Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-21T12:43:43.718Z Has data issue: false hasContentIssue false

5 - Forward and Inverse Modelling

Published online by Cambridge University Press:  17 December 2020

Andrew Binley
Affiliation:
Lancaster University
Lee Slater
Affiliation:
Rutgers University, New Jersey
Get access

Summary

In this chapter, we introduce the concepts of forward and inverse modelling of resistivity and induced polarization (IP) measurements.We provide a comprehensive account of the elements that form the majority of modern techniques for resistivity and IP modelling. 1D forward modelling is discussed, building on analytical approaches presented in Chapter 4.For 2D and 3D forward modelling, numerical (discrete) approaches are required, typically adopting finite difference or finite element methods. Inverse modelling, which provides the spatial (or spatio-temporal) variation of a property of interest, is essential for interpretation of resistivity and IP data.We detail various inverse modelling approaches for resistivity and IP data. We illustrate how a priori information can be used to enhance an inverse model and show how data errors can impact on the computed model of electrical properties. Extension of the inverse modelling to treat time-lapse data is explained.Various methods for inverse model appraisal (including model uncertainty) are presented. We illustrate alternative inverse modelling approaches that are based on probabilistic approaches. The inverse modelling of spectral IP data for recovery of relaxation parameters is also discussed.

Type
Chapter
Information
Resistivity and Induced Polarization
Theory and Applications to the Near-Surface Earth
, pp. 213 - 274
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×