Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T08:29:13.480Z Has data issue: false hasContentIssue false

1 - RNAi beginnings, Overview of the pathway in C. elegans

Published online by Cambridge University Press:  31 July 2009

Alla Grishok
Affiliation:
Center for Cancer Research, Massachusetts Institute of Technology
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Introduction

The term “RNA interference” (RNAi) was coined by Andy Fire and Craig Mello to describe a sequence-specific gene silencing phenomenon of remarkable potency. They originally identified the main features of RNAi in C. elegans: initiation by double-stranded RNA (dsRNA) and ability to spread systemically (Fire et al., 1998). RNAi is recognized now as an ancient mechanism utilized by metazoans for silencing of foreign genetic elements and for the precise regulation of endogenous genes during development.

Initial studies of RNAi in C. elegans indicated that silencing was transient, did not affect the sequence of genomic DNA, and likely targeted mature mRNA (Fire et al., 1998; Montgomery et al., 1998). These observations identified RNAi as a sequence specific post-transcriptional gene silencing (PTGS) mechanism similar to those described in plants and fungi (Montgomery and Fire, 1998). The discovery of 21–25 nt long short interfering RNAs (siRNAs) as common intermediates in PTGS (Hamilton and Baulcombe, 1999) and RNAi (Zamore et al., 2000; Parrish et al., 2000; Tijsterman et al., 2002) further confirmed shared mechanistic features of sequence-specific silencing processes.

