Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T01:02:22.602Z Has data issue: false hasContentIssue false

Chapter 3 - The Social Brain and How It Links Social Intelligence and Well-Being

from Part I - Approaches to Society within the Brain

Published online by Cambridge University Press:  28 September 2023

Jeanyung Chey
Affiliation:
Seoul National University
Get access

Summary

Human beings are dependent on each other in acquiring resources, securing safety, and raising offspring. Therefore, cooperation with conspecifics is essential for our survival and reproduction. Our evolutionary history has shaped strong social motivation and highly sophisticated socio-cognitive capacity that supports successful communal living. In this chapter, we review psychological and neuroscientific studies on the basic human motivation for social affiliation and social intelligence in humans. After introducing the belongingness hypothesis and the social intelligence hypothesis, we look into the functions of the social brain to understand how the human brain understands the complex social world and adjusts our behavior within it. Lastly, we briefly review the studies on aging in the social brain and discuss the link between the social brain and well-being.

Type
Chapter
Information
Society within the Brain
How Social Networks Interact with Our Brain, Behavior and Health as We Age
, pp. 69 - 104
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, A. (1928/2014). Understanding Human Nature: The Psychology of Personality. Oneworld Publications.Google Scholar
Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693716.Google Scholar
Aknin, L. B., Hamlin, J. K., & Dunn, E. W. (2012). Giving leads to happiness in young children. PLoS ONE, 7(6), e39211.Google Scholar
Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268277.Google Scholar
Ashton, B. J., Thornton, A., & Ridley, A. R. (2018). An intraspecific appraisal of the social intelligence hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170288.Google Scholar
Atzil, S., Gao, W., Fradkin, I., & Barrett, L. F. (2018). Growing a social brain. Nature Human Behaviour, 2(9), 624636.Google Scholar
Bachorowski, J. A., & Owren, M. J. (2001). Not all laughs are alike: Voiced but not unvoiced laughter readily elicits positive affect. Psychological Science, 12(3), 252257.CrossRefGoogle Scholar
Bailey, P. E., Brady, B., Ebner, N. C., & Ruffman, T. (2020). Effects of age on emotion regulation, emotional empathy, and prosocial behavior. The Journals of Gerontology: Series B, 75(4), 802810.Google ScholarPubMed
Barton, R. A., & Dunbar, R. I. M. (1997). Evolution of the social brain. In Whiten, A. & Byrne, R. W. (eds.), Machiavellian Intelligence II, pp. 240263. Cambridge University Press.CrossRefGoogle Scholar
Batson, C. D. (2011) Altruism In Humans. Oxford University Press.Google Scholar
Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497529.CrossRefGoogle ScholarPubMed
Baumgartner, T., Nash, K., Hill, C., & Knoch, D. (2015). Neuroanatomy of intergroup bias: A white matter microstructure study of individual differences. NeuroImage, 122, 345354.CrossRefGoogle Scholar
Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163175.Google Scholar
Bartels, A., & Zeki, S. (2000). The neural basis of romantic love. Neuroreport, 11(17), 38293834.CrossRefGoogle ScholarPubMed
Bartolo, P. (2019). Belong and Flourish – Drop Out and Perish, in Vella, S., Falzon, R., & Azzopardi, A. (eds.), Perspectives on Wellbeing. Brill.Google Scholar
Beadle, J. N., Sheehan, A. H., Dahlben, B., & Gutchess, A. H. (2015). Aging, empathy, and prosociality. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 70(2), 213222.Google Scholar
Behrens, T. E., Hunt, L. T., Woolrich, M. W., & Rushworth, M. F. (2008). Associative learning of social value. Nature, 456(7219), 245249.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Kringelbach, M. L. (2011). Building a neuroscience of pleasure and well-being. Psychology of Well-Being: Theory, Research and Practice, 1(1), 126.Google Scholar
Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic amygdala–cortical functional connectivity predicts social network size in humans. Journal of Neuroscience, 32(42), 1472914741.CrossRefGoogle ScholarPubMed
