Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-31T10:23:17.783Z Has data issue: false hasContentIssue false

19 - Social behaviour and speciation

Published online by Cambridge University Press:  05 June 2012

Gerald S. Wilkinson
Affiliation:
University of Maryland, College Park, Maryland, USA
Leanna M. Birge
Affiliation:
University of Maryland, College Park, Maryland, USA
Tamás Székely
Affiliation:
University of Bath
Allen J. Moore
Affiliation:
University of Exeter
Jan Komdeur
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Overview

Speciation results from the evolution of traits that inhibit reproduction between populations. This chapter discusses theoretical and empirical studies that relate to how social behaviour influences those reproductive barriers. Behaviour can influence prezygotic isolation by causing non-random mating or non-random fertilisation. Learning can affect mate recognition through cultural transmission of mate advertisement signals and sexual imprinting. Behaviour can also contribute to reproductive isolation if hybrids are discriminated against as mates or if female re-mating influences fertilisation success.

A general theory of speciation does not exist, but a variety of models have been developed to describe how selection can favour speciation in particular situations. Theory suggests that sexual selection, in particular, should be a diversifying force. However, among vertebrates sexual selection by female choice has favoured expression of condition-dependent traits, which are typically not reliable for species recognition. Better examples of sexually selected traits functioning in both mate-choice and species-recognition contexts can be found among some insects, such as crickets. The best examples of sexual selection influencing speciation in vertebrates come from cases of sexual imprinting in birds where offspring learn species-recognition cues in the nest.

Sexual selection can also operate after mating by sperm competition or cryptic female choice. Either or both of these mechanisms likely contribute to conspecific sperm precedence, which may result in reproductive isolation after mating. Sexually antagonistic coevolution has the potential to drive speciation in systems with sexual conflict.

Type
Chapter
Information
Social Behaviour
Genes, Ecology and Evolution
, pp. 491 - 515
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coyne, J. A. & Orr, H. A. (2004) Speciation. Sunderland, MA: Sinauer Associates.Google Scholar
Etges, W. J. & Noor, M. A. F. (2002) Genetics of Mate Choice: from Sexual Selection to Sexual Isolation. New York, NY: Kluwer.CrossRefGoogle Scholar
Gavrilets, S. (2004) Fitness Landscapes and the Origin of Species, Princeton, NJ: Princeton University Press.Google Scholar
Ptacek, M. B. (2000) The role of mating preferences in shaping interspecific divergence in mating signals in vertebrates. Behavioural Processes, 51, 111–134.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. (1983) Sexual selection, social competition, and speciation. Quarterly Review of Biology, 58, 155–183.CrossRefGoogle Scholar
Alexander, R. D., Marshall, D. C. & Cooley, J. R. (1997) Evolutionary perspectives on insect mating. In: The Evolution of Mating Systems in Insects and Arachnids, ed. Choe, J. C. & Crespi, B. J.. Cambridge: Cambridge University Press, pp. 4–31.Google Scholar
Andersson, M. (1994) Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Andersson, S., Pryke, S. R., Ornborg, J., Lawes, M. J. & Andersson, M. (2002) Multiple receivers, multiple ornaments, and a trade-off between agonistic and epigamic signaling in a widowbird. American Naturalist, 160, 683–691.Google Scholar
Andres, J. A. & Arnqvist, G. (2001) Genetic divergence of the seminal signal–receptor system in houseflies: the footprints of sexually antagonistic coevolution?Proceedings of the Royal Society of London Series B-Biological Sciences, 268, 399–405.CrossRefGoogle ScholarPubMed
Aoki, K., Feldman, M. W. & Kerr, B. (2001) Models of sexual selection on a quantitative genetic trait when preference is acquired by sexual imprinting. Evolution, 55, 25–32.CrossRefGoogle ScholarPubMed
Arnegard, M. E. & Kondrashov, A. S. (2004) Sympatric speciation by sexual selection alone is unlikely. Evolution, 58, 222–237.CrossRefGoogle ScholarPubMed
Arnqvist, G. & Rowe, L. (2002a) Antagonistic coevolution between the sexes in a group of insects. Nature, 415, 787–789.CrossRefGoogle Scholar
Arnqvist, G. & Rowe, L. (2002b) Correlated evolution of male and female morphologies in water striders. Evolution, 56, 936–947.CrossRefGoogle ScholarPubMed
Arnqvist, G. & Rowe, L. (2005) Sexual Conflict. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Arnqvist, G., Edvardsson, M., Friberg, U. & Nilsson, T. (2000) Sexual conflict promotes speciation in insects. Proceedings of the National Academy of Sciences of the USA, 97, 10460–10464.CrossRefGoogle ScholarPubMed
Attia, F. A. & Tregenza, T. (2004) Divergence revealed by population crosses in the red flour beetleTribolium castaneum. Evoutionary Ecology Research, 6, 927–935.Google Scholar
Bacigalupe, L. D., Crudgington, H. S., Hunter, F., Moore, A. J. & Snook, R. R. (2007) Sexual conflict does not drive reproductive isolation in experimental populations of Drosophila pseudoobscura. Journal of Evolutionary Biology, 20, 1763–1771.CrossRefGoogle Scholar
