Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T12:50:16.951Z Has data issue: false hasContentIssue false

3 - Genes required for RNA interference

Published online by Cambridge University Press:  31 July 2009

Nathaniel R. Dudley
Affiliation:
Biology Department, University of North Carolina
Ahmad Z. Amin
Affiliation:
Biology Department, University of North Carolina
Bob Goldstein
Affiliation:
Biology Department, University of North Carolina
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Introduction

RNA interference (RNAi) is a recently discovered phenomenon in which double-stranded RNA (dsRNA) silences endogenous gene expression in a sequence-specific manner (Fire et al., 1998). Since its discovery, the use of RNAi has become widely employed in many organisms to specifically knock down gene function. RNAi shares a remarkable degree of similarity with silencing phenomena in other organisms (Cogoni et al., 1999a; Sharp, 1999). For instance, RNAi, post-transcriptional gene silencing in plants and cosuppression in fungi can all be activated by the presence of aberrant RNAs (Maine, 2000; Tijsterman et al., 2002a). Additionally, plant, worm, and fly cells or extracts undergoing RNA-mediated interference all contain small dsRNAs, around 25 nucleotides in length, identical to the sequences present in the silenced gene (Baulcombe, 1996; Hammond et al., 2000; Zamore et al., 2000; Catalanotto et al., 2000).

The high degree of similarity between these RNA-mediated silencing phenomena supports the notion that they were derived from an ancient and conserved pathway used to regulate gene expression, presumably to eliminate defective RNAs and to defend against viral infections and transposons (Zamore, 2002). Components of RNAi have also been implicated in developmental processes, suggesting that RNAi may play a broader role in regulating gene expression (Smardon et al., 2000; Knight et al., 2001; et al., Ketting et al., 2001).

Although we have learned much about the general mechanisms underlying RNAi, a detailed understanding of how RNAi works remains to be elucidated.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 55 - 68
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alder, M. N., Dames, S., Gaudet, J., and Mango, S. E. (2003). Gene silencing in Caenorhabditis elegans by transitive RNA interference. RNA, 9, 25–32CrossRefGoogle ScholarPubMed
Bateman, A. (2002). The SGS3 protein involved in PTGS finds a family. BMC Bioinformatics, 3, 21CrossRefGoogle ScholarPubMed
Baulcombe, D. C. (1996). RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Molecular Biology, 32, 79–88CrossRefGoogle ScholarPubMed
Boutet, S., Vazquez, F., Liu, J., Beclin, C., Fagard, M., Gratias, A., Morel, J. B., Crete, P., Chen, X., and Vaucheret, H., (2003). Arabidopsis HEN1. A Genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Current Biology, 13, 843–848CrossRefGoogle ScholarPubMed
Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366CrossRefGoogle ScholarPubMed
Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R. S. and Zhang, Y., (2002). Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science, 298, 1039–1043CrossRefGoogle ScholarPubMed
Carrington, J. C. and Ambros, V., (2003). Role of microRNAs in plant and animal development. Science, 301, 336–338CrossRefGoogle ScholarPubMed
Catalanotto, C., Azzalin, G., Macino, G., and Cogoni, C., (2000). Gene silencing in worms and fungi. Nature, 404, 245CrossRefGoogle ScholarPubMed
Caudy, A. A., Myers, M., Hannon, G. J. and Hammond, S. M. (2002). Fragile X-related protein and VIG associate with the RNA interference machinery. Genes & Development, 16, 2491–2496CrossRefGoogle ScholarPubMed
Caudy, A. A., Ketting, R. F., Hammond, S. M., Denli, A. M., Bathoorn, A. M., Tops, B. B., Silva, J. M., Myers, M. M., Hannon, G. J. and Plasterk, R. H. (2003). A micrococcal nuclease homologue in RNAi effector complexes. Nature, 425, 411–414CrossRefGoogle ScholarPubMed
