY, USA, 29 pp.
,UNECE/FAO TIMBER Database (2011). Market Presentations at http:timber.unece.org/. United Nations Economic Commission for Europe and Food and Agricultural Organization.
UNEP (2008a). UNEP Year Book 2008: an Overview of Our Changing Environment. United Nations Environment Programme, Nairobi, Kenya.
UNEP (2008b). The Potential Impacts of Biofuels on Biodiversity, Notes by the Executive Secretary. UNEP/CBD/COP/9/26, United Nations Environment Programme, Bonn, Germany, 16 pp.
UNEP/SEFI/Bloomberg (2010). Global Trends in Sustainable Energy Investment 2010. DTI/1186/PA, Sustainable Energy Finance Initiative, United Nations Environment Programme and Bloomberg New Energy Finance, Geneva, Switzerland, 61 pp.
UK DfT (2003). International Resource Costs of Biodiesel and Bioethanol. AEAT/ENV/ED50273/R1, United Kingdom Department for Transport, Oxfordshire, UK, 51 pp.
University of Illinois (2011). farmdoc: Historical Corn Prices. University of Illinois, Urbana, Illinois, USA. Available at: www.farmdoc.illinois.edu/manage/pricehistory/ price_history.htm.
US DOE (2009). National Algal Biofuels Technology Roadmap. U.S. Department of Energy Biomass Program, Washington, DC, USA, 214 pp.
US DOE (2011). Biomass as Feedstock for a Bioenergy and Bioproducts Industry: An Update to the Billion-Ton Annual Supply. R. D. Perlack and B.J. Stokes (Leads), ORNL/TM-2010/xx. U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, TN, USA, in press.
USDA (2006). Oil Crops Yearbook/OCS-2006/Mar21. Economic Research Service, US Department of Agriculture (USDA), Washington, DC, USA.
USDA (2007). Wheat Data: Yearbook Tables. Economic Research Service, US Department of Agriculture (USDA), Washington, DC, USA.
Uslu, A., Faaij, A.P.C., and Bergman, P.C.A. (2008). Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy, 33(8), pp. 1206–1223.CrossRefGoogle Scholar
Dam, J., Junginger, M.Faaij, A., Jurgens, I., Best, G., and Fritsche, U. (2008). Overview of recent developments in sustainable biomass certification. Biomass and Bioenergy, 32(8), pp. 749–780.Google Scholar
Dam, J., Faaij, A.P.C., Hilbert, J., Petruzzi, H., and Turkenburg, W.C. (2009a). Large-scale bioenergy production from soybeans and switchgrass in Argentina: Part A: Potential and economic feasibility for national and international markets. Renewable and Sustainable Energy Reviews, 13(8), pp. 1710–1733.Google Scholar
Dam, J., Faaij, A.P.C., Hilbert, J., Petruzzi, H., and Turkenburg, W.C. (2009b). Large-scale bioenergy production from soybeans and switchgrass in Argentina: Part B. Environmental and socio-economic impacts on a regional level. Renewable and Sustainable Energy Reviews, 13(8), pp. 1679–1709.Google Scholar
Dam, J., Faaij, A.P.C., Lewandowski, I., and Zeebroeck, B. (2009c). Options of biofuel trade from Central and Eastern to Western European countries. Biomass and Bioenergy, 33(4), pp. 728–744.Google Scholar
Dam, J., Junginger, M., and Faaij, A.P.C. (2010). From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renewable and Sustainable Energy Reviews, 14(9), pp. 2445–2472.Google Scholar
