Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T15:38:24.747Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  07 September 2019

B. L. N. Kennett
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Seismic Wavefield
Volume I: Introduction and Theoretical Development
, pp. 357 - 365
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo-Zena, A. M., 1979. Dispersion function computations for unlimited frequency values, Geophys. J. R. Astr. Soc, 58, 91-105.CrossRefGoogle Scholar
Aki, K. & Richards, P. G., 1980. Quantitative Seismology, W. H. Freeman, San Francisco.Google Scholar
Aki, K., 1981. Attenuation and scattering of short period seismic waves in the lithosphere, Identification of Seismic Sources, ed. E. S. Husebye, Noordhof, Leiden.Google Scholar
Aki, K. & Chouet, B., 1975. Origin of coda waves: source, attenuation and scattering effects, J. Geophys. Res., 80, 3322-3342.CrossRefGoogle Scholar
Alekseev, A. S. & Mikhailenko, B. G., 1980. Solution of dynamic problems of elastic wave propagation in inhomogeneous media by a combination of partial Separation of variables and finite difference methods, J. Geophys., 48, 161-172.Google Scholar
ltman, C. & Cory, H., 1969. The generalised thin film optical method in electromagnetic wave propagation, Radio Sei., 4, 459-469.Google Scholar
Anderson, D. L., BenMenahem, A. & Archambeau, C. B., 1965. Attenuation of seismic energy in the upper mantle J., Geophys. Res., 70, 1441-1448.CrossRefGoogle Scholar
Azbel', I.Ya. & Yanovskaya, T. B., 1972. Approximation of velocity distributions for calculation of P times and amplitudes, in Computational Seismology, ed .V.l., Keilis-Borok, Consultants Bureau, New York, 62-70.
Azimi, Sh., Kalinin, A. V., Kalinin, V. V. & Pivovarov, B. L., 1968. Impulse and transient characteristics of media with linear and quadratic absorption laws, Izv. Physics of Solid Earth, 2, 88-93.Google Scholar
Babich, V. M., 1961. Ray method for the computation of the intensity of wavefronts in elastic inhomogeneous anisotropic media, Problems ofthe Dynamic Theory of Propagation of Seismic Waves, 5, Leningrad University Press (in Russian).Google Scholar
Backus, G. E. & Mulcahy, M., 1976a. Moment tensors and other phenomenological descriptions of seismic sources I - Continuous displacements, Geophys. J. R. Astr. Soc, 46, 341-362.CrossRefGoogle Scholar
Backus, G. E. & Mulcahy, M., 1976b. Moment tensors and other phenomenological descriptions of seismic sources II - Discontinuous displacements, Geophys. J. R. Astr. Soc, 47, 301-330.CrossRefGoogle Scholar
Babuska, V. & Cara, M., 1991. Seismic Anisotropy in the Earth, Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Bamford, D., 1977. Pn velocity in a Continental upper mantle, Geoph. J. R. Astr. Soc, 39, 29-48.Google Scholar
Ben-Menahem, A. & Singh, S. J., 1981. Seismic Waves and Sources, Springer Verlag, New York.CrossRefGoogle Scholar
Bloxham, J. & Gubbins, G., 1989. Geomagnetic secular Variation, Phil. Trans. R. Soc. Lond., 329A, 415-502.Google Scholar
Boltzman, L., 1876. Zur Theorie der elastichen Nachwirkung, Pogg. Ann. Erganzungbd., 7, 624-654.Google Scholar
Bouchon, M., 1979. Discrete wave number representation of elastic wave fields in three-space dimensions, J. Geophys. Res., 84, 3609-3614. 357CrossRefGoogle Scholar
Bowers, D. A. & Hudson, J. A., 1999. Defining the scalar moment of a seismic source with a general moment tensor, Bull. Seism. Soc. Am., 89, 1390-1394.Google Scholar
Bowman, J. R., 1992. The 1998 Tennant Creek, Northern Territory, earthquakes: a synthesis, Aust, J. Earth. Sei., 39, 651-669.Google Scholar
Bowman, J. R., Gibson, G. & Jones, T., 1990. Aftershocks of the 22 January 1988 Tennant Creek, Australia intraplate earthquakes: Evidence for a complex fault geometry, Geophys.J. Int., 100, 87-97.CrossRefGoogle Scholar
Braile, L. W. & Smith, R. B., 1975. Guide to the Interpretation of crustal refraction profiles, Geophys. J. R. Astr. Soc, 40, 145-176.CrossRefGoogle Scholar
Brekhovskikh, L. M., 1960. Waves in Layered Media, Academic Press, New York.Google Scholar
Brennan, B. J. & Smylie, D. E., 1981. Linear viscoelasticity and dispersion in seismic wave propagation, Rev. Geophys. Space. Science, 19, 233-246.CrossRefGoogle Scholar
Brodskii, M. & Levshin, A., 1979. An asymptotic approach to the inversion of free oscillation data, Geophys. J. R. Astr. Soc, 58, 631-654.CrossRefGoogle Scholar