Balakrishnan, C. N. & Sorenson, M. D. (2006) Song discrimination suggests premating isolation among sympatric indigobird species and host races. Behavioral Ecology, 17, 473–478.CrossRefGoogle Scholar
Barraclough, T. G., Harvey, P. H. & Nee, S. (1995) Sexual selection and taxonomic diversity in passerine birds. Proceedings of the Royal Society B, 259, 211–215.CrossRefGoogle Scholar
Barraclough, T. G., Vogler, A. P. & Harvey, P. H. (1998) Revealing the factors that promote speciation. Philosophical Transactions of the Royal Society B, 353, 241–249.CrossRefGoogle Scholar
Bateson, P. (1978) Sexual imprinting and optimal outbreeding. Nature, 273, 659–660.CrossRefGoogle ScholarPubMed
Beaumont, M. A. (2005) Adaptation and speciation: what can Fst tell us?Trends in Ecology and Evolution, 20, 435–440.CrossRefGoogle Scholar
Bella, J. L., Butlin, R. K., Ferris, C. & Hewitt, G. M. (1992) Asymmetrical homogamy and unequal sex-ratio from reciprocal mating-order crosses betweenChorthippus parallelus subspecies. Heredity, 68, 345–352.Google Scholar
Bernardi, G. (1993) Genome organization and species formation in vertebrates. Journal of Molecular Evolution, 37, 331–337.CrossRefGoogle ScholarPubMed
Bernardi, G., Hughes, S. & Mouchiroud, D. (1997) The major compositional transitions in the vertebrate genome. Journal of Molecular Evolution, 44, S44–51.CrossRefGoogle ScholarPubMed
Birkhead, T. R. & Billard, P. (2007) Reproductive isolation in birds: postcopulatory, prezygotic barriers. Trends in Ecology and Evolution, 22, 266–272.CrossRefGoogle ScholarPubMed
Boake, C. R. B. (1991) Coevolution of senders and receivers of sexual signals – genetic coupling and genetic correlations. Trends in Ecology and Evolution, 6, 225–227.CrossRefGoogle ScholarPubMed
Boake, C. R. B. (2002) Sexual signaling and speciation: a microevolutionary perspective. Genetica, 116, 205–214.CrossRefGoogle ScholarPubMed
Boake, C. R. B. & Poulsen, T. (1997) Correlates versus predictors of courtship success: courtship song in Drosophila silvestrisand D. heteroneura. Animal Behaviour, 54, 699–704.CrossRefGoogle Scholar
Boake, C. R. B., Deangelis, M. P. & Andreadis, D. K. (1997) Is sexual selection and species recognition a continuum? Mating behavior of the stalk-eyed flyDrosophila heteroneura. Proceedings of the National Academy of Sciences of the USA, 94, 12442–12445.CrossRefGoogle ScholarPubMed
Brooks, R. (2002) Variation in female mate choice within guppy populations: population divergence, multiple ornaments and the maintenance of polymorphism. Genetica, 116, 343–358.CrossRefGoogle ScholarPubMed
Brown, D. V. & Eady, P. E. (2001) Functional incompatibility between the fertilization systems of two allopatric populations of Callosobruchus maculatus (Coleoptera: Bruchidae). Evolution, 55, 2257–2262.CrossRefGoogle Scholar
Burton, R. S., Ellison, C. K. & Harrison, J. S. (2006) The sorry state of F-2 hybrids: consequences of rapid mitochondrial DNA evolution in allopatric populations. American Naturalist, 168, S14-S24.CrossRefGoogle Scholar
Bush, G. L. (1969) Sympatric host race formation and speciation in frugivorous flies of genus Rhagoletis (Diptera, Tephritidae). Evolution, 23, 237–251.CrossRefGoogle Scholar
Bush, G. L., Case, S. M., Wilson, A. C. & Patton, J. L. (1977) Rapid speciation and chromosomal evolution in mammals. Proceedings of the National Academy of Sciences of the USA, 74, 3942–3946.CrossRefGoogle ScholarPubMed
Butlin, R. K. & Ritchie, M. G. (1989) Genetic coupling in mate recognition systems: what is the evidence?Biological Journal of the Linnean Society, 37, 237–246.CrossRefGoogle Scholar
Butlin, R. K., Hewitt, G. M. & Webb, S. F. (1985) Sexual selection for intermediate optimum in Chorthippus brunneus (Orthoptera: Acrididae). Animal Behaviour, 33, 1281–1292.CrossRefGoogle Scholar
Calsbeek, R., Alonzo, S. H., Zamudio, K. & Sinervo, B. (2002) Sexual selection and alternative mating behaviours generate demographic stochasticity in small populations. Proceedings of the Royal Society B, 269, 157–164.CrossRefGoogle ScholarPubMed
Chang, A. S. (2004) Conspecific sperm precedence in sister species of Drosophila with overlapping ranges. Evolution, 58, 781–789.CrossRefGoogle ScholarPubMed
Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. (2003) Sexual conflict. Trends in Ecology and Evolution, 18, 41–47.CrossRefGoogle Scholar
Christianson, S. J., Swallow, J. G. & Wilkinson, G. S. (2005) Rapid evolution of postzygotic reproductive isolation in stalk-eyed flies. Evolution, 59, 849–857.CrossRefGoogle ScholarPubMed
Civetta, A. & Singh, R. S. (1998) Sex and speciation: genetic architecture and evolutionary potential of sexual versus nonsexual traits in the sibling species of the Drosophila melanogaster complex. Evolution, 52, 1080–1092.CrossRefGoogle ScholarPubMed
Clark, A. G., Aguade, M., Prout, T., Harshman, L. G. & Langley, C. H. (1995) Variation in sperm displacement and its association with accessory-gland protein loci in Drosophila melanogaster. Genetics, 139, 189–201.Google ScholarPubMed
Cockburn, A. (2003) Cooperative breeding in oscine passerines: does sociality inhibit speciation?Proceedings of the Royal Society B, 270, 2207–2214.CrossRefGoogle ScholarPubMed
Cordero, A. (1995) Ejaculate substances that affect female insect reproductive physiology and behavior: honest or arbitrary?Journal of Theoretical Biology, 192, 453–461.CrossRefGoogle Scholar
Coyne, J. A. & Orr, H. A. (1989) Patterns of speciation inDrosophila. Evolution, 43, 362–381.Google Scholar