van den Wall Bake, J.D. (2006). Cane as Key in Brazilian Ethanol Industry. Master's Thesis, Copernicus Institute, Utrecht University, Utrecht, The Netherlands, 83 pp.Google Scholar
van den Wall Bake, J.D., Junginger, M., Faaij, A., Poot, T., and Walter, A. (2009). Explaining the experience curve: Cost reductions of Brazilian ethanol from sugarcane. Biomass and Bioenergy, 33(4), pp. 644–658.CrossRefGoogle Scholar
Horst, D., and Evans, J. (2010). Carbon claims and energy landscapes: Exploring the political ecology of biomass. Landscape Research, 35(2), pp. 173–193.CrossRefGoogle Scholar
Iersel, S., Gamba, L., Rossi, A., Alberici, S., Dehue, B., Staaij, J., and Flammini, A. (2009). Algae-Based Biofuels: A Review of Challenges and Opportunities for Developing Countries. Food and Agriculture Organization, Rome, Italy, 59 pp.Google Scholar
Loo, S., and Koppejan, J. (eds.) (2002). Handbook of Biomass Combustion and Cofiring. 1st ed. Twente University Press, Enschede, The Netherlands, 442 pp.Google Scholar
Minnen, J.G., Strengers, B.J., Eickhout, B., Swart, R.J., and Leemans, R. (2008). Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model. Carbon Balance and Management, 3(3), 20 pp.Google ScholarPubMed
Vliet, O.P.R., Faaij, A.P.C., and Turkenburg, W.C. (2009). Fischer-Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. Energy Conversion and Management, 50(4), pp. 855–876.CrossRefGoogle Scholar
Vuuren, D., Elzen, M., Lucas, P., Eickhout, B., Strengers, B., Ruijven, B., Wonink, S., and Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change, 81(2), pp. 119–159.CrossRefGoogle Scholar
Vuuren, D.P., Vliet, J., and Stehfest, E. (2009). Future bio-energy potential under various natural constraints. Energy Policy, 37(11), pp. 4220–4230.CrossRefGoogle Scholar
Vuuren, D.P., Bellevrat, E., Kitous, A., and Isaac, M. (2010). Bio-energy use and low stabilization scenarios. The Energy Journal, 31(Special Issue), pp. 192–222.CrossRefGoogle Scholar
Zyl, W., Lynd, L., Haan, R., and McBride, J. (2007). Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Advanced Biochemical Engineering Biotechnology, 108, pp. 205–235.Google ScholarPubMed
Vandermeer, J., and Perfecto, I. (2006). Response to comments on “A Keystone Mutualism Drives Pattern in a Power Function”. Science, 313(5794), pp. 1739.CrossRefGoogle Scholar
Venkataraman, C., Sagar, A.D., Habib, G., Lam, N., and Smith, K.R. (2010). The Indian National Initiative for Advanced Biomass Cookstoves: The benefits of clean combustion. Energy for Sustainable Development, 14(2), pp. 63–72.CrossRefGoogle Scholar
Venter, O., Meijaard, E., Possingham, H., Dennis, R., Sheil, D., Wich, S., Hovani, L., and Wilson, K. (2009). Carbon payments as a safeguard for threatened tropical mammals. Conservation Letters, 2(3), pp. 123–129.CrossRefGoogle Scholar
Verhaeven, E., Pelkmans, L., Govaerts, L., Lamers, R., and Theunissen, F. (2005). Results of demonstration and evaluation projects of biodiesel from rapeseed and used frying oil on light and heavy duty vehicles. In: 2005 SAE Brasil Fuels & Lubricants Meeting. SAE International, Rio De Janeiro, Brasil, May 2005, 7 pp., doi:10.4271/2005-01-2201.Google Scholar