Blair, R. J. R. (2005). Responding to the emotions of others: Dissociating forms of empathy through the study of typical and psychiatric populations. Consciousness and Cognition, 14(4), 698718.CrossRefGoogle Scholar
Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267277.CrossRefGoogle ScholarPubMed
Bowlby, J. (1969). Attachment and Loss, vol. I: Loss. Basic Books.Google Scholar
Byrne, R., & Whiten, A. (eds.) (1988). Machiavellian Intelligence. Oxford University Press.Google Scholar
Byrne, R. W., & Corp, N. (2004). Neocortex size predicts deception rate in primates. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1549), 16931699.Google Scholar
Cacioppo, S., Frum, C., Asp, E., Weiss, R. M., Lewis, J. W., & Cacioppo, J. T. (2013). A quantitative meta-analysis of functional imaging studies of social rejection. Scientific Reports, 3(1), 13.Google Scholar
Call, J., & Tomasello, M. (2011). Does the chimpanzee have a theory of mind? 30 years later. Human Nature and Self Design, 83–96.Google Scholar
Campbell-Sills, L., & Barlow, D. H. (2007). Incorporating emotion regulation into conceptualizations and treatments of anxiety and mood disorders. Handbook of Emotion Regulation, 2, 542559.Google Scholar
Caputi, M., Lecce, S., Pagnin, A., & Banerjee, R. (2012). Longitudinal effects of theory of mind on later peer relations: The role of prosocial behavior. Developmental Psychology, 48(1), 257270.Google Scholar
Carstensen, L. L. (1992). Social and emotional patterns in adulthood: Support for socioemotional selectivity theory. Psychology and Aging, 7(3), 331338.Google Scholar
Carter, C. S. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23(8), 779818.Google Scholar
Carter, R. M., Bowling, D. L., Reeck, C., & Huettel, S. A. (2012). A distinct role of the temporal-parietal junction in predicting socially guided decisions. Science, 337(6090), 109111.Google Scholar
Carter, R. M., & Huettel, S. A. (2013). A nexus model of the temporal–parietal junction. Trends in Cognitive Sciences, 17(7), 328336.Google Scholar
Castelli, I., Baglio, F., Blasi, V., Alberoni, M., Falini, A., Liverta-Sempio, O., Nemni, R., & Marchetti, A. (2010). Effects of aging on mindreading ability through the eyes: An fMRI study. Neuropsychologia, 48(9), 25862594.Google Scholar
Charlton, R. A., Barrick, T. R., Markus, H. S., & Morris, R. G. (2009). Theory of mind associations with other cognitive functions and brain imaging in normal aging. Psychology and Aging, 24(2), 338348.Google Scholar
Chen, Y. C., Chen, C. C., Decety, J., & Cheng, Y. (2014). Aging is associated with changes in the neural circuits underlying empathy. Neurobiology of Aging, 35(4), 827836.Google Scholar
Cho, I., & Cohen, A. S. (2019). Explaining age-related decline in theory of mind: Evidence for intact competence but compromised executive function. PLoS ONE, 14(9), e0222890.Google Scholar
Cho, I., Song, H. J., Kim, H., & Sul, S. (2020). Older adults consider others’ intentions less but allocentric outcomes more than young adults during an ultimatum game. Psychology and Aging, 35(7), 974980.CrossRefGoogle ScholarPubMed
Choi, D., Minote, N., Sekiya, T., & Watanuki, S. (2016). Relationships between trait empathy and psychological well-being in Japanese university students. Psychology, 7(09), 12401247.Google Scholar
Cohen, S. (2004). Social relationships and health. American Psychologist, 59(8), 676684.Google Scholar
Cohen, S., & Wills, T. A. (1985). Stress, social support, and the buffering hypothesis. Psychological Bulletin, 98(2), 310357.CrossRefGoogle ScholarPubMed
Corradi-Dell’Acqua, C., Ronchi, R., Thomasson, M., Bernati, T., Saj, A., & Vuilleumier, P. (2020). Deficits in cognitive and affective theory of mind relate to dissociated lesion patterns in prefrontal and insular cortex. Cortex, 128, 218233.Google Scholar
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201215.Google Scholar
Coricelli, G., & Nagel, R. (2009). Neural correlates of depth of strategic reasoning in medial prefrontal cortex. Proceedings of the National Academy of Sciences, 106(23), 91639168.Google Scholar
Courtney, A. L., & Meyer, M. L. (2020). Self-other representation in the social brain reflects social connection. Journal of Neuroscience, 40(29), 56165627.CrossRefGoogle ScholarPubMed
