Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T14:59:12.854Z Has data issue: false hasContentIssue false

5 - Communication

Published online by Cambridge University Press:  05 June 2012

Gabriele Uhl
Affiliation:
University of Greifswald, Germany
Damian O. Elias
Affiliation:
University of California, USA
Marie Elisabeth Herberstein
Affiliation:
Macquarie University, Sydney
Get access

Summary

A spider's life is guided by sensory information completely alien to human observers unless specialised equipment is applied. Even in the case of spiders guided by vision, a sensory mode that humans can boast great acuity in, a large body of evidence suggests that spiders are most sensitive to ultraviolet light, light completely imperceptible to humans. The spider's world is thus unknown and only in the last two decades have researchers begun to make strides into understanding these fascinating creatures. Communication research has been a critical piece of the puzzle in our embryonic understanding of spiders. Although spiders generally live a solitary life, it has long been accepted that communication plays an important role throughout their lifetime. Spiders are now the subjects of intensive scientific research as it becomes more and more obvious that their communication systems are unique, highly complex, plastic and versatile.

Introduction

Generally, communication takes place when a signal is sent from one individual to another that alters the pattern of behaviour or the physiology in another organism (Wilson, 1975). Three processes are required for communication: the production of a signal or cue by a sender, its propagation through the environment via a transmission channel, and appropriate receptor sites to detect the signal by the receiver. The transmission channels used by spiders are chemical, tactile, acoustic and visual channels (Weygoldt, 1977, Witt and Rovner, 1982).