Vinnerås, B., Schönning, C., and Nordin, A. (2006). Identification of the microbiological community in biogas systems and evaluation of microbial risks from gas usage. Science of the Total Environment, 367(2-3), pp. 606–615.CrossRefGoogle ScholarPubMed
Blottnitz, H., and Curran, M.A. (2007). A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. Journal of Cleaner Production, 15(7), pp. 607–619.CrossRefGoogle Scholar
Geibler, J., Liedtke, C., Wallbaum, H., and Schaller, S. (2006). Accounting for the social dimension of sustainability: experiences from the biotechnology industry. Business Strategy and the Environment, 15(5), pp. 334–346.CrossRefGoogle Scholar
Schirnding, Y., Bruce, N., Smith, K., Ballard-Treemer, G., Ezzati, M., and Lvovsky, K. (2001). Addressing the Impact of Household Energy and Indoor Air Pollution on the Health of the Poor - Implications for Policy Action and Intervention Measures. WHO/HDE/HID/02.9, Commission on Macroeconomics and Health, World Health Organization, Geneva, Switzerland, 52 pp.Google Scholar
Weyman, N. (2007). Bioetanolia maatalouden selluloosavirroista (Bioethanol from agricultural lignocellulosic residues). VTT Tiedotteita 2412, VTT Technical Research Centre of Finland, Espoo, Finland, 48 pp.Google Scholar
Walmsley, J.D., and Godbold, D.L. (2010). Stump harvesting for bioenergy - A review of the environmental impacts. Forestry, 83(1), pp. 17–38.CrossRefGoogle Scholar
Walsh, M.E. (2008). U.S. Cellulosic Biomass Feedstock Supplies and Distribution. Ag Econ Search - Research in Agricultural and Applied Economics, University of Minnesota, St. Paul, Minnesota, 47 pp. Available at: ageconsearch.umn.edu/bitstream/7625/2/U.S.%20Biomass%20Supplies.pdf.Google Scholar
Walter, A., Rosillo-Calle, F., Dolzan, P., Piacente, E., and Cunha, K. Borges (2008). Perspectives on fuel ethanol consumption and trade. Biomass and Bioenergy, 32(8), pp. 730–748.CrossRefGoogle Scholar
Wang, M., Saricks, C., and Santini, D. (1999). Effects of fuel ethanol use on fuelcycle energy and greenhouse gas emissions. ANL/ESD-38, Argonne Energy Systems Division, Argonne National Laboratory, Argonne, IL, USA, 39 pp.Google Scholar
Wang, M., Wu, M., and Huo, H. (2007). Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environmental Research Letters, 2(2), 024001.CrossRefGoogle Scholar
Wang, M., Huo, H., and Arora, S. (2010). Methods of dealing with co-products of biofuels in life-cycle 3 analysis and consequent results within the U.S. context. Energy Policy, in press, doi:10.1016/j.enpol.2010.03.052.Google Scholar
Wang, M.Q., Han, J., Haq, Z., Tyner, W.E., Wu, M., and Elgowainy, A. (2011). Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass and Bioenergy, 35(5), pp. 1885–1896.CrossRefGoogle Scholar
Warwick, S.I., Beckie, H.J., and Hall, L.M. (2009). Gene flow, invasiveness, and ecological impact of genetically modified crops. Annals of the New York Academy of Sciences, 1168(1), pp. 72–99.CrossRefGoogle ScholarPubMed
WBGU (2009). World in Transition – Future Bioenergy and Sustainable Land Use. German Advisory Council on Global Change (WBGU), Berlin, Germany, 393 pp. (ISBN 978-1-84407-841-7).