Dambrun, M., & Ricard, M. (2011). Self-centeredness and selflessness: A theory of self-based psychological functioning and its consequences for happiness. Review of General Psychology, 15(2), 138157.Google Scholar
Davey, C. G., Allen, N. B., Harrison, B. J., Dwyer, D. B., & Yücel, M. (2010). Being liked activates primary reward and midline self‐related brain regions. Human Brain Mapping, 31(4), 660668.Google Scholar
Davis, M. (1980). A multidimensional approach to individual differences in empathy. Catalog of Selected Documents in Psychology, 10, 117.Google Scholar
De Waal, F. B., & Tyack, P. L. (eds.) (2009). Animal Social Complexity: Intelligence, Culture, and Individualized Societies. Harvard University Press.Google Scholar
DeWall, C. N., MacDonald, G., Webster, G. D., Masten, C. L., Baumeister, R. F., Powell, C., Combs, D., Schurtz, D. R., Stillman, T. F., Tice, D. M., & Eisenberger, N. I. (2010). Acetaminophen reduces social pain: Behavioral and neural evidence. Psychological Science, 21(7), 931937.Google Scholar
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A meta-analysis of functional neuroimaging studies of self-and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. Journal of Cognitive Neuroscience, 24(8), 17421752.CrossRefGoogle ScholarPubMed
Diener, E., & Seligman, M. E. (2002). Very happy people. Psychological Science, 13(1), 8184.Google Scholar
Dunbar, R. I. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews, 6(5), 178190.3.0.CO;2-8>CrossRefGoogle Scholar
Dunbar, R. I., & Shultz, S. (2007). Evolution in the social brain. Science, 317(5843), 13441347.Google Scholar
Dunn, E. W., Aknin, L. B., & Norton, M. I. (2008). Spending money on others promotes happiness. Science, 319(5870), 16871688.Google Scholar
Dunn, E. W., Aknin, L. B., & Norton, M. I. (2014). Prosocial spending and happiness: Using money to benefit others pays off. Current Directions in Psychological Science, 23(1), 4147.Google Scholar
Eisenberger, N. I., Inagaki, T. K., Muscatell, K. A., Byrne Haltom, K. E., & Leary, M. R. (2011). The neural sociometer: Brain mechanisms underlying state self-esteem. Journal of Cognitive Neuroscience, 23(11), 34483455.Google Scholar
Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290292.Google Scholar
Engen, H. G., & Singer, T. (2013). Empathy circuits. Current Opinion in Neurobiology, 23(2), 275282.Google Scholar
English, T., & Carstensen, L. L. (2014). Selective narrowing of social networks across adulthood is associated with improved emotional experience in daily life. International Journal of Behavioral Development, 38(2), 195202.CrossRefGoogle ScholarPubMed
Fallon, N., Roberts, C., & Stancak, A. (2020). Shared and distinct functional networks for empathy and pain processing: A systematic review and meta-analysis of fMRI studies. Social Cognitive and Affective Neuroscience, 15(7), 709723.Google Scholar
Fan, Y., Duncan, N. W., de Greck, M., & Northoff, G. (2011). Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 903911.CrossRefGoogle Scholar
Fareri, D. S., & Delgado, M. R. (2014). Social rewards and social networks in the human brain. The Neuroscientist, 20(4), 387402.Google Scholar
Ferrari, P. F., Gallese, V., Rizzolatti, G., & Fogassi, L. (2003). Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience, 17(8), 17031714.Google Scholar
Fiddick, L., Cosmides, L., & Tooby, J. (2000). No interpretation without representation: The role of domain-specific representations and inferences in the Wason selection task. Cognition, 77(1), 179.Google Scholar
Fink, E., Begeer, S., Peterson, C. C., Slaughter, V., & de Rosnay, M. (2015). Friendlessness and theory of mind: A prospective longitudinal study. British Journal of Developmental Psychology, 33(1), 117.Google Scholar
Freund, A. M., & Blanchard-Fields, F. (2014). Age-related differences in altruism across adulthood: Making personal financial gain versus contributing to the public good. Developmental Psychology, 50(4), 11251136.Google Scholar
Frith, C. D. (2007). The social brain? Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 671678.Google Scholar
Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531534.Google Scholar
Fung, H. H., Carstensen, L. L., & Lang, F. R. (2001). Age-related patterns in social networks among European Americans and African Americans: Implications for socioemotional selectivity across the life span. The International Journal of Aging and Human Development, 52(3), 185206.CrossRefGoogle ScholarPubMed