Budden, K. G., 1961. Radio Waves in the Ionosphere, Cambridge University Press, Cambridge.Google Scholar
Buland, R. & Chapman, C. H., 1983. The computation of seismic travel times, Bull. Seism. Soc. Am., 73, 1271-1302.Google Scholar
Bullen, K. E., 1965. An Introduction to the Theory of Seismology, 3rd edition, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Bullen, K. E. & Bolt, B. A., 1985. An Introduction to the Theory of Seismology, Cambridge University Press, Cambridge.Google Scholar
Bullen, K. E., 1975. The Earth's Density, Chapman & Hall, London.CrossRefGoogle Scholar
Burdick, L. J., & Helmberger, D. V., 1978. The upper mantle P velocity strueture of the western United States, J. Geophys. Res., 83, 1699-1712.CrossRefGoogle Scholar
Cerveny, V., 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media, Geophys. J. R. Astr. Soc, 29, 1-13.Google Scholar
Červeny, V., Molotkov, I. A. & Psencik, I., 1977. Ray Method in Seismology, Univerzita Karlova, Praha.Google Scholar
Chapman, C. H., 1971. On the computation of seismic ray travel times and amplitudes, Bull. Seism. Soc. Am., 61, 1267-1274.Google Scholar
Chapman, C. H., 1973. The earth flattening transformation in body wave theory, Geophys. J. R. Astr. Soc, 35, 55-70.Google Scholar
Chapman, C. H., 1974a. Generalised ray theory for an inhomogeneous medium, Geophys. J. R. Astr. Soc, 36, 673-704.CrossRefGoogle Scholar
Chapman, C. H., 1974b. The turning point of elastodynamic waves, Geophys. J. R. Astr. Soc, 39, 613-621.CrossRefGoogle Scholar
Chapman, C. H., 1976. Exact and approximate generalized ray theory in vertically inhomogeneous media, Geophys. J. R. Astr. Soc, 46, 201-234.CrossRefGoogle Scholar
Chapman, C. H., 1978. A new method for Computing synthetic seismograms, Geophys. J. R. Astr. Soc, 54, 481-518.CrossRefGoogle Scholar
Chapman, C. H., 1981. Long period correction to body waves: Theory, Geophys. J. R. Astr. Soc, 64, 321-372.CrossRefGoogle Scholar
Chapman, C. H. & Orcutt, J. A., 1985. The computation of body wave synthetic seismograms in laterally homogeneous media, Rev. Geophys., 23, 105-163.CrossRefGoogle Scholar
Chapman, C. H. & Woodhouse, J. H., 1981. Symmetry of the wave equation and excitation of body waves, Geophys. J. R. Astr. Soc, 65, 777-782.CrossRefGoogle Scholar
Chapman, C. H., Chu, J-Y & Lyness, D. G., 1988. The WKBJ seismogram algorithm, 47-74 in Seismological Algorithms, ed. DJ., Doornbos, Academic Press, London.Google Scholar
Choy, G. L., 1977. Theoretical seismograms of core phases calculated by frequency-dependent füll wave theory, and their Interpretation, Geophys. J. R. Astr. Soc, 51, 275-312.CrossRefGoogle Scholar
Choy, G. L., Cormier, V. F., Kind, R., Müller, G. & Richards, P. G., 1980. A comparison of synthetic seismograms of core phases generated by the füll wave theory and the reflectivity method, Geophys. J. R. Astr. Soc, 61, 21-40.CrossRefGoogle Scholar
Cormier, V. F. & Richards, P. G., 1977. Füll wave theory applied to a discontinuous velocity increase: the inner core boundary, J. Geophys., 43, 3-31.Google Scholar
Cormier, V. F., 1980. The synthesis of complete seismograms in an earth model composed of radially inhomogeneous layers, Bull. Seism. Soc. Am., 70, 691-716.Google Scholar
Cormier, V. F. & Choy, G. L., 1981. Theoretical body wave interactions with upper mantle structurej., Geophys. Res., 86, 1673-1678.CrossRefGoogle Scholar
Cormier, V. F. & Richards, P. G., 1988. Spectral synthesis of body waves in Earth modeis specified by vertically varying layers, 3-45, in Seismological Algorithms, ed. DJ., Doornbos, Academic Press, London.Google Scholar
Coulomb, J. & Jobert, G., 1972, Tratté de Geophysique Interne, Masson & Cie, Paris.Google Scholar
Crampin, S., 1981. A review of wave motion in anisotropic and cracked elastic media. Wave Motion, 3, 343-391.CrossRefGoogle Scholar
Crampin, S., Evans, R., Uçer, B., Doyle, M, Davis, J. P., Yegorkina, G. V. & Miller, A., 1980. Observations of dilatancy induced Polarisation anomalies and earthquake prediction., Nature, 286, 874-877.CrossRefGoogle Scholar
Crampin, S. & Zatsepin, S. V., 1997. Modelling the compliance of crustal rock - II. Response to temporal changes before earthquakes, Geophys. J. Int., 129, 495-506.CrossRefGoogle Scholar
Crampin, S., Volti, T. & Stefänsson, R., 1999. A successfully stress-forecast earthquake, Geophys. J. Int., 138, F1-F5.CrossRefGoogle Scholar
