Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T15:05:30.813Z Has data issue: false hasContentIssue false

16 - Review of thermodynamics

Published online by Cambridge University Press:  05 June 2012

Herman J. C. Berendsen
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Introduction and history

This book is not a textbook on thermodynamics or statistical mechanics. The reason to incorporate these topics nevertheless is to establish a common frame of reference for the readers of this book, including a common nomenclature and notation. For details, commentaries, proofs and discussions, the reader is referred to any of the numerous textbooks on these topics.

Thermodynamics describes the macroscopic behavior of systems in equilibrium, in terms of macroscopic measurable quantities that do not refer at all to atomic details. Statistical mechanics links the thermodynamic quantities to appropriate averages over atomic details, thus establishing the ultimate coarse-graining approach. Both theories have something to say about non-equilibrium systems as well. The logical exposition of the link between atomic and macroscopic behavior would be in the sequence:

  1. (i) describe atomic behavior on a quantum-mechanical basis;

  2. (ii) simplify to classical behavior where possible;

  3. (iii) apply statistical mechanics to average over details;

  4. (iv) for systems in equilibrium: derive thermodynamic; quantities and phase behavior; for non-equilibrium systems: derive macroscopic rate processes and transport properties.

The historical development has followed a quite different sequence. Equilibrium thermodynamics was developed around the middle of the nineteenth century, with the definition of entropy as a state function by Clausius forming the crucial step to completion of the theory. No detailed knowledge of atomic interactions existed at the time and hence no connection between atomic interactions and macroscopic behavior (the realm of statistical mechanics) could be made.

Type
Chapter
Information
Simulating the Physical World
Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics
, pp. 423 - 452
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×