German, T. P., & Hehman, J. A. (2006). Representational and executive selection resources in “theory of mind”: Evidence from compromised belief-desire reasoning in old age. Cognition, 101(1), 129152.Google Scholar
Gowlett, J., Gamble, C., & Dunbar, R. (2012). Human evolution and the archaeology of the social brain. Current Anthropology, 53(6), 693722.Google Scholar
Harbaugh, W. T., Mayr, U., & Burghart, D. R. (2007). Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science, 316(5831), 16221625.Google Scholar
Harvey, P. H., Martin, R. D. & Clutton-Brock, T. H. (1987). Life histories in comparative perspective. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., & Struhsaker, T. T. (eds.), Primate Societies, pp. 181196. University of Chicago Press.Google Scholar
Haxby, J. V., & Gobbini, M. I. (2011). Distributed neural systems for face perception. In Calder, A. J., Rhodes, G., Johnson, M. H., & Haxby, J. V. (eds.), Handbook of Face Perception, pp. 93110. Oxford University Press.Google Scholar
Healey, M. L., & Grossman, M. (2018). Cognitive and affective perspective-taking: Evidence for shared and dissociable anatomical substrates. Frontiers in Neurology, 9, 491.Google Scholar
Hein, G., Silani, G., Preuschoff, K., Batson, C. D., & Singer, T. (2010). Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron, 68(1), 149160.Google Scholar
Hein, G., & Singer, T. (2008). I feel how you feel but not always: The empathic brain and its modulation. Current Opinion in Neurobiology, 18, 153158.Google Scholar
Heller, A. S., van Reekum, C. M., Schaefer, S. M., Lapate, R. C., Radler, B. T., Ryff, C. D., & Davidson, R. J. (2013). Sustained striatal activity predicts eudaimonic well-being and cortisol output. Psychological Science, 24(11), 21912200.Google Scholar
Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 13601366.Google Scholar
Herrmann, E., Hernández-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science, 21(1), 102110.Google Scholar
Heyes, C., & Catmur, C. (2021). What Happened to Mirror Neurons? Perspectives on Psychological Science, 17(1), 153168. https://doi.org/10.1177/1745691621990638Google Scholar
Hill, R. A., & Dunbar, R. I. (2003). Social network size in humans. Human Nature, 14(1), 5372.Google Scholar
Holekamp, K. E. (2007). Questioning the social intelligence hypothesis. Trends in Cognitive Sciences, 11(2), 6569.Google Scholar
House, J. S., Landis, K. R., & Umberson, D. (1988). Social relationships and health. Science, 241(4865), 540545.CrossRefGoogle ScholarPubMed
Humphrey, N. K. (1976) The social function of intellect. In Bateson, P. & Hinde, R. (eds.), Growing Points in Ethology, pp. 303317. Cambridge University Press.Google Scholar
Hynes, C. A., Baird, A. A., & Grafton, S. T. (2006). Differential role of the orbital frontal lobe in emotional versus cognitive perspective-taking. Neuropsychologia, 44(3), 374383.Google Scholar
Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942951.Google Scholar
Insel, T. R., & Fernald, R. D. (2004). How the brain processes social information: searching for the social brain. Annual Review of Neuroscience, 27, 697722.Google Scholar
Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284294.CrossRefGoogle ScholarPubMed
Izuma, K., Saito, D. N., & Sadato, N. (2010). Processing of the incentive for social approval in the ventral striatum during charitable donation. Journal of Cognitive Neuroscience, 22(4), 621631.Google Scholar
Jackson, P., Meltzoff, A., & Decety, J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage, 24, 771779.Google Scholar
Johnson-Ulrich, L. (2017). The Social Intelligence Hypothesis. In Shackelford, T. & Weekes-Shackelford, V. (eds.), Encyclopedia of Evolutionary Psychological Science, pp. 1–7.Google Scholar
Kamil, A. C. (2004). Sociality and the evolution of intelligence. Trends in Cognitive Sciences, 8(5), 195197.Google Scholar
Kang, P., Lee, J., Sul, S., & Kim, H. (2013). Dorsomedial prefrontal cortex activity predicts the accuracy in estimating others’ preferences. Frontiers in Human Neuroscience, 7, 686.Google Scholar
Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 21092128.CrossRefGoogle ScholarPubMed
