Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T11:54:20.255Z Has data issue: false hasContentIssue false

18 - Orbital controls on seasonality

Published online by Cambridge University Press:  10 August 2009

John D. Kingston
Affiliation:
Department of Anthropology Emory University, Atlanta GA 30322 USA
Diane K. Brockman
Affiliation:
University of North Carolina, Charlotte
Carel P. van Schaik
Affiliation:
Universität Zürich
Get access

Summary

Introduction

Given the significant influence of seasonality patterns on many aspects of modern human and non-human primate tropical ecology (Foley 1993; Jablonski et al. 2000), it is reasonable to assume that factors associated with seasonality provided key selective forces in the evolution of the human lineage in Equatorial Africa. Reconstructing the climatic and ecological context of early hominin innovations ultimately is critical for interpreting their adaptive significance, and much research has focused on establishing links between hominin evolutionary events and global, regional, and local environmental perturbations (Brain 1981; Grine 1986; Vrba et al. 1989, 1995; Bromage & Schrenk 1999). Attempts to correlate hominin evolution with climatic trends have typically invoked models of progressively more arid and seasonal terrestrial conditions in Africa, ultimately resulting in the expansion of grassland ecosystems. Alternative interpretations of the Pliocene fossil record of east Africa suggest pulses (Vrba 1985) or multiple episodes (Bobe & Eck 2001; Bobe et al. 2002; Bobe & Behrensmeyer 2004) of high faunal turnover correlated with major global climatic change, set within a gradual shift from forest dominance to more open habitats.

While long-term trends or abrupt turnover events may have influenced human evolution, it has become evident that climatic control of mammalian evolution, including hominins, in Equatorial Africa is much more complex than supposed previously and that this region is characterized by almost continuous flux and oscillation of climatic patterns driven primarily by orbital forcing (e.g. Rossignol-Strick et al. 1982; Pokras & Mix 1987; deMenocal 1995; Kutzbach et al. 1996; Thompson et al. 2002; Hughen et al. 2004).

Type
Chapter
Information
Seasonality in Primates
Studies of Living and Extinct Human and Non-Human Primates
, pp. 519 - 542
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, P. I., Amegashitsi, L., & Ochumba, P. B. O. (1995). The shells of Etheria elliptica as recorders of seasonality at Lake Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology, 119, 215–19.CrossRefGoogle Scholar
Ashley, G. M. & Driese, S. G. (2003). Paleopedology and paleohydrology of a volcaniclastic paleosol interval; implications for early Pleistocene stratigraphy and paleoclimate record, Olduvai Gorge, Tanzania. Journal of Sedimentary Research, 70, 1065–80.CrossRefGoogle Scholar
Bennett, K. D. (1990). Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology, 16, 11–21.CrossRefGoogle Scholar
Berger, A. L. (1978). Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quaternary Research, 9, 139–67.CrossRefGoogle Scholar
Bloemendal, J. & deMenocal, P. (1989). Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibiliby measurements. Nature, 342, 897–9.CrossRefGoogle Scholar
Bobe, R. & Behrensmeyer, A. K. (2004). The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 399–420.CrossRefGoogle Scholar
Bobe, R. & Eck, G. G. (2001). Responses of African bovids to Pliocene climatic change. Paleobiology Memoirs, 27 (suppl. 2), 1–47.2.0.CO;2>CrossRefGoogle Scholar
Bobe, R., Behrensmeyer, A. K., & Chapman, R. (2002). Faunal change, environmental variability and late Pliocene hominin evolution. Journal of Human Evolution, 42, 475–97.CrossRefGoogle ScholarPubMed
Bonnefille, R. & Mohammed, U. (1994). Pollen-inferred climatic fluctuations in Ethiopia during the last 3000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 109, 331–43.CrossRefGoogle Scholar
Bonnefille, R., Potts, R., Chalie, F., Jolly, D., & Peyron, O. (2004). High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proceedings of the National Academy of Sciences, USA, 101, 12125–9.CrossRefGoogle ScholarPubMed