Type
Chapter
Information
Spider Behaviour
Flexibility and Versatility
, pp. 127 - 189
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnarsson, I. (2004). Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zoological Journal of the Linnean Society, 141, 447–626.CrossRefGoogle Scholar
Agnarsson, I. (2006). Asymmetric female genitalia and other remarkable morphology in a new genus of cobweb spiders (Theridiidae, Araneae) from Madagascar. Biological Journal of the Linnean Society, 87, 211–232.CrossRefGoogle Scholar
Ahtiainen, J. J., Alatalo, R. V., Kortet, R. and Rantala, M. J. (2005). A trade-off between sexual signalling and immune function in a natural population of the drumming wolf spider Hygrolycosa rubrofasciata. Journal of Evolutionary Biology, 18, 985–991.CrossRefGoogle Scholar
Ahtiainen, J. J., Alatalo, R. V., Kortet, R. and Rantala, M. J. (2006). Immune function, dominance and mating success in drumming male wolf spiders Hygrolycosa rubrofasciata. Behavioral Ecology and Sociobiology, 60, 826–832.CrossRefGoogle Scholar
Ahtiainen, J. J., Alatalo, R. V., Mappes, J. and Vertainen, L. (2004). Decreased sexual signalling reveals reduced viability in small populations of the drumming wolf spider Hygrolycosa rubrofasciata. Proceedings of the Royal Society of London, B, 271, 1839–1845.CrossRefGoogle ScholarPubMed
Aisenberg, A. (2009). Male performance and body size affect female re-mating occurrence in the orb-web spider Leucauge mariana (Araneae, Tetragnathidae). Ethology, 115, 1127–1136.CrossRefGoogle Scholar
Aisenberg, A., Baruffaldi, L. and González, M. (2010). Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps. Naturwissenschaften, 97, 63–70.CrossRefGoogle ScholarPubMed
Aisenberg, A., Estramil, N., González, M., Toscano-Gadea, C. A. and Costa, F. G. (2008). Silk release by copulating Schizocosa malitiosa males (Araneae, Lycosidae): a bridal veil?Journal of Arachnology, 36, 204–206.CrossRefGoogle Scholar
Alatalo, R. V., Kotiaho, J., Mappes, J. and Parri, S. (1998). Mate choice for offspring performance: major benefits or minor costs?Proceedings of the Royal Society of London, B, 265, 2297–2301.CrossRefGoogle Scholar
Albo, M. J., Viera, C. and Costa, F. G. (2007). Pseudocopulation and male-male conflict elicited by subadult females of the subsocial spider Anelosimus cf. studiosus. (Theridiidae). Behaviour, 144, 1217–1234.CrossRefGoogle Scholar
Allan, R. A. and Elgar, M. A. (2001). Exploitation of the green tree ant, Oecophylla smaragdina, by the salticid spider Cosmophasis bitaeniata. Australian Journal of Zoology, 49, 129–137.CrossRefGoogle Scholar
Allan, R. A., Capon, R. J., Brown, W. V. and Elgar, M. A. (2002). Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. Journal of Chemical Ecology, 28, 835–848.CrossRefGoogle ScholarPubMed
Allan, R. A., Elgar, M. A. and Capon, R. J. (1996). Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proceedings of the Royal Society of London, B, 263, 69–73.CrossRefGoogle Scholar
Almeida-Silva, L., Brescovit, A. and Griswold, C. E. (2009). On the poorly known genus Anuvinda Lehtinen, 1967 (Araneae, Titanoecidae). Zootaxa, 2266, 61–68.Google Scholar
Anava, A. and Lubin, Y. (1993). Presence of gender cues in the web of a widow spider, Latrodectus revivensis, and a description of courtship behaviour. Bulletin of the British Arachnological Society, 9, 119–122.Google Scholar
Andersson, M. (1994). Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Andrade, M. C. B. (1996). Sexual selection for male sacrifice in the Australian redback spider. Science, 271, 70–72.CrossRefGoogle Scholar
Andrade, M. C. B. (2003). Risky mate search and male self-sacrifice in redback spiders. Behavioral Ecology, 14, 531–538.CrossRefGoogle Scholar
Andrade, M. C. B. and Banta, E. M. (2002). Value of male remating and functional sterility in redback spiders. Animal Behaviour, 63, 857–870.CrossRefGoogle Scholar
Andrade, M. C. B. and Kasumovic, M. M. (2005). Terminal investment strategies and male mate choice: extreme tests of Bateman. Integrative and Comparative Biology, 45, 838–847.CrossRefGoogle ScholarPubMed
Andrews, K., Reed, S. M. and Masta, S. E. (2007). Spiders fluoresce variably across many taxa. Biology Letters, 3, 265–267.CrossRefGoogle ScholarPubMed
Arnedo, M. A., Hormiga, G. and Scharff, N. (2009). Higher-level phylognetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics, 25, 1–32.CrossRefGoogle Scholar
Arnqvist, G. (1992). Courtship behavior and sexual cannibalism in the semi-aquatic fishing spider, Dolomedes fimbriatus (Clerck) (Araneae: Pisauridae). Journal of Arachnology, 20, 222–226.Google Scholar
Ayyagari, L. R. and Tietjen, W. J. (1986). Preliminary isolation of male-inhibitory pheromone of the spider Schizocosa ocreata (Araneae, Lycosidae). Journal of Chemical Ecology, 13, 237–244.CrossRefGoogle Scholar
Barth, F. G. (1967). Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Lustschallreizes. Zeitschrift für vergleichende Physiologie, 55, 407–499.CrossRefGoogle Scholar
Barth, F. G. (1982). Spiders and vibratory signals: sensory reception and behavioral significance. In Spider Communication: Mechanism and Ecological Significance (ed. Witt, P. N. and Rovner, J. S.). Princeton, NJ: Princeton University Press, pp. 67–122.Google Scholar