Kim, S. A., Hamann, S., & Kim, S. H. (2021). Neurocognitive mechanisms underlying improvement of prosocial responses by a novel implicit compassion promotion task. NeuroImage, 240, 118333.Google Scholar
Kingsbury, L., & Hong, W. (2020). A multi-brain framework for social interaction. Trends in Neurosciences, 43(9), 651666.Google Scholar
Kliemann, D., & Adolphs, R. (2018). The social neuroscience of mentalizing: Challenges and recommendations. Current Opinion in Psychology, 24, 16.Google Scholar
Klucharev, V., Hytönen, K., Rijpkema, M., Smidts, A., & Fernández, G. (2009). Reinforcement learning signal predicts social conformity. Neuron, 61(1), 140151.CrossRefGoogle ScholarPubMed
Kross, E., Berman, M. G., Mischel, W., Smith, E. E., & Wager, T. D. (2011). Social rejection shares somatosensory representations with physical pain. Proceedings of the National Academy of Sciences, 108(15), 62706275.Google Scholar
Kross, E., Egner, T., Ochsner, K., Hirsch, J., & Downey, G. (2007). Neural dynamics of rejection sensitivity. Journal of Cognitive Neuroscience, 19(6), 945956.Google Scholar
Kudo, H., & Dunbar, R. I. (2001). Neocortex size and social network size in primates. Animal Behaviour, 62(4), 711722.Google Scholar
Kudo, H., Lowen, S., & Dunbar, R. (1999). Neocortex size as a constraint on grooming clique size in primates. Behaviour.Google Scholar
Kwak, S., Joo, W. T., Youm, Y., & Chey, J. (2018). Social brain volume is associated with in-degree social network size among older adults. Proceedings of the Royal Society B: Biological Sciences, 285(1871), 20172708.Google Scholar
Lamm, C., Batson, C. D., & Decety, J. (2007). The neural substrate of human empathy: Effects of perspective-taking and cognitive appraisal. Journal of Cognitive Neuroscience, 19(1), 4258.CrossRefGoogle ScholarPubMed
Lamm, C., Rütgen, M., & Wagner, I. C. (2019). Imaging empathy and prosocial emotions. Neuroscience Letters, 693, 4953.Google Scholar
Lansford, J. E., Sherman, A. M., & Antonucci, T. C. (1998). Satisfaction with social networks: An examination of socioemotional selectivity theory across cohorts. Psychology and Aging, 13(4), 544552.CrossRefGoogle ScholarPubMed
Leary, M. R. (2003). Commentary on self-esteem as an interpersonal monitor: The sociometer hypothesis (1995). Psychological Inquiry, 14(3–4), 270274.Google Scholar
Lecce, S., Ceccato, I., Bianco, F., Rosi, A., Bottiroli, S., & Cavallini, E. (2017). Theory of Mind and social relationships in older adults: The role of social motivation. Aging & Mental Health, 21(3), 253258.Google Scholar
Lewis, K. P. (2000). A comparative study of primate play behaviour: Implications for the study of cognition. Folia Primatologica, 71(6), 417421.Google Scholar
Lewis, P. A., Rezaie, R., Brown, R., Roberts, N., & Dunbar, R. I. (2011). Ventromedial prefrontal volume predicts understanding of others and social network size. Neuroimage, 57(4), 16241629.Google Scholar
Lieberman, M. D., Straccia, M. A., Meyer, M. L., Du, M., & Tan, K. M. (2019). Social, self, (situational), and affective processes in medial prefrontal cortex (MPFC): Causal, multivariate, and reverse inference evidence. Neuroscience & Biobehavioral Reviews, 99, 311328.Google Scholar
Lockwood, P. L., Apps, M. A., Valton, V., Viding, E., & Roiser, J. P. (2016). Neurocomputational mechanisms of prosocial learning and links to empathy. Proceedings of the National Academy of Sciences, 113(35), 97639768.Google Scholar
Lucas, R. E., & Diener, E. (2001). Understanding extraverts’ enjoyment of social situations: The importance of pleasantness. Journal of Personality and Social Psychology, 81(2), 343356.Google Scholar
Luo, Y., Qi, S., Chen, X., You, X., Huang, X., & Yang, Z. (2017). Pleasure attainment or self-realization: The balance between two forms of well-beings are encoded in default mode network. Social Cognitive and Affective Neuroscience, 12(10), 16781686.Google Scholar
Luyten, P., Campbell, C., Allison, E., & Fonagy, P. (2020). The mentalizing approach to psychopathology: State of the art and future directions. Annual Review of Clinical Psychology, 16, 297325.Google Scholar
Maslow, A. H. (1968). Toward a Psychology of Being, 2nd ed. D. Van Nostrand.Google Scholar