Celotto, A. M. and Graveley, B. R. (2002). Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA, 8, 718–724CrossRefGoogle ScholarPubMed
Cogoni, C. and Macino, G., (1999a). Homology-dependent gene silencing in plants and fungi: A number of variations on the same theme. Current Opinion in Microbiology, 2, 657–662CrossRefGoogle Scholar
Cogoni, C. and Macino, G., (1999b). Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science, 286, 2342–2344CrossRefGoogle Scholar
Dalmay, T., Hamilton, A., Rudd, S., Angell, S., and Baulcombe, D. C. (2000). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 101, 543–553CrossRefGoogle Scholar
Dalmay, T., Horsefield, R., Braunstein, T. H. and Baulcombe, D. C. (2001). SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. European Molecular Biology Organization Journal, 20, 2069–2078CrossRefGoogle ScholarPubMed
Doi, N., Zenno, S., Ueda, R., Ohki-Hamazaki, H., Ui-Tei, K. and Saigo, K., (2003). Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Current Biology, 13, 41–46CrossRefGoogle ScholarPubMed
Domeier, M. E., Morse, D. P., Knight, S. W., Portereiko, M., Bass, B. L. and Mango, S. E. (2000). A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science, 289, 1928–1931CrossRefGoogle ScholarPubMed
Dudley, N. R., Labbe, J. C. and Goldstein, B., (2002). Using RNA interference to identify genes required for RNA interference. Proceedings of the National Academy of Sciences USA, 99, 4191–4196CrossRefGoogle ScholarPubMed
Elbashir, S. M., Lendeckel, W., and Tuschl, T., (2001a). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188–200CrossRefGoogle Scholar
Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T., (2001b). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. European Molecular Biology Organization Journal, 20, 6877–6888CrossRefGoogle Scholar
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T., (2001c). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498CrossRefGoogle Scholar
Fagard, M., Boutet, S., Morel, J. B., Bellini, C., and Vaucheret, H., (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proceedings of the National Academy of Sciences USA, 97, 11650–11654CrossRefGoogle ScholarPubMed
Feinberg, E. H. and Hunter, C. P. (2003). Transport of dsRNA into cells by the transmembrane protein SID-1. Science, 301, 1545–1547CrossRefGoogle ScholarPubMed
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811CrossRefGoogle ScholarPubMed
Glazov, E., Phillips, K., Budziszewski, G. J., Meins, F., and Levin, J. Z. (2003). A gene encoding an RNAse D exonuclease-like protein is required for post-transcriptional silencing in Arabidopsis. Plant Journal, 35, 342–349CrossRefGoogle ScholarPubMed
Grewal, S. I. and Klar, A. J. (1996). Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell, 86, 95–101CrossRefGoogle ScholarPubMed
Grishok, A., Tabara, H., and Mello, C. C. (2000). Genetic requirements for inheritance of RNAi in C. elegans. Science, 287, 2494–2497CrossRefGoogle ScholarPubMed
Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G., and Mello, C. C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106, 23–34CrossRefGoogle ScholarPubMed
Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N., Cohen, A., and Grewal, S. I. (2002). Establishment and maintenance of a heterochromatin domain. Science, 297, 2232–2237CrossRefGoogle ScholarPubMed
Hall, I. M., Noma, K., and Grewal, S. I. (2003). RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proceedings of the National Academy of Sciences USA, 100, 193–198CrossRefGoogle ScholarPubMed
Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296CrossRefGoogle ScholarPubMed
Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001). Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 293, 1146–1150CrossRefGoogle ScholarPubMed
Heaton, J. H., Dlakic, W. M., Dlakic, M., and Gelehrter, T. D. (2001). Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the Type-1 plasminogen activator inhibitor mRNA. Journal of Biological Chemistry, 276, 3341–3347CrossRefGoogle ScholarPubMed