Creager, K. C., 1999. Large scale variations in inner core anisotropy, J. Geophys. Res., 104, 23127-23139.CrossRefGoogle Scholar
Dahlen, F. A. & Tromp, J., 1998. Theoretical Global Seismology, Princeton University Press, Princeton.Google Scholar
DeMets, C, Gordon, R. G., Argus, D. F. & Stein, S., 1990. Current plate motions Geophys. J. Int.., 101, 425-478.CrossRefGoogle Scholar
DeMets, C, Gordon, R. G., Argus, D. F. & Stein, S., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motion, Geophys. Res. Lett., 21, 2191-2194.CrossRefGoogle Scholar
Denman, E. D., 1970. Coupled Modes in Plasmas, Elastic Media and Parametric Amplifiers, Elsevier, New York.Google Scholar
Der, Z., 1998. High frequency P- and S-wave attenuation in the Earth, Pure Appl. Geophys., 153, 273-310.Google Scholar
Doornbos, DJ., 1981. The effect of a second-order velocity discontinuity on elastic waves near their turning point, Geophys. J. R. Astr. Soc, 64, 499-511.CrossRefGoogle Scholar
Doornbos, DJ., 1988. Asphericity and ellipticity corrections, 75-85, in Seismological Algorithms, ed. DJ., Doornbos, Academic Press, London.Google Scholar
Douglas, A., Hudson, J. A., & Blamey, C, 1973. A quantitative evaluation of seismic Signals at teleseismic distances III - Computed P and Rayleigh wave seismograms, Geophys. J. R. Astr. Soc, 28, 345-410.Google Scholar
Durek, J. J. & Ekström, G., 1996. A radial model of anelasticity consistent with long-period surface-wave attenuation, Bull. Seism. Soc. Am, 86, 144-158.Google Scholar
Durek, J. J. & Ekström, G., 1997. Investigating discrepancies among measurements of traveling and Standing wave attenuation, J. Geophys. Res, 102, 24 529-24 544.CrossRefGoogle Scholar
Durek, J. J., Ritzwoller, M. & Woodhouse, J. H., 1993. Constraining upper mantle anelasticity using surface-wave amplitudes, Geophys. J. Int., 114, 249-272.CrossRefGoogle Scholar
Dziewonski, A. M., Haies, A. L., & Lapwood, E. R., 1975. Parametrically simple Earth modeis consistent with geophysical data, Phys. Earth Planet. Inter., 10, 12-48.CrossRefGoogle Scholar
Dziewonski, A. M. & Anderson, D. L., 1981. Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297-356.CrossRefGoogle Scholar
Dziewonski, A. M., Chou, T.-A. & Woodhouse, J. H., 1981. Determination of earthquake source Parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825-2852.CrossRefGoogle Scholar
Dziewonski, A. M. & Woodhouse, J. H., 1983. Studies of the seismic source using normal-mode theory, Earthquakes: Observation, Theory and Interpretation, Proc. Intl School of Physics “Enrico Fermi”, Course LXXXV, pp 45-137, ed H., Kanamori & E., Boschi, North-Holland, Amsterdam.Google Scholar
Dziewonski, A. M., Friedman, A., Giardini, D. & Woodhouse J. H., 1983. Global seismicity of 1982: centroid moment tensor Solutions for 308 earthquakes, Phys. Earth Planet. Inter., 33, 76-90.CrossRefGoogle Scholar
Engdahl, E. R., van der Hilst, R. D. & Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seism. Soc. Am., 88, 722-743.Google Scholar
Faber, S. & Müller, G., 1980. Sp phases from the transition zone between the upper and lower mantle, Bull Seism. Soc. Am., 70, 487-508.Google Scholar
Felsen, L. B. & Isihara, T., 1979. Hybrid ray-mode formulation of ducted propagation, J. Acoust. Soc. Am., 65, 595-607.CrossRefGoogle Scholar
Frazer, L. N., 1988. Quadrature of wavenumber intergals, 75-85, in Seismological Algorithms, ed. D. J., Doornbos, Academic Press, London.Google Scholar
Fröhlich, C, 1996. Cliff's nodes concerning plotting nodal lines for P, SH and, SV, Seism. Res. Lett, 67, 16-24.Google Scholar
Fryer, G. J. & Frazer, L. N., 1987. Seismic waves in stratified anisotropic media II - elastodynamic eigensolutions for some anisotropic Systems, Geophys. J. R. Astr. Soc, 91, 73-101.CrossRefGoogle Scholar
Fryer, G. J., 1980. A slowness approach to the reflectivity method of seismogram synthesis, Geophys. J. R. Astr. Soc, 63, 747-758.CrossRefGoogle Scholar
Fuchs, K., 1968. Das Reflexions- und Transmissionsvermogen eines geschichteten Mediums mit belieber Tiefen-Verteilung der elastischen Modulor und der Dichte für schrägen Einfall Ebener Wellen, Z. Geophys., 34, 389-411.Google Scholar
Fuchs, K. & Müller, G., 1971. Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. R. Astr. Soc, 23, 417-433.CrossRefGoogle Scholar
Fuchs, K., 1975. Synthetic seismograms of W-reflections from transition zones computed with the reflectivity method, J. Geophys., 41, 445-462.Google Scholar