Masten, C. L., Morelli, S. A., & Eisenberger, N. I. (2011). An fMRI investigation of empathy for “social pain” and subsequent prosocial behavior. Neuroimage, 55(1), 381388.Google Scholar
Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10), 496502.Google Scholar
Mende-Siedlecki, P., Said, C. P., & Todorov, A. (2013). The social evaluation of faces: A meta-analysis of functional neuroimaging studies. Social Cognitive and Affective Neuroscience, 8(3), 285299.Google Scholar
Mennin, D. S., Holaway, R. M., Fresco, D. M., Moore, M. T., & Heimberg, R. G. (2007). Delineating components of emotion and its dysregulation in anxiety and mood psychopathology. Behavior Therapy, 38(3), 284302.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Mervis, C. B., & Berman, K. F. (2006). Neural mechanisms in Williams syndrome: A unique window to genetic influences on cognition and behaviour. Nature Reviews Neuroscience, 7(5), 380393.Google Scholar
Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50(4), 655663.Google Scholar
Molapour, T., Hagan, C. C., Silston, B., Wu, H., Ramstead, M., Friston, K., & Mobbs, D. (2021). Seven computations of the social brain. Social Cognitive and Affective Neuroscience, 16(8), 745760.Google Scholar
Moll, H. (2018). The transformative cultural intelligence hypothesis: Evidence from young children’s problem-solving. Review of Philosophy and Psychology, 9(1), 161175.Google Scholar
Moran, J. M., Jolly, E., & Mitchell, J. P. (2012). Social-cognitive deficits in normal aging. Journal of Neuroscience, 32(16), 55535561.Google Scholar
Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. NeuroImage, 112, 244253.Google Scholar
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., & Dolan, R. J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812815.Google Scholar
Moynihan, D. P., DeLeire, T., & Enami, K. (2015). A life worth living: Evidence on the relationship between prosocial values and happiness. The American Review of Public Administration, 45(3), 311326.Google Scholar
Nashiro, K., Sakaki, M., & Mather, M. (2012). Age differences in brain activity during emotion processing: Reflections of age-related decline or increased emotion regulation. Gerontology, 58(2), 156163.Google Scholar
Noonan, M. P., Mars, R. B., Sallet, J., Dunbar, R. I. M., & Fellows, L. K. (2018). The structural and functional brain networks that support human social networks. Behavioural Brain Research, 355, 1223.CrossRefGoogle ScholarPubMed
Novembre, G., Zanon, M., & Silani, G. (2015). Empathy for social exclusion involves the sensory-discriminative component of pain: A within-subject fMRI study. Social Cognitive and Affective Neuroscience, 10(2), 153164.Google Scholar
Ochsner, K. N., Knierim, K., Ludlow, D. H., Hanelin, J., Ramachandran, T., Glover, G., & Mackey, S. C. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16(10), 17461772.Google Scholar
Onoda, K., Okamoto, Y., Nakashima, K. I., Nittono, H., Yoshimura, S., Yamawaki, S., Yamaguchi, S., & Ura, M. (2010). Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism. Social Cognitive and Affective Neuroscience, 5(4), 385391.Google Scholar
Park, S. A., Sestito, M., Boorman, E. D., & Dreher, J. C. (2019). Neural computations underlying strategic social decision-making in groups. Nature Communications, 10(1), 112.Google Scholar
Park, S. Q., Kahnt, T., Dogan, A., Strang, S., Fehr, E., & Tobler, P. N. (2017). A neural link between generosity and happiness. Nature Communications, 8(1), 110.Google Scholar
Parkinson, C., & Wheatley, T. (2015). The repurposed social brain. Trends in Cognitive Sciences, 19(3), 133141.Google Scholar
Perini, I., Gustafsson, P. A., Hamilton, J. P., Kämpe, R., Zetterqvist, M., & Heilig, M. (2018). The salience of self, not social pain, is encoded by dorsal anterior cingulate and insula. Scientific Reports, 8(1), 19.Google Scholar
Perry, A., & Shamay-Tsoory, S. (2013). Understanding emotional and cognitive empathy: A neuropsychological perspective. In Baron-Cohen, S., Tager-Flusberg, H., & Lombardo, M. V. (eds.), Understanding Other Minds: Perspectives from Developmental Social Neuroscience, pp. 178194. Oxford University Press.Google Scholar
Phillips, L. H., Bull, R., Allen, R., Insch, P., Burr, K., & Ogg, W. (2011). Lifespan aging and belief reasoning: Influences of executive function and social cue decoding. Cognition, 120(2), 236247.Google Scholar