Bradley, R. S. (1999). Paleoclimatology: Reconstructing Climates of the Quaternary. San Diego: Harcourt/Academic Press.Google Scholar
Brain, C. K. (1981). The evolution of man in Africa: was it a consequence of Cainozoic cooling? Transactions of the Geological Society of South Africa, annex 84, 1–19.Google Scholar
Bromage, T. G. & Schrenk, F. (1999). African Biogeography, Climate Change, and Human Evolution. New York: Oxford University Press.Google Scholar
Bryant, J. D. & Froelich, P. N. (1996). Oxygen isotope composition of human tooth enamel from medieval Greenland: linking climate and society: comment and reply. Geology, 477–9.2.3.CO;2>CrossRefGoogle Scholar
Clemens, S. C., Murray, D. W., & Prell, W. L. (1991). Forcing mechanisms of the Indian Ocean monsoon. Nature, 353, 720–5.CrossRefGoogle Scholar
Croll, J. (1875). Climate and Time. New York: Appleton & Co.Google Scholar
D'Argenio, B., Fischer, A. G., Richter, G. M., et al. (1998). Orbital cyclicity in the Eocene of Angola: visual and image-time-series analysis compared. Earth and Planetary Science Letters, 160, 147–61.CrossRefGoogle Scholar
DeMenocal, P. B. (1995). Plio-Pleistocene African climate. Science, 270, 53–9.CrossRefGoogle ScholarPubMed
DeMenocal, P. B.(2004). African climate change and faunal evolution during the Pliocene– Pleistocene. Earth and Planetary Science Letters, 220, 3–24.CrossRefGoogle Scholar
DeMenocal, P. B., Ruddiman, W. F., & Pokras, E. M. (1993). Influences of high- and low-latitude processes on African terrestrial climate: Pleistocene eolian records from equatorial Atlantic Ocean Drilling Program Site 663. Paleoceanography, 8, 209–42.CrossRefGoogle Scholar
DeMenocal, P., Ortiz, J., Guilderson, T., et al. (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews, 19, 347–61.CrossRefGoogle Scholar
Dirks, W., Reid, D. J., Jolly, C. J., Phillips-Conroy, J. E., & Brett, F. L. (2002). Out of the mouths of baboons: stress, life history, and dental development in the Awash National Park Hybrid Zone, Ethiopia. American Journal of Physical Anthropology, 118, 239–52.CrossRefGoogle ScholarPubMed
Dynesius, M. & Jansson, R. (2000). Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences, USA, 97, 9115–20.CrossRefGoogle ScholarPubMed
Elenga, H., Schwartz, D., & Vincens, A. (1994). Pollen evidence of late Quaternary vegetation and inferred climate changes in Congo. Palaeogeography, Palaeoclimatology, Palaeoecology, 109, 345–56.CrossRefGoogle Scholar
Feibel, C. S., Brown, F. H., & McDougall, I. (1989). Stratigraphic context of fossil hominids from the Omo Group deposits: northern Turkana Basin, Kenya and Ethiopia. American Journal of Physical Anthropology, 78, 595–622.CrossRefGoogle ScholarPubMed
Ficken, K. J., Woodler, M. J., Swain, D. L., Street-Perrott, F. A., & Eglinton, G. (2002). Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mount Kenya: a novel. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 137–49.CrossRefGoogle Scholar
Foley, R. (1993). The influence of seasonality on hominid evolution. In Seasonality and Human Ecology, ed. Ulijaszek, S. J. & Strickland, S.. Cambridge: Cambridge University Press, pp. 17–37.CrossRefGoogle Scholar
Fricke, H. C., Clyde, W. C., & O'Neil, J. R. (1998). Intra-tooth variations in 18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta, 62, 1839–51.CrossRefGoogle Scholar
Gadbury, C., Todd, L., Jahre, A. H., & Amundson, R. (2000). Spatial and temporal variations in the istopic composition of bison tooth enamel from the Early Holocene Hudson-Meng Bone Bed, Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology, 157, 79–93.CrossRefGoogle Scholar
Gasse, F., Ledee, V., Massault, M., & Fontes, J.-C. (1989). Water-level fluctuations of Lake Tanganyika in phase with oceanic changes durig the last glaciation and deglaciation. Nature, 342, 57–9.CrossRefGoogle Scholar
Gorgas, T. J. & Wilkens, R. H. (2002). Sedimentation rates off SW Africa since the late Miocene deciphered from spectral analyses of borehole and GRA bulk density profiles: ODP sites 1081–1084. Marine Geology, 180, 29–47.CrossRefGoogle Scholar