Coyne, J. A. & Orr, H. A. (1997) ‘Patterns of speciation in Drosophila’ revisited. Evolution, 51, 295–303.Google Scholar
Coyne, J. A. & Orr, H. A. (1998) The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society B, 353, 287–305.CrossRefGoogle ScholarPubMed
Coyne, J. A. & Orr, H. A. (2004) Speciation. Sunderland, MA: Sinauer Associates.Google Scholar
Crudgington, H. S., Beckerman, A. P., Brustle, L., Green, K. & Snook, R. R. (2005) Experimental removal and elevation of sexual selection: does sexual selection generate manipulative males and resistant females?American Naturalist, 165, S72–87.CrossRefGoogle ScholarPubMed
Curtsinger, J. W. (1991) Sperm competition and the evolution of multiple mating. American Naturalist, 138, 93–102.CrossRefGoogle Scholar
Dawkins, R. & Krebs, J. R. (1979) Arms races between and within species. Proceedings of the Royal Society B, 295, 489–511.CrossRefGoogle Scholar
Dixon, S. M., Coyne, J. A. & Noor, M. A. F. (2003) The evolution of conspecific sperm precedence inDrosophila. Molecular Ecology, 12, 2028–2037.Google Scholar
Dobigny, G., Aniskin, V. & Volobouev, V. (2002) Explosive chromosome evolution and speciation in the gerbil genus Taterillus (Rodentia, Gerbillinae): a case of two new cryptic species. Cytogenetic and Genome Research, 96, 117–124.CrossRefGoogle ScholarPubMed
Dobzhansky, T. (1937) Genetics and the Origin of Species. New York, NY: Columbia University Press.Google Scholar
Dominey, W. J. (1984) Effects of sexual selection and life histories on speciation: species flocks in African cichlids and Hawaiian Drosophila. In: Evolution of Fish Species Flocks, ed. A. A. Echelle & I. Kornfield. Orono, ME: University of Maine Press, pp. 231–249.Google Scholar
Dugatkin, L. A. & Godin, J. G. J. (1992) Reversal of female mate choice by copying in the guppy (Poecilia reticulata). Proceedings of the Royal Society B, 249, 179–184.Google ScholarPubMed
Eberhard, W. G. (1996) Female Control: Sexual Selection and Cryptic Female Choice, Princeton, NJ:Princeton University Press.Google Scholar
Eberhard, W. G. (2004) Male–female conflict and genitalia: failure to confirm predictions in insects and spiders. Biological Reviews, 79, 121–186.CrossRefGoogle ScholarPubMed
Eberhard, W. G. & Cordero, A. (1995) Sexual selection by cryptic female choice on male seminal products: a bridge between sexual selection and reproductive physiology. Trends in Ecology and Evolution, 10, 493–496.CrossRefGoogle ScholarPubMed
Edwards, S. V., Kingan, S. B., Calkins, J. D.et al. (2005) Speciation in birds: genes, geography, and sexual selection. Proceedings of the National Academy of Sciences of the USA, 102, 6550–6557.CrossRefGoogle ScholarPubMed
Ekman, J. & Ericson, P. G. P. (2006) Out of Gondwanaland: the evolutionary history of cooperative breeding and social behaviour among crows, magpies, jays and allies. Proceedings of the Royal Society B, 273, 1117–1125.CrossRefGoogle ScholarPubMed
Emelianov, I., Marec, F. & Mallet, J. (2004) Genomic evidence for divergence with gene flow in host races of the larch budmoth. Proceedings of the Royal Society of London Series B-Biological Sciences, 271, 97–105.CrossRefGoogle ScholarPubMed
Feder, J. L., Opp, S. B., Wlazlo, B.et al. (1994) Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proceedings of the National Academy of Sciences of the USA, 91, 7990–7994.CrossRefGoogle ScholarPubMed
Feder, J. L., Berlocher, S. H., Roethele, J. B.et al. (2003) Allopatric genetic origins for sympatric host-plant shifts and race formation inRhagoletis. Proceedings of the National Academy of Sciences of the USA, 100, 10314–10319.CrossRefGoogle Scholar
Fedorka, K. M. & Mousseau, T. A. (2002) Nuptial gifts and the evolution of male body size. Evolution, 56, 590–596.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1981) Skepticism towards Santa Rosalia, or why are there so few kinds of animals?Evolution, 35, 124–138.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Gage, M. J. G., Parker, G. A., Nylin, S. & Wiklund, C. (2002) Sexual selection and speciation in mammals, butterflies and spiders. Proceedings of the Royal Society B, 269, 2309–2316.CrossRefGoogle ScholarPubMed
Gavrilets, S. (2000) Rapid evolution of reproductive barriers driven by sexual conflict. Nature, 403, 886–889.CrossRefGoogle ScholarPubMed
Gavrilets, S. (2004) Fitness Landscapes and the Origin of Species. Princeton, NJ: Princeton University Press.Google Scholar
Gavrilets, S. & Waxman, D. (2002) Sympatric speciation by sexual conflict. Proceedings of the National Academy of Sciences of the USA, 99, 10533–10538.CrossRefGoogle ScholarPubMed
Gerhardt, H. C. (1991) Female mate choice in treefrogs: static and dynamic acoustic criteria. Animal Behaviour, 42, 615–635.CrossRefGoogle Scholar
Geyer, L. B. & Palumbi, S. R. (2005) Conspecific sperm precedence in two species of tropical sea urchins. Evolution, 59, 97–105.CrossRefGoogle ScholarPubMed
Gibson, R. M. & Bradbury, J. W. (1985) Sexual selection in lekking sage grouse: phenotypic correlates of male mating success. Behavioral Ecology and Sociobiology, 18, 117–123.CrossRefGoogle Scholar
Gleason, J. M., Jallon, J. M., Rouault, J. D. & Ritchie, M. G. (2005) Quantitative trait loci for cuticular hydrocarbons associated with sexual isolation betweenDrosophilasimulans and D. sechellia. Genetics, 171, 1789–1798.Google Scholar