Pitcher, D., & Ungerleider, L. G. (2021). Evidence for a third visual pathway specialized for social perception. Trends in Cognitive Sciences, 25(2), 100110.Google Scholar
Post, S. G. (2005). Altruism, happiness, and health: It’s good to be good. International Journal of Behavioral Medicine, 12(2), 6677.Google Scholar
Powell, J., Lewis, P. A., Roberts, N., Garcia-Finana, M., & Dunbar, R. I. (2012). Orbital prefrontal cortex volume predicts social network size: An imaging study of individual differences in humans. Proceedings of the Royal Society B: Biological Sciences, 279(1736), 21572162.Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences, 99(7), 44364441.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141.Google Scholar
Roberts, S. G., Dunbar, R. I., Pollet, T. V., & Kuppens, T. (2009). Exploring variation in active network size: Constraints and ego characteristics. Social Networks, 31(2), 138146.CrossRefGoogle Scholar
Rosati, A. G. (2017). Foraging cognition: Reviving the ecological intelligence hypothesis. Trends in Cognitive Sciences, 21(9), 691702.Google Scholar
Sawaguchi, T., & Kudo, H. (1990). Neocortical development and social structure in primates. Primates, 31(2), 283289.Google Scholar
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind”. Neuroimage, 19(4), 18351842.Google Scholar
Saxe, R., & Powell, L. J. (2006). It’s the thought that counts: Specific brain regions for one component of theory of mind. Psychological Science, 17(8), 692699.Google Scholar
Schmidt, S. N., Fenske, S. C., Kirsch, P., & Mier, D. (2019). Nucleus accumbens activation is linked to salience in social decision making. European Archives of Psychiatry and Clinical Neuroscience, 269(6), 701712.Google Scholar
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 934.Google Scholar
Seyfarth, R. M., & Cheney, D. L. (2015). Social cognition. Animal Behaviour, 103, 191202.Google Scholar
Shanafelt, T. D., West, C., Zhao, X., Novotny, P., Kolars, J., Habermann, T., & Sloan, J. (2005). Relationship between increased personal well-being and enhanced empathy among internal medicine residents. Journal of General Internal Medicine, 20(7), 559564.Google Scholar
Singer, T., Seymour, B., O’doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162.Google Scholar
Singer, T., Seymour, B., O’Doherty, J. P., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439(7075), 466469.Google Scholar
Slaughter, V., Imuta, K., Peterson, C. C., & Henry, J. D. (2015). Meta‐analysis of theory of mind and peer popularity in the preschool and early school years. Child Development, 86(4), 11591174.Google Scholar
Somerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9(8), 10071008.Google Scholar
Sparrow, E. P., Swirsky, L. T., Kudus, F., & Spaniol, J. (2021). Aging and altruism: A meta-analysis. Psychology and Aging, 36(1), 4956.Google Scholar
Sul, S., Kim, J., & Choi, I. (2013). Subjective well-being and hedonic editing: How happy people maximize joint outcomes of loss and gain. Journal of Happiness Studies, 14(4), 14091430.Google Scholar
Sul, S., Kim, J., & Choi, I. (2016). Subjective well-being, social buffering and hedonic editing in the quotidian. Cognition and Emotion, 30(6), 10631080.Google Scholar
Sul, S., Tobler, P. N., Hein, G., Leiberg, S., Jung, D., Fehr, E., & Kim, H. (2015). Spatial gradient in value representation along the medial prefrontal cortex reflects individual differences in prosociality. Proceedings of the National Academy of Sciences, 112(25), 78517856.Google Scholar
Sullivan, S., & Ruffman, T. (2004). Social understanding: How does it fare with advancing years? British Journal of Psychology, 95(1), 118.Google Scholar
Sutcliffe, A., Dunbar, R., Binder, J., & Arrow, H. (2012). Relationships and the social brain: Integrating psychological and evolutionary perspectives. British Journal of Psychology, 103(2), 149168.Google Scholar
Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sassa, Y., Sekiguchi, A., Kotozaki, Y., Nakagawa, S., Nagase, T., Miyauchi, C. M., & Kawashima, R. (2014). Anatomical correlates of quality of life: Evidence from voxel‐based morphometry. Human Brain Mapping, 35(5), 18341846.Google Scholar
Thornton, M. A., Weaverdyck, M. E., & Tamir, D. I. (2019). The social brain automatically predicts others’ future mental states. Journal of Neuroscience, 39(1), 140148.Google Scholar
