Book contents
- Frontmatter
- Contents
- Dedication
- Acknowledgements
- Foreword
- 1 Sudden Infant Death Syndrome: Definitions
- 2 Sudden Infant Death Syndrome: An Overview
- 3 Sudden Unexplained Death in Childhood: An Overview
- 4 Sudden Infant Death Syndrome: History
- 5 Responding to Unexpected Child Deaths
- 6 The Role of Death Review Committees
- 7 Parental Perspectives
- 8 Parental Grief
- 9 Promoting Evidence-Based Public Health Recommendations to Support Reductions in Infant and Child Mortality: The Role of National Scientific Advisory Groups
- 10 Risk Factors and Theories
- 11 Shared Sleeping Surfaces and Dangerous Sleeping Environments
- 12 Preventive Strategies for Sudden Infant Death Syndrome
- 13 The Epidemiology of Sudden Infant Death Syndrome and Sudden Unexpected Infant Deaths: Diagnostic Shift and other Temporal Changes
- 14 Future Directions in Sudden Unexpected Death in Infancy Research
- 15 Observational Investigations from England: The CESDI and SWISS Studies
- 16 An Australian Perspective
- 17 A South African Perspective
- 18 A United Kingdom Perspective
- 19 A United States Perspective
- 20 A Scandinavian Perspective
- 21 Neonatal Monitoring: Prediction of Autonomic Regulation at 1 Month from Newborn Assessments
- 22 Autonomic Cardiorespiratory Physiology and Arousal of the Fetus and Infant
- 23 The Role of the Upper Airway in SIDS and Sudden Unexpected Infant Deaths and the Importance of External Airway-Protective Behaviors
- 24 The Autopsy and Pathology of Sudden Infant Death Syndrome
- 25 Natural Diseases Causing Sudden Death in Infancy and Early Childhood
- 26 Brainstem Neuropathology in Sudden Infant Death Syndrome
- 27 Sudden Infant Death Syndrome, Sleep, and the Physiology and Pathophysiology of the Respiratory Network
- 28 Neuropathology of Sudden Infant Death Syndrome: Hypothalamus
- 29 Abnormalities of the Hippocampus in Sudden and Unexpected Death in Early Life
- 30 Cytokines, Infection, and Immunity
- 31 The Genetics of Sudden Infant Death Syndrome
- 32 Biomarkers of Sudden Infant Death Syndrome (SIDS) Risk and SIDS Death
- 33 Animal Models: Illuminating the Pathogenesis of Sudden Infant Death Syndrome
29 - Abnormalities of the Hippocampus in Sudden and Unexpected Death in Early Life
Published online by Cambridge University Press: 20 July 2018
- Frontmatter
- Contents
- Dedication
- Acknowledgements
- Foreword
- 1 Sudden Infant Death Syndrome: Definitions
- 2 Sudden Infant Death Syndrome: An Overview
- 3 Sudden Unexplained Death in Childhood: An Overview
- 4 Sudden Infant Death Syndrome: History
- 5 Responding to Unexpected Child Deaths
- 6 The Role of Death Review Committees
- 7 Parental Perspectives
- 8 Parental Grief
- 9 Promoting Evidence-Based Public Health Recommendations to Support Reductions in Infant and Child Mortality: The Role of National Scientific Advisory Groups
- 10 Risk Factors and Theories
- 11 Shared Sleeping Surfaces and Dangerous Sleeping Environments
- 12 Preventive Strategies for Sudden Infant Death Syndrome
- 13 The Epidemiology of Sudden Infant Death Syndrome and Sudden Unexpected Infant Deaths: Diagnostic Shift and other Temporal Changes
- 14 Future Directions in Sudden Unexpected Death in Infancy Research
- 15 Observational Investigations from England: The CESDI and SWISS Studies
- 16 An Australian Perspective
- 17 A South African Perspective
- 18 A United Kingdom Perspective
- 19 A United States Perspective
- 20 A Scandinavian Perspective
- 21 Neonatal Monitoring: Prediction of Autonomic Regulation at 1 Month from Newborn Assessments
- 22 Autonomic Cardiorespiratory Physiology and Arousal of the Fetus and Infant
- 23 The Role of the Upper Airway in SIDS and Sudden Unexpected Infant Deaths and the Importance of External Airway-Protective Behaviors
- 24 The Autopsy and Pathology of Sudden Infant Death Syndrome
- 25 Natural Diseases Causing Sudden Death in Infancy and Early Childhood
- 26 Brainstem Neuropathology in Sudden Infant Death Syndrome
- 27 Sudden Infant Death Syndrome, Sleep, and the Physiology and Pathophysiology of the Respiratory Network
- 28 Neuropathology of Sudden Infant Death Syndrome: Hypothalamus
- 29 Abnormalities of the Hippocampus in Sudden and Unexpected Death in Early Life
- 30 Cytokines, Infection, and Immunity
- 31 The Genetics of Sudden Infant Death Syndrome
- 32 Biomarkers of Sudden Infant Death Syndrome (SIDS) Risk and SIDS Death
- 33 Animal Models: Illuminating the Pathogenesis of Sudden Infant Death Syndrome
Summary
Introduction
The terrifying aspect of the sudden infant death syndrome (SIDS) is that it occurs in infants who seem healthy and then die without warning when put down to sleep. SIDS is not typically witnessed and it is surmized that death occurs during sleep, or during one of the many transitions to waking that occur during normal infant sleep-wake cycles (1). Multiple sleep-related mechanisms have been proposed to cause SIDS (1, 2). These mechanisms include suffocation/asphyxiation in the face-down sleep position, central and/or obstructive sleep apnea, impaired-state-dependent responses to hypoxia and/ or hypercarbia, inadequate autoresuscitation, defective autonomic regulation of blood pressure or thermal responses, and abnormal arousal to life-threatening challenges during sleep.
In this chapter, we review the hypothesis and the neuropathologic evidence that SIDS is precipitated by a dentate gyrus-related seizure or a limbic-related instability that involves the central homeostatic network (CHN). We begin with an overview of this hypothesis, and then review our neuropathologic evidence for an epileptiform hippocampal lesion in the brain of a subset of SIDS infants and young children (41-50% respectively) who died suddenly and unexpectedly (3-5). We then consider the putative mechanism whereby dentate lesions cause seizures, the role of the hippocampus as part of the CHN in stress responses (such as the face-down sleep position), and the potential interactions of brainstem serotonergic (5-HT) deficits and the hippocampus in the pathogenesis of sudden death in infants. We conclude with further directions for research into the role of the hippocampus in sudden and unexpected death in early life.
The Limbic Seizure-Related Hypothesis in SIDS
In 1986, Harper suggested that some SIDS deaths may be due to a fatal seizure during sleep that arises in forebrain-limbic-related circuits (6). This hypothesis arose from the recognition of the following inter-related phenomena: limbic regions are particularly susceptible to epileptogenesis; sleep states lower the threshold for seizure; and SIDS is linked to sleep and arousal. Sleep itself is thought to be a precarious state, in part because of the loss of the major “back-up” forebrain systems of waking which influence the final common pathways in the brainstem that mediate central cardiorespiratory function during sleep. Forebrain limbic regions, such as the hippocampus and amygdala, which are part of the CHN, modulate brainstem cardiorespiratory control in a manner influenced by the sleep-waking cycles.
- Type
- Chapter
- Information
- SIDS Sudden Infant and Early Childhood DeathThe past, the present and the future, pp. 661 - 688Publisher: The University of Adelaide PressPrint publication year: 2018