Grafen, A. (1990) Biological signals as handicaps. Journal of Theoretical Biology, 144, 517–546.CrossRefGoogle ScholarPubMed
Grant, B. R. & Grant, P. R. (1996) Cultural inheritance of song and its role in the evolution of Darwin's finches. Evolution, 50, 2471–2487.CrossRefGoogle ScholarPubMed
Gray, D. A. & Cade, W. H. (2000) Sexual selection and speciation in field crickets. Proceedings of the National Academy of Sciences of the USA, 97, 14449–14454.CrossRefGoogle ScholarPubMed
Gray, S. M. & Mckinnon, J. S. (2007) Linking color polymorphism maintenance and speciation. Trends in Ecology and Evolution, 22, 71–79.CrossRefGoogle ScholarPubMed
Greene, E., Lyon, B. E., Muehter, V. R., Ratcliffe, L., Oliver, S. J. & Boag, P. T. (2000) Disruptive sexual selection for plumage coloration in a passerine bird. Nature, 407, 1000–1003.CrossRefGoogle Scholar
Gregory, P. G. & Howard, D. J. (1994) A post-insemination barrier to fertilization isolates two closely related ground crickets. Evolution, 48, 705–710.CrossRefGoogle Scholar
Gresham, D., Ruderfer, D. M., Pratt, S. C.et al. (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science, 311, 1932–1936.CrossRefGoogle ScholarPubMed
Griffith, S. C., Owens, I. P. F. & Burke, T. (1999) Environmental determination of a sexually selected trait. Nature, 400, 358–360.CrossRefGoogle Scholar
Haig, D. & Bergstrom, C. T. (1995) Multiple mating, sperm competition and meiotic drive. Journal of Evolutionary Biology, 8, 265–282.CrossRefGoogle Scholar
Harrison, R. G. (1998) Linking evolutionary pattern and process: the relevance of species concepts for the study of speciation. In: Endless Forms: Species and Speciation, ed. Howard, D. J. & Berlocher, S. H.. Oxford: Oxford University Press, pp. 19–31.Google Scholar
Harvey, P. H. & May, R. M. (1989) Out for the sperm count. Nature, 337, 508–509.CrossRefGoogle ScholarPubMed
Hasselquist, D., Bensch, S. & Schantz, T. (1996) Correlation between male song repertoire, extra-pair paternity and offspring survival in the great reed warbler. Nature, 381, 229–232.CrossRefGoogle Scholar
Hauber, M. E. & Sherman, P. W. (2001) Self-referent phenotype matching: theoretical considerations and empirical evidence. Trends in Neurosciences, 24, 609–616.CrossRefGoogle ScholarPubMed
Hawthorne, D. H. & Via, S. (2001) Genetic linkage facilitates ecological specialization and reproductive isolation in pea aphids. Nature, 412, 904–907.CrossRefGoogle Scholar
Hewitt, G. M., Mason, P. & Nichols, R. A. (1989) Sperm precedence and homogamy across a hybrid zone in the alpine grasshopper Podisma pedestris. Heredity, 62, 343–353.CrossRefGoogle Scholar
Higgie, M. & Blows, M. W. (2007) Are traits that experience reinforcement also under sexual selection?American Naturalist, 170, 409–420.CrossRefGoogle ScholarPubMed
Higgie, M., Chenoweth, S. & Blows, M. W. (2000) Natural selection and the reinforcement of mate recognition. Science, 290, 519–521.CrossRefGoogle ScholarPubMed
Hill, G. E., Inouye, C. Y. & Montgomerie, R. (2002) Dietary carotenoids predict plumage coloration in wild house finches. Proceedings of the Royal Society B, 269, 1119–1124.CrossRefGoogle ScholarPubMed
Hollocher, H. & Williamson, M. (1996) Island hopping in Drosophila: patterns and processes. Philosophical Transactions of the Royal Society B, 351, 735–743.CrossRefGoogle ScholarPubMed
Hosken, D. J., Blanckenhorn, W. U. & Garner, T. W. J. (2002) Heteropopulation males have a fertilization advantage during sperm competition in the yellow dung fly (Scathophaga stercoraria). Proceedings of the Royal Society B, 269, 1701–1707.CrossRefGoogle Scholar
Hosken, D. J., Garner, T. W. J., Tregenza, T., Wedell, N. & Ward, P. I. (2003) Superior sperm competitors sire higher-quality young. Proceedings of the Royal Society B, 270, 1933–1938.CrossRefGoogle ScholarPubMed
Howard, D. J. (1993) Reinforcement: Origin, Dynamics, and Fate of an Evolutionary Hypothesis. Oxford: Oxford University Press.Google Scholar
Howard, D. J. (1999) Conspecific sperm and pollen precedence and speciation. Annual Review of Ecology and Systematics, 30, 109–132.CrossRefGoogle Scholar
Hoy, R. R., Hahn, J. & Paul, R. C. (1977) Hybrid cricket auditory behavior: evidence for genetic coupling in animal communication. Science, 195, 82–84.CrossRefGoogle ScholarPubMed
Irwin, D. E. (2000) Song variation in an avian ring species. Evolution, 54, 998–1010.CrossRefGoogle Scholar
Irwin, D. E. & Price, T. (1999) Sexual imprinting, learning and speciation. Heredity, 82, 347–354.CrossRefGoogle ScholarPubMed
Irwin, D. E., Bensch, S. & Price, T. D. (2001) Speciation in a ring. Nature, 409, 333–337.CrossRefGoogle Scholar
Irwin, D. E., Bensch, S., Irwin, J. H. & Price, T. D. (2005) Speciation by distance in a ring species. Science, 307, 414–416.CrossRefGoogle Scholar
Janetos, A. C. (1980) Strategies of female mate choice: a theoretical analysis. Behavioral Ecology and Sociobiology, 7, 107–112.CrossRefGoogle Scholar
Jennions, M. D. & Petrie, M. (2000) Why do females mate multiply? A review of the genetic benefits. Biological Reviews, 75, 21.CrossRefGoogle ScholarPubMed
Johnstone, R. A. (1995) Honest advertisement of multiple qualities using multiple signals. Journal of Theoretical Biology, 177, 87–94.CrossRefGoogle Scholar
Jorde, L. B. (2000) Linkage disequilibrium and the search for complex disease genes. Genome Research, 10, 1435–1444.CrossRefGoogle ScholarPubMed
Kandul, N. R., Lukhtanov, V. A. & Pierce, N. E. (2007) Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution, 61, 546–559.CrossRefGoogle ScholarPubMed