Furumura, T. & Takenaka, H., 1996. 2.5-D modelling of elastic waves using the pseudospectral method, Geophys. J. Int., 124, 820-832.CrossRefGoogle Scholar
Furumura, T., Kennett, B. L.N. & Furumura, M., 1998. Synthetic seismograms for laterally heterogeneous whole earth modeis using the pseudospectral method, Geophys. J. Int., 135, 845-860.CrossRefGoogle Scholar
Furumura, M., Kennett, B. L. N. & Furumura, T., 1999. Seismic wavefield calculation for laterally heterogeneous earth modeis - II. The influence of upper mantle heterogeneity, GeophysJ.Int, 139, 623-644.Google Scholar
Gans, R., 1915. Fortpflanzung des Lichtes durch ein inhomogenes Medium. Ann. Physik, 47, 709-732.Google Scholar
Garmany, J., 1989. A student's garden of anisotropy. Ann. Rev. Earth Planet. Sei., 17, 285-308.Google Scholar
Gilbert, F., 1976. The representation of seismic displacements in terms of travelling waves, Geophys. J. R. Astr. Soc, 44, 275-280.CrossRefGoogle Scholar
Gilbert, F. & Helmberger, D. V., 1972. Generalized ray theory for a layered sphere, Geophys. J. R. Astr. Soc, 27, 57-80.Google Scholar
Glatzmaier, G. A. & Roberts, P. H., 1996. Rotation and magnetism of earth's inner core, Science, 274, 1887-1891.CrossRefGoogle ScholarPubMed
Goldstein, P. & Dodge, D., 1999. Fast and aecurate depth and source mechanism estimation using P-waveform modelling: a tool for Special event analysis, event screening and regional calibration, Geophys. Res. Lett., 26, 2569-2572.CrossRefGoogle Scholar
Gutenberg, B., 1932. Handbuch der Geophysik, Band IV: Erdbeben, Gebrüder Bornträger, Berlin.Google Scholar
Gutenberg, B. & Richter, C. F., 1949. Seismicity ofthe Earth, Princeton University Press.Google Scholar
Harkrider, D. G., 1964. Surface waves in multi-layered elastic media I: Rayleigh and Love waves from buried sources in a multilayered half space, Bull. Seism. Soc. Am., 54, 627-679.Google Scholar
Haskeil, N. A., 1964. Radiation pattern of surface waves from point sources in a multi-layered medium, Bull Seism. Soc. Am., 54, 377-393.Google Scholar
Harvey, D. J., 1981. Seismogram synthesis using normal mode superposition: The locked mode approximation, Geophys. J. R. Astr. Soc, 66, 37-70.CrossRefGoogle Scholar
Heibig, K., 1958. Elastische Wellen in anisotropen Medien, Gerlands Beitr. Geophysik, 67, 177-211.Google Scholar
Helmberger, D. V., 1968. The crust-mantle transition in the Bering Sea, Bull. Seism. Soc. Am., 58, 179-214.Google Scholar
Helmberger, D. V., 1973. On the structure of the low velocity zone, Geophys. J. R. Astr. Soc, 34, 251-263.CrossRefGoogle Scholar
Helmberger, D. V. & Engen, G., 1980. Modelling the long-period body waves from shallow earthquakes at regional ranges, Bull. Seism. Soc. Am., 70, 1699-1714.Google Scholar
Helmberger, D. V. & Wiggins, R. A., 1971. Upper mantle structure of the midwestern United States, J. Geophys. Res., 76, 3229-3245.CrossRefGoogle Scholar
Hirn, A., Steimetz, L. Kind, R. & Fuchs, K., 1973. Long ränge profiles in Western Europe II: Fine structure of the lithosphere in France (Southern Bretagne), Z., Geophys., 39, 363-384.Google Scholar
Hron, F., 1972. Numerical methods of ray generation in multilayered media, Methods in Computational Physics, 12, ed. B. A., Bolt, Academic Press, New York.Google Scholar
Hudson, J. A., 1962. The total internal reflection of SH waves, Geophys. J. R. Astr. Soc, 6, 509-531.CrossRefGoogle Scholar
Hudson, J. A., 1969a. A quantitative evaluation of seismic Signals at teleseismic distances I - Radiation from a point source, Geophys. J. R. Astr. Soc, 18, 233-249.Google Scholar
Hudson, J. A., 1969b. A quantitative evaluation of seismic Signals at teleseismic distances II - Body waves and surface waves from an extended source, Geophys. J. R. Astr. Soc, 18, 353-370.Google Scholar
Hudson, J. A., 1980. The Excitation and Propagation of Elastic Waves, Cambridge University Press.Google Scholar
Hudson, J. A., 1991. Overall properties of heterogeneous media, Geophys. J. Int., 107, 505-511.CrossRefGoogle Scholar
Hudson, J. A., Pearce, R. G. & Rogers, R. M., 1989. Source-type plot for inversion of the moment tensor, J. Geophys. Res., 94, 765-774.CrossRefGoogle Scholar
Illingworth, M. R., 1982. Seismic Waves in Stratified Media, Ph.D. thesis, University of Cambridge.Google Scholar
Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y., 1990. Whole mantle P-wave mantle tomography, Phys. Earth. Planet. Inter., 59, 294-328.CrossRefGoogle Scholar
Jackson, D. D. & Anderson, D.L., 1970. Physical mechanisms of seismic wave attenuation, Rev. Geophys. Sp. Phys., 8, 1-63.CrossRefGoogle Scholar
Jackson, I., Paterson M., S. & Fitz Gerald, J. D., 1992. Seismic wave dispersion and attenuation in Äheim Dunite: an experimental study, Geophys. J. Int., 108, 517-534.CrossRefGoogle Scholar
Jackson, I. & Rigden, S. M., 1998. Composition and temperature of the Earth's mantle: seismological modeis interpreted through experimental studies of earth materials, in The Earth's Mantle: Structure, Composition and Evolution, 405-460, ed. I., Jackson, Cambridge University Press.CrossRefGoogle Scholar
Jackson, I., 2000. Laboratory measurement of seismic wave dispersion and attenuation: Recent progress, in S. I., Karato, A. M., Forte, R. C., Liebermann, G., Masters & L., Stixrude, eds., Earth's Deep Inferior: Mineral Physics and Tomography from the Atomic to the Global Scale, AGU Geophysical Monograph Series, 117, 265-289, American Geophysical Union, Washington, D C.Google Scholar
Jarosch, H. & Aboodi, E., 1970. Towards a unified notation for source parameters, Geophys. J. R. Astr. Soc, 21, 513-529.CrossRefGoogle Scholar
Jeffreys, H., 1939. The times of P, S and SKS and the velocities of P and 5, Mon. Not. R. Astr. Soc, Geophys. SuppL, 4, 498-536.Google Scholar
Jeffreys, H., 1958. A modification of Lomnitz's law of creep in rocks, Geophys. J. R. Astr. Soc, 1, 92-95.Google Scholar
Jeffreys, H. & Bullen, K. E., 1940. Seismological Tables, British Association Seismological Committee, London.Google Scholar
Johnson, L. R., 1967. Array measurements of P velocities in the upper mantle, J. Geophys. Res., 72, 6309-6325.CrossRefGoogle Scholar
Jordan, T. H., 1975. The Continental tectosphere, Rev. Geophys., 13, 1-12.CrossRefGoogle Scholar
Jordan, T. H., 1978. Composition and development of the Continental tectosphere, Nature, 274, 544-548.CrossRefGoogle Scholar
Julian, B. R. & Anderson, D. L., 1968. Travel times, apparent velocities and amplitudes of body waves, Bull. Seism. Soc. Am., 58, 339-366.Google Scholar
Kaiho, Y. & Kennett, B. L. N., 2000. Three-dimensional structure beneath the Australasian region from refracted wave observations, Geophys. J. Int., 142, 651-688.CrossRefGoogle Scholar
Kanamori, H. & Anderson, D. L., 1977. Importance of physical dispersion in surface wave and free oscillation problems: review, Rev. Geophys. Space. Phys., 15, 105-112.CrossRefGoogle Scholar
Karato, S., 1998. A dislocation model of seismic wave attenuation and micro-creep in the Earth: Harold Jeffreys and the rheology of the Earth, Pure Appl. Geophys., 153, 239-256.CrossRefGoogle Scholar
Keith, C. & Crampin, S., 1977. Seismic body waves in anisotropic media: reflection and refraction at a plane interface; propagation through a layer; synthetic seismograms, Geophys J. R. Astr. Soc, 49, 181-208. 209-223; 225-243.Google Scholar
Kennett, B. L. N., 1983. Seismic Wave Propagation in Stratified Media, Cambridge University Press.Google Scholar
Kennett, B. L. N., 1986. Wavenumber and wavetype coupling in laterally heterogeneous media, Geophys. J. R. Astr. Soc, 87, 313-331.CrossRefGoogle Scholar
Kennett, B. L. N. 1988a. Systematic approximations to the seismic wave field, 237-259. in Seismological Algorithms, ed. DJ., Doornbos, Academic Press, London.Google Scholar
Kennett, B. L. N. 1988b. Radiation from a moment-tensor source, 427-441. in Seismological Algorithms, ed. DJ., Doornbos, Academic Press, London.Google Scholar
Kennett, B. L. N., 1991. IASPEI1991 Seismological Tables, Bibliotech, Canberra.Google Scholar
Kennett, B. L. N., & Woodhouse, J. H., 1978. On high frequency spheroidal modes and the structure of the upper mantle, Geophys. J. R. Astr. Soc, 55, 333-350.CrossRefGoogle Scholar
Kennett, B. L. N., & Nolet, G., 1979. The influence of upper mantle discontinuities on the toroidal free oscillations of the Earth, Geophys. J. R. Astr. Soc, 56, 283-308.CrossRefGoogle Scholar
Kennett, B. L. N. & Illingworth, M. R., 1981. Seismic waves in a stratified half space III - Piecewise smooth modeis, Geophys. J. R. Astr. Soc, 66, 633-675.CrossRefGoogle Scholar
Kennett, B. L. N. & Clarke, TJ. 1983a. Rapid calculation of surface wave dispersion, Geophys. J. R. Astr. Soc, 72, 619-631.CrossRefGoogle Scholar