Graham, R. W. (1986). Response of mammalian communities to environmental changes during the late Quaternary. In Community Ecology, ed. Diamond, J., & Case, T. J.. New York: Harper and Row, pp. 300–13.Google Scholar
Grine, F. E. (1986). Ecological causality and the pattern of Plio-Pleistocene hominid evolution in Africa. South Africa Journal of Science, 82, 87–9.Google Scholar
Guiraud, R. & Bosworth, W. (1999). Phanerozoic geodynamic evolution of northeastern Africa and the northwestern Arabian platform. Tectonophysics, 315, 73–108.CrossRefGoogle Scholar
Hay, R. L. (1976). Geology of Olduvai Gorge. Berkeley: University of Berkeley Press.Google Scholar
Huang, Y., Street-Perrott, F. A., Perrott, R. A., Metzger, P., & Eglinton, G. (1999). Glacial-interglacial environmental changes inferred from molecular and compound-specific d13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochimica et Cosmochimica Acta, 63, 1383–404.CrossRefGoogle Scholar
Hughen, K. A., Eglinton, T. I., Xu, L., & Makou, M. (2004). Abrupt tropical vegetation response to rapid climate changes. Science, 304, 1955–9.CrossRefGoogle ScholarPubMed
Imbrie, J. & Imbrie, K. P. (1979). Ice Ages: Solving the Mystery. Short Hills, NJ: Enslow.CrossRefGoogle Scholar
Jablonski, N. G., Whitford, M. J., Roberts-Smith, N., & Qinqi, X. (2000). The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. Journal of Human Evolution, 39, 131–57.CrossRefGoogle ScholarPubMed
Jansson, R. & Dynesius, M. (2002). The fate of clades in a world of recurrent climate change: Milankovitch oscillations and evolution. Annual Review of Ecology and Systems, 33, 741–77.CrossRefGoogle Scholar
Johnson, T. C., Brown, E. T., McManus, J., et al. (2002). A high-resolution paleoclimate record spanning the past 25,000 years in southern East Africa. Science, 296, 113–32.CrossRefGoogle ScholarPubMed
Kingston, J. D. (2003). Sources of variability in modern East African herbivore enamel: implications for paleodietary and palaeoecological reconstructions. American Journal of Physical Anthropology, Supplement, 36, 130.Google Scholar
Kingston, J. D., Hill, A., & Deino, A. L. (2000). Pliocene hominid evolution and astronomically forced climate change: evidence from the rift valley of Kenya. Journal of Human Evolution, 38, A15.Google Scholar
Koch, P. L., Fisher, D. C., & Dettman, D. (1989). Oxygen isotope variation in the tusks of extinct proboscideans: a measure of season of death and seasonality. Geology, 17, 515–19.2.3.CO;2>CrossRefGoogle Scholar
Kohn, M. J. (1996). Predicting animal 18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta, 60, 4811–29.CrossRefGoogle Scholar
Kohn, M. J., Schoeninger, M. J., & Valley, J. W. (1996). Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochimica et Cosmochimica Acta, 60, 3889–96.CrossRefGoogle Scholar
Kohn, M. J., Schoeninger, M. J., & Valley, J. W.(1998). Variability in oxygen isotope compositions of herbivore teeth: reflections of seasonality or developmental physiology?Chemical Geology, 152, 97–112.CrossRefGoogle Scholar
Kutzbach, J. E. (1981). Monsoon climate of the Early Holocene: climate experiment with Earth's orbital parameters for 9000 years ago. Science, 214, 59–61.CrossRefGoogle ScholarPubMed
Kutzbach, J. E. & Street-Perrott, R. A. (1985). Milankovitch forcing of fluctuations in the level of tropical lakes from 19 to 0 kyr BP. Nature, 317, 130–34.CrossRefGoogle Scholar
Kutzbach, J. E., Bonan, G., Foley, J., & Harrison, S. P. (1996). Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 384, 623–6.CrossRefGoogle Scholar
Lamb, H., Gasse, G., Benkaddour, A., et al. (1995). Relationship between century-scale Holocene arid intervals in tropical and temperate zones. Nature, 373, 134–7.CrossRefGoogle Scholar
Lepre, C. J. & Quinn, R. L. (2005). Precessional forcing of Plio-Pleistocene lake levels from Koobi Fora, Kenya. Paleoanthropology, 5, A38.Google Scholar
Lezine, A.-M. (1991). West African Paleoclimates during the last climatic cycle inferred from an Atlantic deep-sea pollen record. Quaternary Research, 35, 456–63.CrossRefGoogle Scholar