Katakura, H. (1986) Evidence for the incapacitation of heterospecific sperm in the female genital tract in a pair of closely related ladybirds (Insecta, Coleoptera, Coccinellidae). Zoological Science, 3, 115–121.Google Scholar
Keller, L. & Reeve, H. K. (1995) Why do females mate with multiple males? The sexually selected sperm hypothesis. Advances in the Study of Behavior, 24, 291–315.CrossRefGoogle Scholar
Kendrick, K. M., Hinton, M. R., Atkins, K., Haupt, M. A. & Skinner, J. D. (1998) Mothers determine sexual preferences. Nature, 395, 229–230.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. (1982) Sexual selection and the evolution of female choice. Evolution, 36, 1–12.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. (1996) Good genes and direct selection in the evolution of mating preferences. Evolution, 50, 2125–2140.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. & Barton, N. H. (1997) The strength of indirect selection on female mating preferences. Proceedings of the National Academy of Sciences of the USA, 94, 1282–1286.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. & Barton, N. (2006) Chromosome inversions, local adaptation and speciation. Genetics, 173, 419–434.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. & Ravigne, V. (2002) Speciation by natural and sexual selection: models and experiments. American Naturalist, 159, S22–35.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. & Ryan, M. J. (1991) The evolution of mating preferences and the paradox of the lek. Nature, 350, 33–38.CrossRefGoogle Scholar
Kronforst, M. R., Young, L. G., Kapan, D. D.et al. (2006a) Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proceedings of the National Academy of Sciences of the USA, 103, 6575–6580.CrossRefGoogle ScholarPubMed
Kronforst, M. R., Kapan, D. D. & Gilbert, L. E. (2006b) Parallel genetic architecture of parallel adaptive radiations in mimeticHeliconius butterflies. Genetics, 174, 535–539.Google ScholarPubMed
Kronforst, M. R., Young, L. G. & Gilbert, L. E. (2007) Reinforcement of mate preference among hybridizingHeliconius butterflies. Journal of Evolutionary Biology, 20, 278–285.Google ScholarPubMed
Kruijt, J. P., Bossema, I. & Lammers, G. J. (1982) Effects of early experience and male activity on mate choice in mallard females (Anas platyrhynchos). Behaviour, 80, 32–43.CrossRefGoogle Scholar
Kyriacou, C. P. & Hall, J. C. (1982) The function of courtship song rhythms inDrosophila. Animal Behaviour, 30, 794–801.Google Scholar
Lachlan, R. F. & Servedio, M. R. (2004) Song learning accelerates allopatric speciation. Evolution, 58, 2049–2063.CrossRefGoogle ScholarPubMed
Laland, K. N. (1994) On the evolutionary consequences of sexual imprinting. Evolution, 48, 477–489.CrossRefGoogle ScholarPubMed
Lande, R. (1981) Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences of the USA, 78, 3721–3725.CrossRefGoogle ScholarPubMed
Lande, R. & Wilkinson, G. S. (1999) Models of sex-ratio meiotic drive and sexual selection in stalk-eyed flies. Genetical Research, 74, 245–253.CrossRefGoogle Scholar
Liou, L. W. & Price, T. D. (1994) Speciation by reinforcement of premating isolation. Evolution, 48, 1451–1459.CrossRefGoogle ScholarPubMed
Ludlow, A. M. & Magurran, A. E. (2006) Gametic isolation in guppies (Poecilia reticulata). Proceedings of the Royal Society B, 273, 2477.Google ScholarPubMed
Mallet, J. (1995) A species definition for the modern synthesis. Trends in Ecology and Evolution, 10, 294–299.CrossRefGoogle ScholarPubMed
Marcillac, F., Grosjean, Y. & Ferveur, J.-F. (2008) A single mutation alters production and discrimination of Drosophila sex pheromones. Proceedings of the Royal Society B, 272, 303–309.CrossRefGoogle Scholar
Martens, J. (1996) Vocalizations and speciation of Palearctic birds. In: Ecology and Evolution of Acoustic Communication in Birds, ed. Kroodsma, D. E. & Miller, E. H.. Ithaca, NY: Cornell University Press, pp. 221–240.Google Scholar
Martin, O. Y. & Hosken, D. J. (2003) The evolution of reproductive isolation through sexual conflict. Nature, 423, 979–982.CrossRefGoogle ScholarPubMed
Mavarez, J., Salazar, C. A., Bermingham, E.et al. (2006) Speciation by hybridization in Heliconius butterflies. Nature, 441, 868–871.CrossRefGoogle ScholarPubMed
Maynard Smith, J. & Haigh, J. (1974) The hitchhiking effect of a favorable gene. Genetical Research, 23, 23–35.CrossRefGoogle Scholar
Maynard Smith, J. & Szathmáry, E. (1995) The Major Transitions in Evolution. New York, NY: W. H. Freeman.Google Scholar
Mayr, E. (1942) Systematics and the Origin of Species. New York, NY:Columbia University Press.Google Scholar
Mayr, E. (1963) Animal Speciation and Evolution. Cambridge, MA, Harvard University Press.CrossRefGoogle Scholar
Mendelson, T. C. & Shaw, K. L. (2005) Rapid speciation in an arthropod. Nature, 433, 375–376.CrossRefGoogle Scholar
Mendelson, T. C., Imhoff, V. E. & Venditti, J. J. (2007) The accumulation of reproductive barriers during speciation: postmating barriers in two behaviorally isolated species of darters (Percidae : Etheostoma). Evolution, 61, 2596–2606.CrossRefGoogle Scholar
Meyer, A., Salzburger, W. & Schartl, M. (2006) Hybrid origin of a swordtail species (Teleostei :Xiphophorus clemenciae) driven by sexual selection. Molecular Ecology, 15, 721–730.Google Scholar