Holen, T., Amarzguioui, M., Wiiger, M. T., Babaie, E., and Prydz, H., (2002). Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Research, 30, 1757–1766CrossRefGoogle ScholarPubMed
Hunter, C. P. (1999). Genetics: A touch of elegance with RNAi. Current Biology, 9, R440–R422CrossRefGoogle ScholarPubMed
Hütvagner, G. and Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 2056–2060CrossRefGoogle Scholar
Ishizuka, A., Siomi, M. C. and Siomi, H., (2002). A Drosophila Fragile X protein interacts with components of RNAi and ribosomal proteins. Genes & Development, 16, 2497–2508CrossRefGoogle ScholarPubMed
Kayne, P. S., Kim, U. J., Han, M., Mullen, J. R., Yoshizaki, F., and Grunstein, M., (1988). Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell, 55, 27–39CrossRefGoogle Scholar
Kennerdell, J. R. and Carthew, R. W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 95, 1017–1026CrossRefGoogle ScholarPubMed
Kennerdell, J. R., Yamaguchi, S., and Carthew, R. W. (2002). RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes & Development, 16, 1884–1889CrossRefGoogle Scholar
Ketting, R. F., Haverkamp, T. H., Luenen, H. G. and Plasterk, R. H. (1999). Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNAseD. Cell, 99, 133–141CrossRefGoogle ScholarPubMed
Ketting, R. F. and Plasterk, R. H. (2000). A genetic link between co-suppression and RNA interference in C. elegans. Nature, 404, 296–298CrossRefGoogle ScholarPubMed
Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J. and Plasterk, R. H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & Development, 15, 2654–2659CrossRefGoogle ScholarPubMed
Knight, S. W. and Bass, B. L. (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 293, 2269–2271CrossRefGoogle ScholarPubMed
Lipardi, C., Wei, Q., and Paterson, B. M. (2001). RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 107, 297–307CrossRefGoogle ScholarPubMed
Liu, Q., Rand, T. A., Kalidas, S., Du, F., Kim, H. E., Smith, D. P. and Wang, X., (2003). R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science, 301, 1921–1925CrossRefGoogle ScholarPubMed
Maine, E. M. (2000). A conserved mechanism for post-transcriptional gene silencing?Genome Biology, 1, REVIEWS1018CrossRefGoogle ScholarPubMed
Martens, H., Novotny, J., Oberstrass, J., Steck, T. L., Postlethwait, P., and Nellen, W., (2002). RNAi in Dictyostelium: The role of RNA-directed RNA polymerases and double-stranded RNAse. Molecular Biology Cell, 13, 445–453CrossRefGoogle ScholarPubMed
Morel, J. B., Mourrain, P., Beclin, C., and Vaucheret, H., (2000). DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Current Biology, 10, 1591–1594CrossRefGoogle ScholarPubMed
Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. B., Jouette, D., Lacombe, A. M., Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo, T. A. and Vaucheret, H., (2000). Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 101, 533–542CrossRefGoogle ScholarPubMed
Nykanen, A., Haley, B., and Zamore, P. D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309–321CrossRefGoogle ScholarPubMed
Pal-Bhadra, M., Bhadra, U., and Birchler, J. A. (2002). RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Molecular Cell, 9, 315–327CrossRefGoogle ScholarPubMed
Palauqui, J. C., Elmayan, T., Pollien, J. M. and Vaucheret, H., (1997). Systemic acquired silencing: Transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. European Molecular Biology Organization Journal, 16, 4738–4745CrossRefGoogle ScholarPubMed
Parrish, S., and Fire, A. (2001). Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA, 7, 1397–1402Google ScholarPubMed
Pirrotta, V. (2002). Silence in the germ. Cell, 110, 661–664CrossRefGoogle ScholarPubMed
Roignant, J. Y., Carre, C., Mugat, B., Szymczak, D., Lepesant, J. A. and Antoniewski, C., (2003). Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA, 9, 299–308CrossRefGoogle ScholarPubMed