Kennett, B. L. N. & Clarke, TJ. 1983b. Seismic waves in a stratified half-space - IV: P-SV wave decoupling and surface wave dispersion, Geophys. J. R. Astr. Soc, 72, 633-645.CrossRefGoogle Scholar
Kennett, B. L. N. & Engdahl, E. R., 1991. Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105, 429-465.CrossRefGoogle Scholar
Kennett, B. L. N., Engdahl, E. R. & Buland, R., 1995. Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int., 122, 108-124.CrossRefGoogle Scholar
Kerry, N. J., 1981. The synthesis of seismic surface waves, Geophys. J. R. Astr. Soc, 64, 425-446.CrossRefGoogle Scholar
Koketsu, K. & Furumura, T., 1998 Specific distribution of ground motion during the 1995 Kobe earthquake and its generation mechanism, Geophys. Res. Leu., 25, 785-788.Google Scholar
Kostrov, B. V. & Das, S., 1988. Principles of Earthquake Source Mechanics, Cambridge University Press, Cambridge.Google Scholar
Kuge, K. & Kawakatsu, H., 1990. Analysis of a deep “non double couple” earthquake using very broadband data, Geophys. Res. Lett, 17, 227-230.CrossRefGoogle Scholar
Kulhänek, O., 1990. Anatomy of Seismograms, Elsevier Science Publishers, Amsterdam.Google Scholar
Lamb, H., 1904. On the propagation of tremors over the surface of an elastic solid, Phil. Trans. R. Soc. Lond., 203A, 1-42.Google Scholar
Levshin, A., 1981. On the relation of P and S travel times, phase velocities of shear modes and frequencies of spheroidal oscillation in the radially inhomogeneous Earth, Computational Seismology, 13, 103-109.Google Scholar
Love, A. E. H., 1903. The propagation of wave motion in an isotropic solid medium, Proc. Lond. Maths. Soc, 1, 291-316.Google Scholar
Love, A. E. H., 1911. Some Problems of Geodynamics, Cambridge University Press, Cambridge.Google Scholar
Love, A. E. H., 1927. A Treatise on the Mathematical Theory of Elasticity, 2nd edition, Cambridge University Press, Cambridge.Google Scholar
Marson-Pidgeon, K. & Kennett, B. L. N., 2000a. Flexible computation of teleseismic synthetics for source and structural studies, Geophys. J. Int, 125, 229-248.Google Scholar
Marson-Pidgeon, K. & Kennett, B. L. N., 2000b. Source depth and mechanism inversion at teleseismic distances, using a neighbourhood algorithm, Bull. Seism. Soc. Am., 100, 1369-1383.Google Scholar
McKenzie, D. P. & Brune, J. N., 1972. Melting on fault planes during large earthquakes, Geophys. J. R. Astr. Soc, 29, 65-78.CrossRefGoogle Scholar
Mitchell, B. J., 1995. Anelastic structure and evolution of the Continental crust and upper mantle from seismic surface wave attenuation, Rev. Geophys., 33, 441-462.CrossRefGoogle Scholar
Mitchell, B. J. & Cong, L., 1998. Lg coda Q and its relation to the structure and evolution of the continents: a global perspective, PureAppl. Geophys., 153, 655-663.Google Scholar
Montagner, J-P & Kennett, B. L. N., 1996. How to reconcile body-wave and normal-mode reference Earth modeis?, Geophys. J. Int, 125, 229-248.CrossRefGoogle Scholar
Mooney, W., Laske, G. & Masters, G., 1998. CRUST5.1, a global crustal model at 5° x 5°, J., Geophys. Res., 103, 727-747.CrossRefGoogle Scholar
Morelli, A. & Dziewonski, A. M., 1993. Body wave traveltimes and a spherically Symmetrie Pand S-wave velocity model, Geophys. J. Int., 112, 178-194.CrossRefGoogle Scholar
Morse, P. M. & Feshbach, H., 1953. Methods of Theoretical Physics, McGraw-Hill, New Yor.Google Scholar
Müller, G., 1970. Exact ray theory and its application to the reflection of elastic waves from vertically inhomogeneous media, Geophys. J. R. Astr. Soc, 21, 261-283.CrossRefGoogle Scholar
Müller, G., 1977. Earth flattening approximations for body waves derived from geometric ray theory - improvements, corrections and ränge of applicability, J. Geophys., 44, 429-436.Google Scholar
Müller, G., 1985. The reflectivity method: a tutorial, J. Geophys., 58, 153-174.Google Scholar
Musgrave, M. J. P., 1970. Crystal Acoustics, Holden-Day, San Francisco.Google Scholar
Nataf, H. C. & Ricard, Y., 1995. 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling, Phys. Earth. Planet. Inter., 95, 101-122.Google Scholar
Nolet, G., Grand, S. & Kennett, B. L. N., 1994. Seismic heterogeneity in the Upper Mantle, J. Geophys. Res., 99, 23 753-23 766.CrossRefGoogle Scholar
Nussenveig, H. M., 1965. High frequency scattering by an impenetrable sphere, Ann. Phys., 34, 23-95.Google Scholar