Mitra, S., Landel, H. & Pruett Jones, S. (1996) Species richness covaries with mating system in birds. Auk, 113, 544–551.Google Scholar
Moehring, A. J., Llopart, A., Elwyn, S., Coyne, J. A. & Mackay, T. F. C. (2006) The genetic basis of prezygotic reproductive isolation between Drosophila santomea and D. yakuba due to mating preference. Genetics, 173, 215–223.CrossRefGoogle Scholar
Møller, A. P. & Cuervo, J. J. (1998) Speciation and feather ornamentation in birds. Evolution, 52, 859–869.CrossRefGoogle ScholarPubMed
Morrow, E. H. & Pitcher, T. E. (2003) Sexual selection and the risk of extinction in birds. Proceedings of the Royal Society B, 270, 1793–1799.CrossRefGoogle ScholarPubMed
Morrow, E. H., Pitcher, T. E. & Arnqvist, G. (2003) No evidence that sexual selection is an ‘engine of speciation’ in birds. Ecology Letters, 6, 228–234.CrossRefGoogle Scholar
Mueller, U. G. & Wolfenbarger, L. L. (1999) AFLP genotyping and fingerprinting. Trends in Ecology and Evolution, 14, 389–394.CrossRefGoogle ScholarPubMed
Munoz-Duran, J. (2002) Correlates of speciation and extinction rates in the Carnivora. Evolutionary Ecology Research, 4, 963–991.Google Scholar
Navarro, A. & Barton, N. H. (2003) Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution, 57, 447–459.CrossRefGoogle ScholarPubMed
Noor, M. A. F. (1995) Speciation driven by natural selection in Drosophila. Nature, 375, 674–675.CrossRefGoogle ScholarPubMed
Noor, M. A. F. & Feder, J. L. (2006) Speciation genetics: evolving approaches. Nature Reviews Genetics, 7, 851–861.CrossRefGoogle ScholarPubMed
Noor, M. A. F., Grams, K. L., Bertucci, L. A. & Reiland, J. (2001) Chromosomal inversions and the reproductive isolation of species. Proceedings of the National Academy of Sciences of the USA, 98, 12084–12088.CrossRefGoogle ScholarPubMed
Olmo, E. (2005) Rate of chromosome changes and speciation in reptiles. Genetica, 125, 185–203.CrossRefGoogle ScholarPubMed
Orr, H. A., Masly, J. P. & Phadnis, N. (2007) Speciation inDrosophila: from phenotypes to molecules. Journal of Heredity, 98, 103–110.Google Scholar
Ortiz-Barrientos, D. & Noor, M. A. F. (2005) Evidence for a one-allele assortative mating locus. Science, 310, 1467.CrossRefGoogle ScholarPubMed
Owens, I. P. F., Rowe, C. & Thomas, A. L. R. (1999a) Sexual selection, speciation and imprinting: separating the sheep from the goats. Trends in Ecology and Evolution, 14, 131–132.CrossRefGoogle ScholarPubMed
Owens, I. P. F., Bennett, P. M. & Harvey, P. H. (1999b) Species richness among birds: body size, life history, sexual selection or ecology?Proceedings of the Royal Society B, 266, 933–939.CrossRefGoogle Scholar
Panhuis, T. M., Butlin, R., Zuk, M. & Tregenza, T. (2001) Sexual selection and speciation. Trends in Ecology and Evolution, 16, 364–371.CrossRefGoogle ScholarPubMed
Panhuis, T. M., Clark, N. L. & Swanson, W. J. (2006) Rapid evolution of reproductive proteins in abalone andDrosophila. Philosophical Transactions of the Royal Society B, 361, 261–268.Google Scholar
Parker, G. A. (1970) Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45, 525–567.CrossRefGoogle Scholar
Parker, G. A. (1979) Sexual selection and sexual conflict. In: Sexual Selection and Reproductive Competition in Insects, ed. Blum, M. S. & Blum, N. A.. New York, NY: Academic Press, pp. 123–166.Google Scholar
Parker, G. A. (2006) Sexual conflict over mating and fertilization: an overview. Philosophical Transactions of the Royal Society B, 361, 235–259.CrossRefGoogle ScholarPubMed
Parker, G. A. & Partridge, L. (1998) Sexual conflict and speciation. Philosophical Transactions of the Royal Society B, 353, 261–274.CrossRefGoogle ScholarPubMed
Paterson, H. E. H. (1985) The recognition concept of species. In: Species and Speciation, ed. E. S. Vrba. Pretoria: Transvaal Museum, pp. 21–29.Google Scholar
Paulay, G. & Meyer, C. (2002) Diversification in the tropical Pacific: comparisons between marine and terrestrial systems and the importance of founder speciation. Integrative and Comparative Biology, 42, 922–934.CrossRefGoogle ScholarPubMed
Payne, R. B. (2005) Nestling mouth markings and colors of Old World finches Estrildidae: mimicry and coevolution of nesting finches and their Vidua brood parasites. Miscellaneous Publications of the Museum of Zoology, University of Michigan, 194, 1–45.Google Scholar
Payne, R. B., Payne, L. L. & Woods, J. L. (1998) Song learning in brood-parasitic indigobirds Vidua chalybeata: song mimicry of the host species. Animal Behaviour, 55, 1537–1553.CrossRefGoogle ScholarPubMed
Payne, R. B., Payne, L. L., Woods, J. L. & Sorenson, M. D. (2000) Imprinting and the origin of parasite-host species associations in brood-parasitic indigobirds, Vidua chalybeata. Animal Behaviour, 59, 69–81.CrossRefGoogle ScholarPubMed
Payseur, B. A. & Place, M. (2007) Searching the genomes of inbred mouse strains for incompatibilities that reproductively isolate their wild relatives. Journal of Heredity, 98, 115–122.CrossRefGoogle ScholarPubMed
Phillimore, A. B., Freckleton, R. P., Orme, C. D. L. & Owens, I. P. F. (2006) Ecology predicts large-scale patterns of phylogenetic diversification in birds. American Naturalist, 168, 220–229.Google ScholarPubMed
Pialek, J., Hauffe, H. C., Rodriguez-Clark, K. M. & Searle, J. B. (2001) Raciation and speciation in house mice from the Alps: the role of chromosomes. Molecular Ecology, 10, 613–625.CrossRefGoogle Scholar