Weyer, K., Bush, D., Darzins, A., and Willson, B. (2009). Theoretical maximum algal oil production. BioEnergy Research, 3(2), pp. 204–213.CrossRefGoogle Scholar
Wicke, B., Dornburg, V., Junginger, M., and Faaij, A. (2008). Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass and Bioenergy, 32(12), pp. 1322–1337.CrossRefGoogle Scholar
Wicke, B., Smeets, E., Tabeau, A., Hilbert, J., and Faaij, A. (2009). Macroeconomic impacts of bioenergy production on surplus agricultural land – A case study of Argentina. Renewable and Sustainable Energy Reviews, 13(9), pp. 2463–2473.CrossRefGoogle Scholar
Wilhelm, W.W., Johnson, J.M.F., Hatfield, J.L., Voorhees, W.B., and Linden, D.R. (2004). Crop and soil productivity response to corn residue removal: A literature review. Agronomy Journal, 96(1), pp. 1–17.CrossRefGoogle Scholar
Wilhelm, W.W., Johnson, J.M.E., Karlen, D.L., and Lightle, D.T. (2007). Corn stover to sustain soil organic carbon further constrains biomass supply. Agronomy Journal, 99, pp. 1665–1667.CrossRefGoogle Scholar
Wilkie, A.C., and Evans, J.M. (2010). Aquatic plants: an opportunity feedstock in the age of bioenergy. Biofuels, 1(2), pp. 311–321.CrossRefGoogle Scholar
Wilkie, A.C., Riedesel, K.J., and Owens, J.M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19(2), pp. 63–102.CrossRefGoogle Scholar
Wilkinson, P., Smith, K.R., Davies, M., Adair, H., Armstrong, B.G., Barrett, M., Bruce, N., Haines, A., Hamilton, I., Oreszczyn, T., Ridley, I., Tonne, C., and Chalabi, Z. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: household energy. The Lancet, 374(9705), pp. 1917–1929.CrossRefGoogle ScholarPubMed
Williams, R.H., Larson, E.D., Liu, G., and Kreutz, T.G. (2009). Fischer-Tropsch fuels from coal and biomass: Strategic advantages of once-through (“polygeneration”) configurations. Energy Procedia, 1(1), pp. 4379–4386.CrossRefGoogle Scholar
Wirsenius, S. (2003). Efficiencies and biomass appropriation of food commodities on global and regional levels. Agricultural Systems, 77(3), pp. 219–255.CrossRefGoogle Scholar
Wirsenius, S., Azar, C., and Berndes, G. (2010). How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems, 103(9), pp. 621–638.CrossRefGoogle Scholar
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S.J., Janetos, A., and Edmonds, J. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324(5931), pp. 1183–1186.CrossRefGoogle Scholar
Wiskerke, W.T., Dornburg, V., Rubanza, C.D.K., Malimbwi, R.E., and Faaij, A.P.C. (2010). Cost/benefit analysis of biomass energy supply options for rural smallholders in the semi-arid eastern part of Shinyanga Region in Tanzania. Renewable and Sustainable Energy Reviews, 14(1), pp. 148–165.CrossRefGoogle Scholar
Wolf, J., Bindraban, P.S., Luijten, J.C., and Vleeshouwers, L.M. (2003). Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agricultural Systems, 76, pp. 841–861.CrossRefGoogle Scholar
Wooley, R., Ruth, M., Glassner, D., and Sheehan, J. (1999). Process design and costing of bioethanol technology: A tool for determining the status and direction of research and development. Biotechnology Progress, 15(5), pp. 794–803.CrossRefGoogle ScholarPubMed
Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(56), pp. 1–9.CrossRefGoogle ScholarPubMed
World Bank (2009). The World Bank - Global Economic Prospects - Commodities at the Crossroad. The World Bank, The International Bank for Reconstruction and Development, Washington, DC, USA, 196 pp. (see page 73).
World Bank (2010). Improved Cookstoves and Better Health in Bangladesh: Lessons from Household Energy and Sanitation Programs. The World Bank, The International Bank for Reconstruction and Development, Washington, DC, USA, 136 pp.