O'Brien, P. N. S. & Lucas, A. L., 1971. Velocity dispersion of seismic waves, Geophys. Prospect, 19, 1-26.CrossRefGoogle Scholar
O'Neill, H.St.C. & Palme, H., 1998. Composition of the silicate Earth: implications for aecretion and core formation, in The Earth's Mantle: Structure, Composition and Evolution, 3-126, ed. I., Jackson, Cambridge University Press.Google Scholar
Olver, F. W. J., 1974. Asymptotics and Special Functions, Academic Press, New York.Google Scholar
Owens, T. J., Randall, G. E., Wu, F. T. & Zeng, R. S., 1993. PASSCAL instrument Performance during the Tibetan plateau passive seismic experiment, Bull. Seism. Soc. Am., 83, 1959-1970.Google Scholar
Pao, Y-H., & Gajewski, R. R., 1977. The generalised ray theory and transient responses of layered elastic solids, Physical Acoustics, 13, ed. W., Mason, Academic Press, New York.Google Scholar
Peterson, J., 1993. Observations and modeling of seismic background noise, USGS Open-File report 93-322, pp95.Google Scholar
Raitt, R. W., 1969. Anisotropy of the upper mantle, The Earth's Crust and Upper Mantle, ed. P. J., Hart, American Geophysical Union, Washington, D. C.Google Scholar
Rayleigh, Lord, 1885. On waves propagated along the plate surface of an elastic solid., Proc. Lond. Maths. Soc, 17, 4-11.Google Scholar
Redheffer, R., 1961. Difference equations and functional equations in transmission line theory, in Modern Mathematics for the Engineer (2nd series), ed. E. F., Beckenback, McGraw, Hill, New York.Google Scholar
Ricard, Y., Nataf, H. C. & Montagner, J. P., 1996. The three-dimensional seismological model a priori constrained : confrontation with seismic data, J. Geophys. Res., 101, 8457-8472.CrossRefGoogle Scholar
Richards, P. G., 1973. Calculations of body waves, for caustics and tunnelling in core phases, Geophys. J. R. Astr. Soc, 35, 243-264.Google Scholar
Richards, P. G., 1974. Weakly coupled Potentials for high frequency elastic waves in continuously stratified media, Bull. Seism. Soc. Am., 64, 1575-1588.Google Scholar
Richards, P. G., 1976. On the adequacy of plane wave reflection/transmission coefficients in the analysis of seismic body waves, Bull. Seism. Soc. Am., 66, 701-717.Google Scholar
Richards, P. G. & Frasier, C. W., 1976. Scattering of elastic waves from depth-dependent inhomogeneities, Geophysics, 41, 441-458.CrossRefGoogle Scholar
Richter, C. F., 1958. Elementary Seismology, W. H. Freeman and Company Inc., San Francisco.Google Scholar
Rosenbaum, J. M., 1974. Synthetic microseisms: Logging in porous formations, Geophysics, 39, 14-32.CrossRefGoogle Scholar
Saastamoinen, P., 1980. On propagators and scatterers in wave problems of layered elastic media - a spectral approach, Bull. Seism. Soc. Am., 70, 1125-1135.Google Scholar
Sato, H. & Fehler, M. C., 1998. Seismic Wave Propagation and Scattering in the Heterogeneous Earth, American Institute of Physics, New York.CrossRefGoogle Scholar
Shearer, P. M., 1991. Constraints on upper-mantle discontinuities from observations of long-period reflected and converted phases, J. Geophys. Res., 96, 18 147-18 182.CrossRefGoogle Scholar
Sheriff, R. E. & Geldart, L. P., 1982. Exploration Seismology, Cambridge University Press, Cambridge.Google Scholar
Silver, P. G., 1996. Seismic anisotropy beneath the continents; probing the depths of geology, Ann. Rev. Earth Planet. Sei., 24, 385-432.Google Scholar
Sipkin, S., 1994. Rapid determination of global moment-tensor Solutions, Geophys. Res. Lett, 21, 1667-1670.CrossRefGoogle Scholar
Smith, M. L. & Dahlen, F. A., 1981. The period and Q of the Chandler Wobble, Geophys. J. R. Astr. Soc, 64, 223-281.CrossRefGoogle Scholar
Song, X. & Helmberger, D. V., 1992. Velocity strueture near the inner core boundary from waveform modelling, J. Geophys. Res., 97, 6573-6586.CrossRefGoogle Scholar
Stokes, G. G., 1849. Dynamical theory of diffraction, Trans. Camb. Phil. Soc, 9, 1.Google Scholar
Stoneley, R., 1924. Elastic waves at the surface of Separation of two solids, Proc. R. Soc Lond., 106A, 416-420.Google Scholar
Stutzmann, E., Roult, G. & Astiz, L., 2000. GEOSCOPE Station noise levels, Bull. Seism. Soc. Am., 90, 690-701.CrossRefGoogle Scholar
Sykes, L. R., 1967. Mechanisms of earthquakes and the nature of faulting on mid-ocean ridges, J. Geophys. Res., 72, 2131-2153.CrossRefGoogle Scholar
Takeuchi, H. & Saito, M. 1972. Seismic Surface Waves, in Methods in Computational Physics, 11, ed. B. A., Bolt, Academic Press, New York.