Steps of RNAi pathway in C. elegans

The remarkable response to introduction of just a few molecules of dsRNA per cell in C. elegans (Fire et al., 1998) suggested the existence of a pathway of genes responsible for the silencing process at the level of the whole organism. Screens for RNAi deficient (rde) mutants in the Mello lab (Tabara et al., 1999) identified two categories of mutants.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 17 - 28
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T. and Jewell, D. (2003). MicroRNAs and other tiny endogenous RNAs in C. elegans. Current Biology, 13, 807–818CrossRefGoogle ScholarPubMed
Aravin, A. A., Naumova, N. M., Tulin, A. V., Vagin, V. V., Rozovsky, Y. M. and Gvozdev, V. A. (2001). Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Current Biology, 11, 1017–1027CrossRefGoogle ScholarPubMed
Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366CrossRefGoogle ScholarPubMed
Catalanotto, C., Azzalin, G., Macino, G. and Cogoni, C. (2002). Involvement of small RNAs and role of the genes in the gene silencing pathway in Neurospora. Genes & Development, 16, 790–795CrossRefGoogle ScholarPubMed
Caudy, A. A., Ketting, R. F., Hammond, S. M., Denli, A. M., Bathoorn, A. M., Tops, B. B., Silva, J. M., Myers, M. M., Hannon, G. J. and Plasterk, R. H. (2003). A micrococcal nuclease homologue in RNAi effector complexes. Nature, 425, 411–414CrossRefGoogle ScholarPubMed
Caudy, A. A., Myers, M., Hannon, G. J. and Hammond, S. M. (2002). Fragile X-related protein and VIG associate with the RNA interference machinery. Genes & Development, 16, 2491–2496CrossRefGoogle ScholarPubMed
Ceol, C. J. and Horvitz, H. R. (2001). dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development. Molecular Cell, 7, 461–473CrossRefGoogle ScholarPubMed
Collins, J., Saari, B. and Anderson, P. (1987). Activation of a transposable element in the germ line but not the soma of Caenorhabditis elegans. Nature, 328, 726–728CrossRefGoogle Scholar
Couteau, F., Guerry, F., Muller, F. and Palladino, F. (2002). A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. European Molecular Biology Organization Reports, 3, 235–241Google ScholarPubMed
Dalmay, T., Hamilton, A., Rudd, S., Angell, S. and Baulcombe, D. C. (2000). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 101, 543–553CrossRefGoogle Scholar
Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P. and Villeneuve, A. M. (2000). Transgene-mediated cosuppression in the C. elegans germ line. Genes & Development, 14, 1578–1583Google ScholarPubMed
Fagard, M., Boutet, S., Morel, J. B., Bellini, C. and Vaucheret, H. (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proceedings of the National Academy of Sciences USA, 97, 11650–11654CrossRefGoogle ScholarPubMed
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811CrossRefGoogle ScholarPubMed
Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S. J., Copley, R. R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K., Goessen, A., Leidel, S., Alleaume, A. M., Martin, C., Ozlu, N., Bork, P. and Hyman, A. A. (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 408, 331–336CrossRefGoogle Scholar
Grishok, A., Tabara, H. and Mello, C. C. (2000). Genetic requirements for inheritance of RNAi in C. elegans. Science, 287, 2494–2497CrossRefGoogle ScholarPubMed
Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G. and Mello, C. C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106, 23–34CrossRefGoogle ScholarPubMed
Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N., Cohen, A. and Grewal, S. I. (2002). Establishment and maintenance of a heterochromatin domain. Science, 297, 2232–2237CrossRefGoogle ScholarPubMed
Hamilton, A. J. and Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, 950–952CrossRefGoogle ScholarPubMed
Hammond, S. M., Bernstein, E., Beach, D. and Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296CrossRefGoogle ScholarPubMed
Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. and Hannon, G. J. (2001). Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 293, 1146–1150CrossRefGoogle ScholarPubMed
Holdeman, R., Nehrt, S. and Strome, S. (1998). MES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein. Development, 125, 2457–2467Google ScholarPubMed
Hütvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T. and Zamore, P. D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293, 834–838CrossRefGoogle ScholarPubMed
Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P. and Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421, 231–237CrossRefGoogle ScholarPubMed
Kelly, W. G. and Fire, A. (1998). Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development, 125, 2451–2456Google ScholarPubMed
Kelly, W. G., Schaner, C. E., Dernburg, A. F., Lee, M. H., Kim, S. K., Villeneuve, A. M. and Reinke, V. (2002). X-chromosome silencing in the germline of C. elegans. Development, 129, 479–492Google ScholarPubMed
Kelly, W. G., Xu, S., Montgomery, M. K. and Fire, A. (1997). Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics, 146, 227–238Google ScholarPubMed
Ketting, R. F., Haverkamp, T. H., Luenen, H. G. and Plasterk, R. H. (1999). Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNAseD. Cell, 99, 133–141CrossRefGoogle ScholarPubMed
Ketting, R. F. and Plasterk, R. H. (2000). A genetic link between co-suppression and RNA interference in C. elegans. Nature, 404, 296–298CrossRefGoogle ScholarPubMed
Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J. and Plasterk, R. H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & Development, 15, 2654–2659CrossRefGoogle ScholarPubMed
Knight, S. W. and Bass, B. L. (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 293, 2269–2271CrossRefGoogle ScholarPubMed
Korf, I., Fan, Y. and Strome, S. (1998). The Polycomb group in Caenorhabditis elegans and maternal control of germline development. Development, 125, 2469–2478Google ScholarPubMed
Liu, Q., Rand, T. A., Kalidas, S., Du, F., Kim, H. E., Smith, D. P. and Wang, X. (2003). R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science, 301, 1921–1925CrossRefGoogle ScholarPubMed
Llave, C., Xie, Z., Kasschau, K. D. and Carrington, J. C. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297, 2053–2056CrossRefGoogle ScholarPubMed
Lu, X. and Horvitz, H. R. (1998). lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell, 95, 981–991CrossRefGoogle Scholar
Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. and Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110, 563–574CrossRefGoogle ScholarPubMed
Mello, C. C., Kramer, J. M., Stinchcomb, D. and Ambros, V. (1991). Efficient gene transfer in C. elegans: Extra chromosomal maintenance and integration of transforming sequences. European Molecular Biology Organization Journal, 10, 3959–3970Google Scholar
Montgomery, M. K. and Fire, A. (1998). Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends in Genetics, 14, 255–258CrossRefGoogle ScholarPubMed
Montgomery, M. K., Xu, S. and Fire, A. (1998). RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proceedings of the National Academy of Sciences USA, 95, 15502–15507CrossRefGoogle ScholarPubMed
Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. B., Jouette, D., Lacombe, A. M., Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo, T. A. and Vaucheret, H. (2000). Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 101, 533–542CrossRefGoogle ScholarPubMed
Napoli, C., Lemieux, C. and Jorgensen, R. (1990). Introduction of a chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 2, 279–289CrossRefGoogle ScholarPubMed
Nykanen, A., Haley, B. and Zamore, P. D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309–321CrossRefGoogle ScholarPubMed
Parrish, S. and Fire, A. (2001). Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA, 7, 1397–13402Google ScholarPubMed
Parrish, S., Fleenor, J., Xu, S., Mello, C. and Fire, A. (2000). Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Molecular Cell, 6, 1077–1087CrossRefGoogle ScholarPubMed
Praitis, V., Casey, E., Collar, D. and Austin, J. (2001). Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics, 157, 1217–1226Google ScholarPubMed
Reinhart, B. J. and Bartel, D. P. (2002). Small RNAs correspond to centromere heterochromatic repeats. Science, 297, 1831CrossRefGoogle ScholarPubMed
Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B. and Bartel, D. P. (2002). Prediction of plant microRNA targets. Cell, 110, 513–520CrossRefGoogle ScholarPubMed
Sharp, P. A. and Zamore, P. D. (2000). Molecular biology of RNA interference. Science, 287, 2431–2433CrossRefGoogle ScholarPubMed
Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H. and Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 107, 465–476CrossRefGoogle ScholarPubMed
Simmer, F., Tijsterman, M., Parrish, S., Koushika, S. P., Nonet, M. L., Fire, A., Ahringer, J. and Plasterk, R. H. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Current Biology, 12, 1317–1319CrossRefGoogle ScholarPubMed
Smardon, A., Spoerke, J. M., Stacey, S. C., Klein, M. E., Mackin, N. and Maine, E. M. (2000). EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Current Biology, 10, 169–178CrossRefGoogle ScholarPubMed
Tabara, H., Sarkissian, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A. and Mello, C. C. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell, 99, 123–132CrossRefGoogle ScholarPubMed
Tabara, H., Yigit, E., Siomi, H. and Mello, C. C. (2002). The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell, 109, 861–871CrossRefGoogle Scholar
Tijsterman, M., Ketting, R. F., Okihara, K. L., Sijen, T. and Plasterk, R. H. (2002). RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science, 295, 694–697CrossRefGoogle Scholar
Timmons, L. and Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854CrossRefGoogle ScholarPubMed
Krol, A. R., Mur, L. A., Beld, M., Mol, J. N. and Stuitje, A. R. (1990). Flavoid genes in Petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell, 2, 291–299CrossRefGoogle Scholar
Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I. and Martienssen, R. A. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297, 1833–1837CrossRefGoogle ScholarPubMed
Williams, R. W. and Rubin, G. M. (2002). ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proceedings of the National Academy of Sciences USA, 99, 6889–6894CrossRefGoogle ScholarPubMed
Winston, W. M., Molodowitch, C. and Hunter, C. P. (2002). Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science, 295, 2456–2459CrossRefGoogle Scholar
Zamore, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×