Liutkus, C. M., Ashley, G. M., & Wright, J. D. (2000). Short-term changes and Milankovitch cyclicity at Olduvai Gorge, Tanzania: evidence from sedimentology and stable isotopes. Abstracts with Programs – Geological Society of America, 32, 21.Google Scholar
Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research?Geochimica et Cosmochimica Acta, 48, 385–90.CrossRefGoogle Scholar
Lourens, L. J., Antonarakaou, A., Hilgen, F. J., et al. (1996). Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography, 11, 391–413.CrossRefGoogle Scholar
Luz, B. & Kolodny, Y. (1985). Oxygen isotope variations in phosphate of biogenic apatites. IV: mammal teeth and bones. Earth and Planetary Science Letters, 75, 29–36.CrossRefGoogle Scholar
Macho, G. A., Reid, D. J., Leakey, M. G., Jablonski, N., & Beynon, A. D. (1996). Climatic effects on dental development of Theropithicus oswaldi from Koobi Fora and Olorgesailie. Journal of Human Evolution, 30, 57–70.CrossRefGoogle Scholar
Macho, G. A., Leakey, M. G., Williamson, D. K., & Jiang, Y. (2003). Palaeoenvironmental reconstruction: evidence for seasonality at Allia Bay, Kenya, at 3.9 million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 199, 17–30.CrossRefGoogle Scholar
Milankovitch, M. M. (1941). Canon of Insolation and the Ice-Age Problem. Beograd: Koniglich Serbische Akademie.Google Scholar
Molfino, B. & McIntyre, A. (1990). Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography, 5, 997–1008.CrossRefGoogle Scholar
Moreno, A., Targarona, J., Henderiks, J., et al. (2001). Orbital forcing of dust supply to the North Canary Basin over the last 250 kyr. Quaternary Science Reviews, 20, 1327–39.CrossRefGoogle Scholar
Moritz, C., Patton, J. L., Schneider, C. J., & Smith, T. B. (2000). Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systems, 31, 533–63.CrossRefGoogle Scholar
Nicholson, S. E. (1996a). A review of climate dynamics and climate variability in eastern Africa. In The Limnology, Climatology and Paleoclimatology of the East African Lakes, ed. Johnson, T. C. & Odada, E. O.. Amsterdam: Gordon and Breach Publishers, pp. 25–56.Google Scholar
Nicholson, S. E.(1996b). Africa. In Encyclopedia of Climate and Weather, ed. Schneider, S. H.. New York: Oxford University Press, pp. 13–19.Google Scholar
Owen, R. B. & Crossley, R. (1992). Spatial and temporal distribution of diatoms in sediments of Lake Malawi, Central Africa, and ecological implications. Journal of Paleolimnology, 7, 55–71.CrossRefGoogle Scholar
Paillard, D., Labeyrie, L., & Yiou, P. (1996). Macintosh program performs time-series analysis. Eos, 77, 379.CrossRefGoogle Scholar
Pilskahn, C. H. & Johnson, T. C. (1991). Seasonal signals in Lake Malawi. Limnology and Oceanography, 36, 544–57.CrossRefGoogle Scholar
Pokras, E. M. & Mix, A. C. (1985). Eolian evidence for spacial variability of late Quaternary climates in tropical Africa. Quaternary Research, 24, 137–49.CrossRefGoogle Scholar
Pokras, E. M. & Mix, A. C.(1987). Earth's precession cycle and Quaternary climatic change in tropical Africa. Nature, 326, 486–7.CrossRefGoogle Scholar
Potts, R. (1998). Environmental hypotheses of hominin evolution. Yearbook of Physical Anthropology, 41, 93–136.3.0.CO;2-X>CrossRefGoogle Scholar
Potts, R., Behrensmeyer, A. K., & Ditchfield, P. (1999). Paleolandscape variation and early Pleistocene hominid activities: Members 1 and 7, Olorgesailie Formation, Kenya. Journal of Human Evolution, 37, 747–88.CrossRefGoogle ScholarPubMed
Rodrigues, D., Abell, P. I., & Kropelin, S. (2000). Seasonality in the early Holocene climate of Northwest Sudan: interpretation of Etheria elliptica shell isotopic data. Global and Planetary Change, 26, 181–7.CrossRefGoogle Scholar
Rossignol-Strick, M., Nesteroff, W., Olice, P., & Vergnaud-Grazzini, C. (1982). After the deluge: Mediterranean stagnation and sapropel formation. Nature, 295, 105–10.CrossRefGoogle Scholar
Ruddiman, W. F. (2001). Earth's Climate: Past and Future. New York: W. H. Freeman.Google Scholar
Rye, D. M. & Sommer, M. A. (1980). Reconstructing paleotemperature and paleosalinity regimes with oxygen isotopes. In Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change, ed. Rhoads, D. C. & Lutz, R. A.. New York: Plenum Press, pp. 169–202.