Tan, B., Jackson, I. & Fitz Gerald, J., 1997. Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: preliminary results, Geophys. Res. Lett, 24, 1055-1058.CrossRefGoogle Scholar
Tazime, K., 1994. Elements of elastic wave theory, Makishoten, Tokyo (in Japanese).Google Scholar
Temme, P. & Müller, G., 1982. Numerical Simulation of vertical seismic profiling, J. Geophys., 50, 177-182.Google Scholar
Thomson, C. J. & Chapman, C. H., 1984. On approximate Solutions for reflection of waves in a stratified medium, Geophys. J. R. Astr. Soc, 79, 385-410.CrossRefGoogle Scholar
Titchmarsh, E. C., 1937. An Introduction to the Theory ofFourier Integrals, Oxford University Press.Google Scholar
Ursin, B., 1983. Review of elastic and electromagnetic wave propagation in horizontally layered media, Geophysics, 48, 1063-1081.CrossRefGoogle Scholar
van der Hilst, R. D., Kennett, B.L.N., Christie, D. & Grant J., 1994. Project SKIPPY explores the mantle and lithosphere under Australia, EOS, 75, 177, 180-181.CrossRefGoogle Scholar
Vered, M. & BenMenahem, A., 1974. Application of synthetic seismograms to the study of low magnitude earthquakes and crustal structure in the Northern Red Sea region, Bull. Seism. Soc. Am., 64, 1221-1237.Google Scholar
Vinnik, L. P., Makeyeva, L. I., Milev, A. & Usenko, A. Yu., 1992. Global patterns of azimuthal anisotropy and deformations in the Continental mantle, Geophys. J. Int, 111, 433-447.CrossRefGoogle Scholar
Walton, K., 1974. The seismological effects of prestraining within the Earth, Geophys. J. R. Astr.Soc, 36, 651-677.CrossRefGoogle Scholar
Wang, C. Y., & Herrmann, R. B., 1980. A numerical study of P-, SV- and SH-wave generation in a plane layered medium, Bull. Seism. Soc. Am., 70, 1015-1036.Google Scholar
Watson, G. N., 1918. The diffraction of electric waves by the Earth, Proc. R. Soc. Lond., 95A, 83-99.CrossRefGoogle Scholar
Woodhouse, J. H., 1974. Surface waves in a laterally varying layered structure. Geophys. J. R. Astr. Soc, 37, 461-490.CrossRefGoogle Scholar
Woodhouse, J. H., 1978. Asymptotic results for elastodynamic propagator matrices in plane stratified and spherically stratified earth modeis, Geophys. J. R. Astr. Soc, 54, 263-280.CrossRefGoogle Scholar
Young, C. J. & Lay, T. J., 1990. Multiple phase analysis of the shear velocity structure in the D“ region beneath Alaska, J. Geophys. Res., 95, 17 385-17402.CrossRefGoogle Scholar
Yoshida, S., Koketsu, K., Shibazaki, B., Sagiya, T., Kato, T. & Yoshida, Y., 1996. Joint Inversion of near- and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake. J. Phys. Earth., 44, 437-454.CrossRefGoogle Scholar
Yoshizawa, K., Yomogida, K. & Tsuboi, S., 1999. Resolving power of surface wave Polarisation data for higher-order heterogeneities, Geophys. J. Int., 138, 205-220.CrossRefGoogle Scholar
Zatsepin, S. V. & Crampin, S., 1997. Modelling the compliance of crustal rock -1. Response of shear-wave Splitting to differential stress, Geophys. J. Int., 129, 477-494.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • B. L. N. Kennett, Australian National University, Canberra
  • Book: The Seismic Wavefield
  • Online publication: 07 September 2019
  • Chapter DOI: https://doi.org/10.1017/9781108780315.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • B. L. N. Kennett, Australian National University, Canberra
  • Book: The Seismic Wavefield
  • Online publication: 07 September 2019
  • Chapter DOI: https://doi.org/10.1017/9781108780315.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • B. L. N. Kennett, Australian National University, Canberra
  • Book: The Seismic Wavefield
  • Online publication: 07 September 2019
  • Chapter DOI: https://doi.org/10.1017/9781108780315.019
Available formats
×