Pitnick, S., Miller, G. T., Schneider, K. & Markow, T. A. (2003) Ejaculate–female coevolution in Drosophila mojavensis. Proceedings of the Royal Society B, 270, 1507.CrossRefGoogle ScholarPubMed
Pizzari, T. & Birkhead, T. R. (2002) The sexually-selected sperm hypothesis: sex-biased inheritance and sexual antagonism. Biological Reviews, 77, 183–209.CrossRefGoogle ScholarPubMed
Pomiankowski, A., Iwasa, Y. & Nee, S. (1991) The evolution of costly male preferences. I. Fisher and biased mutation. Evolution, 45, 1422–1430.CrossRefGoogle ScholarPubMed
Price, C. S. C. (1997) Conspecific sperm precedence in Drosophila. Nature, 388, 663–666.CrossRefGoogle ScholarPubMed
Price, D. K. & Boake, C. R. B. (1995) Behavioral reproductive isolation in Drosophila silvestris, D. heteroneuraand their F1 hybrids (Diptera: Drosophilidae). Journal of Insect Behavior, 8, 595–616.CrossRefGoogle Scholar
Price, T. (1998) Sexual selection and natural selection in bird speciation. Philosophical Transactions of the Royal Society B, 353, 251–260.CrossRefGoogle Scholar
Ptacek, M. B. (2000) The role of mating preferences in shaping interspecific divergence in mating signals in vertebrates. Behavioural Processes, 51, 111–134.CrossRefGoogle ScholarPubMed
Rice, W. R. (1998) Intergenomic conflict, interlocus antagonistic coevolution, and the evolution of reproductive isolation. In: Endless Forms: Species and Speciation, ed. Howard, D. J. & Berlocher, S. H.. Oxford: Oxford University Press, pp. 261–270.Google Scholar
Rieseberg, L. H. (2006) Hybrid speciation in wild sunflowers. Annals of the Missouri Botanical Garden, 93, 34–48.CrossRefGoogle Scholar
Rieseberg, L. H. & Willis, J. H. (2007) Plant speciation. Science, 317, 910–914.CrossRefGoogle ScholarPubMed
Ringo, J. M. (1997) Why 300 species of Hawaiian Drosophila? The sexual selection hypothesis. Evolution, 31, 694–696.CrossRefGoogle Scholar
Ritchie, M. G., Webb, S. A., Graves, J. A., Magurran, A. E. & Garcia, C. M. (2005) Patterns of speciation in endemic Mexican Goodeid fish: sexual conflict or early radiation?Journal of Evolutionary Biology, 18, 922–929.CrossRefGoogle ScholarPubMed
Rowe, L. & Day, T. (2006) Detecting sexual conflict and sexually antagonistic coevolution. Philosophical Transactions of the Royal Society B, 361, 277–285.CrossRefGoogle ScholarPubMed
Rowe, L. & Houle, D. (1996) The lek paradox and the capture of genetic variance by condition-dependent traits. Proceedings of the Royal Society B, 263, 1415–1421.CrossRefGoogle Scholar
Rowe, L., Cameron, E. & Day, T. (2003) Detecting sexually antagonistic coevolution with population crosses. Proceedings of the Royal Society B, 270, 2009–2016.CrossRefGoogle ScholarPubMed
Rugman-Jones, P. F. & Eady, P. E. (2007) Conspecific sperm precedence in Callosobruchus subinnotatus(Coleoptera : Bruchidae): mechanisms and consequences. Proceedings of the Royal Society B, 274, 983.CrossRefGoogle ScholarPubMed
Ryan, M. J. & Keddy-Hector, A. (1992) Directional patterns of female mate choice and the role of sensory biases. American Naturalist, 139, s4–35.CrossRefGoogle Scholar
Ryan, M. J. & Rand, A. S. (1993) Species recognition and sexual selection as a unitary problem in animal communication. Evolution, 47, 647–657.CrossRefGoogle ScholarPubMed
Saether, S. A., Saetre, G. P., Borge, T.et al. (2007) Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers. Science, 318, 95–97.CrossRefGoogle ScholarPubMed
Sakaluk, S. K., Avery, R. L. & Weddle, C. B. (2006) Cryptic sexual conflict in gift-giving insects: chasing the chase-away. American Naturalist, 167, 94–104.Google ScholarPubMed
Salzburger, W., Baric, S. & Sturmbauer, C. (2002) Speciation via introgressive hybridization in East African cichlids?Molecular Ecology, 11, 619–625.CrossRefGoogle ScholarPubMed
Searcy, W. A. (1992) Song repertoire and mate choice in birds. American Zoologist, 32, 71–80.CrossRefGoogle Scholar
Seehausen, O. (2004) Hybridization and adaptive radiation. Trends in Ecology and Evolution, 19, 198–207.CrossRefGoogle ScholarPubMed
Sefc, K. M., Payne, R. B. & Sorenson, M. D. (2005) Genetic continuity of brood-parasitic indigobird species. Molecular Ecology, 14, 1407–1419.CrossRefGoogle ScholarPubMed
Servedio, M. R. (2000) Reinforcement and the genetics of nonrandom mating. Evolution, 54, 21–29.CrossRefGoogle ScholarPubMed
Servedio, M. R. (2004) The what and why of research on reinforcement. PLoS Biology, 2 (12), e420.CrossRefGoogle ScholarPubMed
Servedio, M. R. & Noor, M. A. F. (2003) The role of reinforcement in speciation: theory and data. Annual Review of Ecology Evolution and Systematics, 34, 339–364.CrossRefGoogle Scholar
Shaw, K. L. (1996) Polygenic inheritance of a behavioral phenotype: interspecific genetics of song in the Hawaiian cricket genus Laupala. Evolution, 50, 256–266.CrossRefGoogle Scholar
Shaw, K. L. (1998) Species and the diversity of natural groups. In: Endless Forms: Species and Speciation, ed. Howard, D. J. & Berlocher, S. H.. Oxford: Oxford University Press, pp. 44–56.Google Scholar
Shaw, K. L., Parsons, Y. M. & Lesnick, S. C. (2007) QTL analysis of a rapidly evolving speciation phenotype in the Hawaiian cricketLaupala. Molecular Ecology, 16, 2879–2892.Google ScholarPubMed
Simmons, L. W. (2003) The evolution of polyandry: patterns of genotypic variation in female mating frequency, male fertilization success and a test of the sexy-sperm hypothesis. Journal of Evolutionary Biology, 16, 624–635.CrossRefGoogle Scholar
