Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T22:03:40.212Z Has data issue: false hasContentIssue false

17 - Review of statistical mechanics

Published online by Cambridge University Press:  05 June 2012

Herman J. C. Berendsen
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Introduction

Equilibrium statistical mechanics was developed shortly after the introduction of thermodynamic entropy by Clausius, with Boltzmann and Gibbs as the main innovators near the end of the nineteenth century. The concepts of atoms and molecules already existed but there was no notion of quantum theory. The link to thermodynamics was properly made, including the interpretation of entropy in terms of probability distributions over ensembles of particle configurations, but the quantitative counting of the number of possibilities required an unknown elementary volume in phase space that could only later be identified with Planck's constant h. The indistinguishability of particles of the same kind, which had to be introduced in order to avoid the Gibbs' paradox, got a firm logical basis only after the invention of quantum theory. The observed distribution of black-body radiation could not be explained by statistical mechanics of the time; discrepancies of this kind have been catalysts for the development of quantum mechanics in the beginning of the twentieth century. Finally, only after the completion of basic quantum mechanics around 1930 could quantum statistical mechanics – in principle – make the proper link between microscopic properties at the atomic level and macroscopic thermodynamics. The classical statistical mechanics of Gibbs is an approximation to quantum statistics.

In this review we shall reverse history and start with quantum statistics, proceeding to classical statistical mechanics as an approximation to quantum statistics. This will enable us to see the limitations of classical computational approaches and develop appropriate quantum corrections where necessary.

Type
Chapter
Information
Simulating the Physical World
Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics
, pp. 453 - 504
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×