Schefuss, E., Schouten, S., Jansen, J. H. F., & Damste, J. S. S. (2003). African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene. Nature, 422, 418–21.CrossRefGoogle ScholarPubMed
Scholz, C. A. (2000). The Malawi Drilling Project: calibrating the record of climatic change from the continental tropics. GSA Abstracts with Programs, 32, A-388.Google Scholar
Sepkoski, J. J. (1992). Ten years in the library: new data confirm paleontological patterns. Paleobiology, 19, 43–51.CrossRefGoogle Scholar
Shackleton, N. J. (1995). New data on the evolution of Pliocene climatic variability. In Paleoclimate and Evolution with Emphasis on Human Origins, ed. Vrba, E. S., Denton, G. H., Partridge, T. C., & Burckle, L. H.. New Haven: Yale University Press, pp. 242–8.Google Scholar
Sharp, J. D. & Cerling, T. E. (1998). Fossil isotope records of seasonal climate and ecology: straight from the horse's mouth. Geology, 26, 219–22.2.3.CO;2>CrossRefGoogle Scholar
Skinner, M. F. & Hopwood, D. (2004). Hypothesis for the causes and periodicity of repetitive linear enamel hypoplasia in large, wild African (Pan troglodytes and Gorilla gorilla) and Asian (Pongo pygmaeus) apes. American Journal of Physical Anthropology, 123, 216–35.CrossRefGoogle ScholarPubMed
Sponheimer, M. & Lee-Thorp, J. A. (1999). Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science, 26, 723–8.CrossRefGoogle Scholar
Stager, J. C., Mayewski, P. A., & Meeker, L. D. (2002). Cooling cycles, Heinrich event 1, and the desiccation of Lake Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 169–78.CrossRefGoogle Scholar
Street-Perrott, F. A. & Harrison, S. A. (1984). Temporal variations in lake levels since 30,000 yr BP: an index of the global hydrological cycle. In Climate Processes and Sensitivity, ed. Hansen, J. E. & Takahashi, T.. Washington, DC: AGU, pp. 118–29.
Thompson, L. G., Mosley-Thompson, E., Davis, M., et al. (2002). Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science, 298, 589–93.CrossRefGoogle ScholarPubMed
Tiedemann, R., Sarnthein, M., & Shackleton, N. J. (1994). Astronomic timescale for the Pliocene Atlantic delta 18O and dust flux record of Ocean Drilling Program Site 659. Paleoceanography, 9, 619–38.CrossRefGoogle Scholar
Tojo, B. & Ohno, T. (1999). Continuous growth-line sequences in gastropod shells. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 183–91.CrossRefGoogle Scholar
Trauth, M. H., Deino, A. L., Bergner, A. G. N., & Strecker, M. R. (2003). East African climate change and orbital forcing during the last 175 kyr BP. Earth and Planetary Science, 206, 297–313.CrossRefGoogle Scholar
Valentine, J. W. (1984). Neogene marine climate trends: implications for biogeography and evolution of the shallow-sea biota. Geology, 12, 647–59.2.0.CO;2>CrossRefGoogle Scholar
Valen, L. M. (1985). How constant is extinction?Evolutionary Theory, 2, 37–64.Google Scholar
Verardo, D. J. & Ruddiman, W. G. (1996). Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: climatic and geochemical significance. Geology, 24, 855–7.2.3.CO;2>CrossRefGoogle Scholar
Verschuren, D., Laird, K., & Cumming, B. F. (2000). Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature, 403, 410–14.CrossRefGoogle ScholarPubMed
Vrba, E. (1985). Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81, 229–36.Google Scholar
Vrba, E. S. (1992). Mammals as key to evolutionary theory. Journal of Mammalogy, 73, 1–28.CrossRefGoogle Scholar
Vrba, E. S.(1995). On the connections between paleoclimate and evolution. In Paleoclimate and Evolution with Emphasis on Human Origins, ed. Vrba, E. S., Denton, G. H., Partridge, T. C., & Burckle, L. H.. New Haven: Yale University Press, pp. 24–45.Google Scholar
Vrba, E. S., Denton, G. H., & Prentice, M. L. (1989). Climatic influences on early hominid behavior. Ossa, 14, 127–56.Google Scholar
Vrba, E. S., Denton, G. H., Partridge, T. C., & Burckle, L. H. (1995). Paleoclimate and Evolution with Emphasis on Human Origins. New Haven: Yale University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×