Wright, B. (2009). International Gain Reserves and Other Instruments to Address Volatility in Grain Market. Policy Research Working Paper 5028, World Bank Group, Washington, DC, USA, 61 pp.CrossRefGoogle Scholar
Wright, D.H. (1990). Human impacts on energy flow through natural ecosystems, and implications for species endangerment. AMBIO: A Journal of the Human Environment, 19(4), pp. 189–194.Google Scholar
Wu, M., Wu, Y., and Wang, M. (2005). Mobility Chains Analysis of Technologies for Passenger Cars and Light Duty Vehicles Fueled with Biofuels: Application of the Greet Model to Project the Role of Biomass in America's Energy Future (RBAEF) project. ANL/ESD/07-11, Argonne National Laboratory, Argonne, IL, USA, 84 pp.Google Scholar
Wu, M., Wang, M., Liu, J., and Huo, H. (2008). Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel. Biotechnology Progress, 24(6), pp. 1204–1214.CrossRefGoogle ScholarPubMed
Wu, M., Mintz, M., Wang, M., and Arora, S. (2009). Water consumption in the production of ethanol and petroleum gasoline. Environmental Management, 44(5), pp. 981–997.CrossRefGoogle ScholarPubMed
WWI (2006). Biofuels for Transportation – Global Potential and Implications for Sustainable Agriculture and Energy in the 21st Century. World Watch Institute, Washington, DC, USA, 417 pp.
Wydra, S. (2009). Production and Employment Impacts of New Technologies – Analysis for Biotechnology. Discussion Paper 08-2009, Forschungszentrum Innovation und Dienstleistung, Universität Hohenheim, Stuttgart, Germany, 31 pp.Google Scholar
Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., and Lee, Y.Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), pp. 1959–1966.CrossRefGoogle ScholarPubMed
Yamashita, K., and Barreto, L. (2004). Biomass Gasification for the Co-production of Fischer-Tropsch Liquids and Electricity. Interim Report IR-04-047, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, 50 pp.Google Scholar
Yanowitz, J., and McCormick, R.L. (2009). Effect of biodiesel blends on North American heavy-duty diesel engine emissions. European Journal of Lipid Science and Technology, 111(8), pp. 763–772.CrossRefGoogle Scholar
Yazdani, S.S., and Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology, 18(3), pp. 213–219.CrossRefGoogle ScholarPubMed
Yeh, S., Jordaan, S.M., Brandt, A.R., Turetsky, M.R., Spatari, S., and Keith, D.W. (2010). Land use greenhouse gas emissions from conventional oil production and oil sands. Environmental Science & Technology, 44(22), pp. 8766–8772.CrossRefGoogle ScholarPubMed
Yokoyama, S., and Matsumura, Y. (eds.) (2008). The Asian Biomass Handbook: A Guide for Biomass Production and Utilization. The Japan Institute of Energy, Tokyo, Japan, 326 pp.Google Scholar
Zabowski, D., Chambreau, D., Rotramel, N., and Thies, W.G. (2008). Long-term effects of stump removal to control root rot on forest soil bulk density, soil carbon and nitrogen content. Forest Ecology and Management, 255(3-4), pp. 720–727.CrossRefGoogle Scholar
Zemke-White, L., and Ohno, M. (1999). World seaweed utilisation: An end-of-century summary. Journal of Applied Phycology, 11(4), pp. 369–376.CrossRefGoogle Scholar
Zezza, A., Davis, B., Azzarri, C., Covarrubias, K., Tasciotti, L., and Anriquez, G. (2008). The Impact of Rising Food Prices on the Poor. ESA Working Paper No. 08-07, Agricultural Development Economics Division, Food and Agriculture Organization, Rome, Italy, 37 pp.Google Scholar
Zhang, X., Izaurralde, R.C., Manowitz, D., West, T.O., Post, W.M., Thomson, A.M., Bandaru, V.P., Nichols, J., and Williams, J.R. (2010). An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems. Global Change Biology Bioenergy, 2(5), pp. 258–277.CrossRefGoogle Scholar
Zomer, R.J., Trabucco, A., Straaten, O., and Bossio, D.A. (2006). Carbon, Land and Water: A Global Analysis of the Hydrologic Dimensions of Climate Change Mitigation through Afforestation/Reforestation. IWMI Research Report 101, International Water Management Institute, Colombo, Sri Lanka, 48 pp.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×