Schauer, S. E., Jacobsen, S. E., Meinke, D. W. and Ray, A., (2002). DICER-LIKE1: Blind men and elephants in Arabidopsis development. Trends in Plant Sciences, 7, 487–491CrossRefGoogle ScholarPubMed
Schwarz, D. S., Hütvagner, G., Haley, B., and Zamore, P. D. (2002). Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Molecular Cell, 10, 537–548CrossRefGoogle Scholar
Schwarz, D. S., Hütvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199–208CrossRefGoogle ScholarPubMed
Sen, G. C., Lebleu, B., Brown, G. E., Kawakita, M., Slattery, E., and Lengyel, P., (1976). Interferon, double-stranded RNA and mRNA degradation. Nature, 264, 370–373CrossRefGoogle ScholarPubMed
Sharp, P. A. (1999). RNAi and double-strand RNA. Genes & Development, 13, 139–141CrossRefGoogle ScholarPubMed
Sharp, P. A. (2001). RNA interference – 2001. Genes & Development, 15, 485–490CrossRefGoogle ScholarPubMed
Shramke, V. and Allshire, R., (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science, 301, 1069–1074CrossRefGoogle Scholar
Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H. and Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 107, 465–476CrossRefGoogle ScholarPubMed
Simmer, F., Tijsterman, M., Parrish, S., Koushika, S. P., Nonet, M. L., Fire, A., Ahringer, J., and Plasterk, R. H. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Current Biology, 12, 1317–1319CrossRefGoogle ScholarPubMed
Smardon, A., Spoerke, J. M., Stacey, S. C., Klein, M. E., Mackin, N., and Maine, E. M. (2000). EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Current Biology, 10, 169–178CrossRefGoogle ScholarPubMed
Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. and Schreiber, R. D. (1998). How cells respond to interferons. Annual Reviews of Biochemistry, 67, 227–264CrossRefGoogle ScholarPubMed
Tabara, H., Sarkissian, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A. and Mello, C. C. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell, 99, 123–132CrossRefGoogle ScholarPubMed
Tabara, H., Yigit, E., Siomi, H., and Mello, C. C. (2002). The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell, 109, 861–871CrossRefGoogle Scholar
Tijsterman, M., Ketting, R. F. and Plasterk, R. H. (2002a). The genetics of RNA silencing. Annual Reviews of Genetics, 36, 489–519CrossRefGoogle Scholar
Tijsterman, M., Ketting, R. F., Okihara, K. L., Sijen, T., and Plasterk, R. H. (2002b). RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science, 295, 694–697CrossRefGoogle Scholar
Vaucheret, H., Beclin, C., and Fagard, M., (2001). post-transcriptional gene silencing in plants. Journal of Cell Sience, 114, 3083–3091Google ScholarPubMed
Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I. and Martienssen, R. A. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297, 1833–1837CrossRefGoogle ScholarPubMed
Wargelius, A., Ellingsen, S., and Fjose, A., (1999). Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochemical Biophysical Research Communications, 263, 156–1561CrossRefGoogle ScholarPubMed
Wianny, F. and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biology, 2, 70–75CrossRefGoogle ScholarPubMed
Williams, R. W. and Rubin, G. M. (2002). ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proceedings of the National Academy of Sciences USA, 99, 6889–6894CrossRefGoogle ScholarPubMed
Winston, W. M., Molodowitch, C., and Hunter, C. P. (2002). Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science, 295, 2456–2459CrossRefGoogle Scholar
Wu-Scharf, D., Jeong, B., Zhang, C., and Cerutti, H., (2000). Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science, 290, 1159–1162CrossRefGoogle ScholarPubMed
Zamore, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33CrossRefGoogle ScholarPubMed
Zamore, P. D. (2002). Ancient pathways programmed by small RNAs. Science, 296, 1265–1269CrossRefGoogle ScholarPubMed
Zilberman, D, Cao, X. and Jacobsen, S. E. (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299, 716–719CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×