Todorov, A., & Engell, A. D. (2008). The role of the amygdala in implicit evaluation of emotionally neutral faces. Social Cognitive and Affective Neuroscience, 3(4), 303312.Google Scholar
Tomasello, M., & Moll, H. (2013). Why don’t apes understand false beliefs?. In Banaji, M. R. & Gelman, S. A. (eds.), Navigating the Social World: What Infants, Children, and Other Species Can Teach Us, pp. 8188. Oxford University Press.Google Scholar
Tusche, A., Böckler, A., Kanske, P., Trautwein, F. M., & Singer, T. (2016). Decoding the charitable brain: Empathy, perspective taking, and attention shifts differentially predict altruistic giving. Journal of Neuroscience, 36(17), 47194732.Google Scholar
Van Overwalle, F. (2011). A dissociation between social mentalizing and general reasoning. Neuroimage, 54(2), 15891599.Google Scholar
van Reekum, C. M., Urry, H. L., Johnstone, T., Thurow, M. E., Frye, C. J., Jackson, C. A., Schaefer, H. S., Alexander, A. L., & Davidson, R. J. (2007). Individual differences in amygdala and ventromedial prefrontal cortex activity are associated with evaluation speed and psychological well-being. Journal of Cognitive Neuroscience, 19(2), 237248.Google Scholar
Vinayak, S., & Judge, J. (2018). Resilience and empathy as predictors of psychological wellbeing among adolescents. International Journal of Health Sciences and Research, 8(4), 192200.Google Scholar
Von Der Heide, R., Vyas, G., & Olson, I. R. (2014). The social network-network: Size is predicted by brain structure and function in the amygdala and paralimbic regions. Social Cognitive and Affective Neuroscience, 9(12), 19621972.Google Scholar
Wang, Y., Metoki, A., Xia, Y., Zang, Y., He, Y., & Olson, I. R. (2021). A large-scale structural and functional connectome of social mentalizing. NeuroImage, 236, 118115.Google Scholar
Wei, M., Liao, K. Y. H., Ku, T. Y., & Shaffer, P. A. (2011). Attachment, self‐compassion, empathy, and subjective well‐being among college students and community adults. Journal of Personality, 79(1), 191221.Google Scholar
Weinstein, N., & Ryan, R. M. (2010). When helping helps: Autonomous motivation for prosocial behavior and its influence on well-being for the helper and recipient. Journal of Personality and Social Psychology, 98(2), 222244.Google Scholar
Wheeler, J. A., Gorey, K. M., & Greenblatt, B. (1998). The beneficial effects of volunteering for older volunteers and the people they serve: A meta-analysis. The International Journal of Aging and Human Development, 47(1), 6979.Google Scholar
Whiten, A., & Byrne, R. W. (1988). The Machiavellian intelligence hypotheses: Editorial. In Byrne, R. W. & Whiten, A. (eds.), Machiavellian intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans, pp. 19. Clarendon Press/Oxford University Press.Google Scholar
Woo, C. W., Koban, L., Kross, E., Lindquist, M. A., Banich, M. T., Ruzic, L., Andrews-Hanna, J. R., & Wager, T. D. (2014). Separate neural representations for physical pain and social rejection. Nature Communications, 5(1), 112.Google Scholar
Wrzus, C., Hänel, M., Wagner, J., & Neyer, F. J. (2013). Social network changes and life events across the life span: A meta-analysis. Psychological Bulletin, 139(1), 5380.Google Scholar
Wu, H., Luo, Y., & Feng, C. (2016). Neural signatures of social conformity: A coordinate-based activation likelihood estimation meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 71, 101111.Google Scholar
Xie, H., Karipidis, I. I., Howell, A., Schreier, M., Sheau, K. E., Manchanda, M. K., Ayub, R., Glover, G. H., Jung, M., Reiss, A. L., & Saggar, M. (2020). Finding the neural correlates of collaboration using a three-person fMRI hyperscanning paradigm. Proceedings of the National Academy of Sciences, 117(37), 2306623072.Google Scholar
Younger, J., Aron, A., Parke, S., Chatterjee, N., & Mackey, S. (2010). Viewing pictures of a romantic partner reduces experimental pain: Involvement of neural reward systems. PLoS ONE, 5(10), e13309.Google Scholar
Zink, C. F., Tong, Y., Chen, Q., Bassett, D. S., Stein, J. L., & Meyer-Lindenberg, A. (2008). Know your place: Neural processing of social hierarchy in humans. Neuron, 58(2), 273283.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×