Simmons, L. W. (2004) Genotypic variation in calling song and female preferences of the field cricketTeleogryllus oceanicus. Animal Behaviour, 68, 313–322.Google Scholar
Simmons, L. W. & Kotiaho, J. S. (2007) Quantitative genetic correlation between trait and preference supports a sexually selected sperm process. Proceedings of the National Academy of Sciences of the USA, 104, 16604–16608.CrossRefGoogle ScholarPubMed
Simmons, L. W., Zuk, M. & Rotenberry, J. T. (2001) Geographic variation in female preference functions and male songs of the field cricketTeleogryllus oceanicus. Evolution, 55, 1386–1394.Google ScholarPubMed
Sivinski, J. (1984) Sperm in competition. In: Sperm Competition and the Evolution of Animal Mating Systems, ed. R. L. Smith. New York, NY: Academic Press, pp. 86–115.Google Scholar
Sorenson, M. D., Sefc, K. M. & Payne, R. B. (2003) Speciation by host switch in brood parasitic indigobirds. Nature, 424, 928–931.CrossRefGoogle ScholarPubMed
Storz, J. F. (1999) Genetic consequences of mammalian social structure. Journal of Mammalogy, 80, 553–569.CrossRefGoogle Scholar
Swallow, J. G., Wallace, L. E., Christianson, S. J., Johns, P. M. & Wilkinson, G. S. (2005) Genetic divergence does not predict change in ornament expression among populations of stalk-eyed flies. Molecular Ecology, 14, 3787–3800.CrossRefGoogle Scholar
Templeton, A. R., Maxwell, T., Posada, D.et al. (2005) Tree scanning: a method for using haplotype trees in phenotype/genotype association studies. Genetics, 169, 441–453.CrossRefGoogle ScholarPubMed
ten Cate, C. (2000) How learning mechanisms might affect evolutionary processes. Trends in Ecology and Evolution, 15, 179–181.CrossRefGoogle ScholarPubMed
ten Cate, C. & Bateson, P. (1988) Sexual selection: the evolution of conspicuous characteristics in birds by means of imprinting. Evolution, 42, 1355–1358.CrossRefGoogle Scholar
ten Cate, C. & Vos, D. R. (1999) Sexual imprinting and evolutionary processes in birds: a reassessment. Advances in the Study of Behavior, 28, 1–31.CrossRefGoogle Scholar
Tregenza, T. & Wedell, N. (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Molecular Ecology, 9, 1013–1027.CrossRefGoogle ScholarPubMed
Trivers, R. L. (1972). Parental investment and sexual selection. In: Sexual Selection and the Descent of Man, 1871–1971, ed. Campbell, B.. Chicago, IL: Aldine, pp. 136–179.Google Scholar
Turelli, M., Barton, N. H. & Coyne, J. A. (2001) Theory and speciation. Trends in Ecology and Evolution, 16, 330–343.CrossRefGoogle ScholarPubMed
Turner, T. L., Hahn, M. W. & Nuzhdin, S. V. (2005) Genomic islands of speciation in Anopheles gambiae. PLoS Biology, 3 (9), e285.CrossRefGoogle ScholarPubMed
Vasemagi, A. & Primmer, C. R. (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Molecular Ecology, 14, 3623–3642.CrossRefGoogle ScholarPubMed
Verzijden, M. N., Lachlan, R. F. & Servedio, M. R. (2005) Female mate-choice behavior and sympatric speciation. Evolution, 59, 2097–2108.CrossRefGoogle ScholarPubMed
Veyrunes, F., Dobigny, G., Yang, F. T.et al. (2006) Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proceedings of the Royal Society B, 273, 2925–2934.CrossRefGoogle Scholar
Via, S. (1999) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution, 53, 1446–1457.CrossRefGoogle ScholarPubMed
Via, S. (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends in Ecology and Evolution, 16, 381–390.CrossRefGoogle ScholarPubMed
Wade, M. J., Patterson, H., Chang, N. W. & Johnson, N. A. (1994) Postcopulatory, prezygotic isolation in flour beetles. Heredity, 72, 163–167.CrossRefGoogle ScholarPubMed
Weary, D. M., Guilford, T. C. & Weisman, R. G. (1993) A product of discriminative learning may lead to female preferences for elaborate males. Evolution, 47, 333–336.CrossRefGoogle ScholarPubMed
Wells, M. L. M. & Henry, C. S. (1992) The role of courtship songs in reproductive isolation among populations of green lacewings of the genus Chrysoperla (Neuroptera: Chrysopidae). Evolution, 46, 31–42.CrossRefGoogle Scholar
West-Eberhard, M. J. (1983) Sexual selection, social competition, and speciation. Quarterly Review of Biology, 58, 155–183.CrossRefGoogle Scholar
White, M. J. D. (1968) Models of speciation. Science, 159, 1065–1068.CrossRefGoogle ScholarPubMed
Wigby, S. & Chapman, T. (2004) Female resistance to male harm evolves in response to manipulation of sexual conflict. Evolution, 58, 1028–1037.CrossRefGoogle ScholarPubMed
Wigby, S. & Chapman, T. (2006) No evidence that experimental manipulation of sexual conflict drives premating reproductive isolation in Drosophila melanogaster. Journal of Evolutionary Biology, 19, 1033–1039.CrossRefGoogle ScholarPubMed
Wilkinson, G. S., Kahler, H. & Baker, R. H. (1998) Evolution of female mating preferences in stalk-eyed flies. Behavioral Ecology, 9, 525–533.CrossRefGoogle Scholar
Wilson, E. O. (1992) The effects of complex social life on evolution and biodiversity. Oikos, 63, 13–18.CrossRefGoogle Scholar
Witte, K., Hirschler, U. & Curio, E. (2000) Sexual imprinting on a novel adornment influences mate preferences in the Javanese mannikin Lonchura leucogastroides. Ethology, 106, 349–363.CrossRefGoogle Scholar
Wolfner, M. F. (2002) The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity, 88, 85–93.CrossRefGoogle ScholarPubMed
Zeh, J. A. & Zeh, D. W. (1996) The evolution of polyandry, I. Intragenomic conflict and genetic incompatibility. Proceedings of the Royal Society B, 263, 1711–1717.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×