Barth, F. G. (1993). Sensory guidance in spider pre-copulatory behavior. Comparative Biochemistry and Physiology, A, 104, 717–733.CrossRefGoogle Scholar
Barth, F. G. (2002). A Spider's World: Senses and Behavior. Berlin: Springer Verlag.CrossRefGoogle Scholar
Barth, F. G. and Geethabali, (1982). Spider vibration receptors: threshold curves of individual slits in the metatarsal lyriform organ. Journal of Comparative Physiology, 148, 175–185.CrossRefGoogle Scholar
Barth, F. G. and Schmitt, A. (1991). Species recognition and species isolation in wandering spiders (Cupiennius spp.; Ctenidae). Behavioral Ecology and Sociobiology, 29, 333–339.CrossRefGoogle Scholar
Barth, F. G., Bleckmann, H., Bohnenberger, J. and Seyfarth, E.-A. (1988). Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae). II. On the vibratory environment of a wandering spider. Oecologia, 77, 194–201.CrossRefGoogle ScholarPubMed
Becker, E., Riechert, S. and Singer, F. (2005). Male induction of female quiescence/catalepsis during courtship in the spider Agelenopsis aperta. Behaviour, 142, 57–70.CrossRefGoogle Scholar
Bell, R. D., Rypstra, A. L. and Persons, M. H. (2006). The effect of predator hunger on chemically mediated antipredator responses and survival in the wolf spider Pardosa milvina (Araneae: Lycosidae). Ethology, 112, 903–910.CrossRefGoogle Scholar
Bertani, R., Fukushima, C. S. and da Silva, Jr., P. I. (2008). Mating behavior of Sickius longibulbi (Araneae, Theraphosidae, Ischnocolinae), a spider that lacks spermathecae. Journal of Arachnology, 36, 331–335.CrossRefGoogle Scholar
Bhaskara, R. M., Brijesh, C. M., Ahmed, S. and Borges, R. M. (2009). Perception of ultraviolet light by crab spiders and its role in selection of hunting sites. Journal of Comparative Physiology, A, 195, 409–417.CrossRefGoogle ScholarPubMed
Bilde, T. and Lubin, Y. (2001). Kin recognition and cannibalism in a subsocial spider. Journal of Evolutionary Biology, 14, 959–966.CrossRefGoogle Scholar
Bjorkman-Chiswell, B. T., Kulinski, M. M., Muscat, R. L., et al. (2004). Web-building spiders attract prey by storing decaying matter. Naturwissenschaften, 91, 245–248.CrossRefGoogle ScholarPubMed
Blanke, R. (1973). Nachweis von Pheromonen bei Netzspinnen. Naturwissenschaften, 60, 481.CrossRefGoogle Scholar
Blanke, R. (1975). Untersuchungen zum Sexualverhalten von Cyrtophora cicatrosa (Stoliczka) (Araneae, Araneidae). Zeitschrift für Tierpsychology, 37, 62–74.CrossRefGoogle Scholar
Bleckmann, H. (1985). Discrimination between prey and non-prey wave signals in the fishing spider Dolomedes triton (Pisauridae). In Acoustic and Vibrational Communication in Insects (ed. Kalmring, K. and Elsner, N.). Berlin: Verlag Paul Parey, pp. 215–222.Google Scholar
Bleckmann, H. and Barth, F. G. (1984). Sensory ecology of a semi-aquatic spider (Dolomedes triton). II. The release of predatory behavior by water surface waves. Behavioral Ecology and Sociobiology, 14, 303–312.CrossRefGoogle Scholar
Bleckmann, H. and Bender, M. (1987). Water surface waves generated by the male pisaurid spider Dolomedes triton (Walckenaer) during courtship behaviour. Journal of Arachnology, 15, 363–369.Google Scholar
Blest, A. D., Hardie, R. C., McIntyre, P. and Williams, D. S. (1981). The spectral sensitivities of identified receptors and the function of retinal tiering in the principal eyes of a jumping spider. Journal of Comparative Physiology, 145, 227–239.CrossRefGoogle Scholar
Blomquist, G. J. and Vogt, R. G. (2003). Insect Pheromone Biochemistry and Molecular Biology: The Biosynthesis and Detection of Pheromones and Plant Volatiles. Amsterdam, the Netherlands: Elsevier Academic Press.Google Scholar
Bossert, W. H. and Wilson, E. O. (1963). The analysis of olfactory communication among animals. Journal of Theoretical Biology, 5, 443–469.CrossRefGoogle ScholarPubMed
Bristowe, W. S. (1929). The mating habits of spiders, with special reference to the problems surrounding sex dimorphism. Proceedings of the Zoological Society of London, 1929, 309–358.Google Scholar
Bristowe, W. S. (1939). The Comity of Spiders. London: The Ray Society.Google Scholar
Bristowe, W. S. and Locket, G. H. (1926). The courtship of British lycosid spiders, and its probable significance. Proceedings of the Zoological Society of London, 22, 317–147.CrossRefGoogle Scholar
Burgess, J. W. and Uetz, G. W. (1982). Social spacing strategies in spiders. In Spider Communication: Mechanism and Ecological Significance (ed. Witt, P. N. and Rovner, J. S.). Princeton, NJ: Princeton University Press, pp. 317–351.Google Scholar
Buskirk, R. (1975). Aggressive display and orb defense in a colonial spider, Metabus gravidus. Animal Behaviour, 23, 560–567.CrossRefGoogle Scholar
Candolin, U. (2003). The use of multiple cues in mate choice. Biological Reviews, 78, 575–595.CrossRefGoogle ScholarPubMed
Carico, J. E. (1973). The nearctic species of the genus Dolomedes (Araneae: Pisauridae). Bulletin of the Museum of Comparative Zoology, 144, 435–488.Google Scholar
Chan, J. P. Y., Lau, P. R., Tham, A. J. and Li, D. Q. (2008). The effects of male-male contests and female eavesdropping on female mate choice and male mating success in the jumping spider, Thiania bhamoensis (Araneae: Salticidae). Behavioral Ecology and Sociobiology, 62, 639–646.CrossRefGoogle Scholar
Chinta, S. P., Goller, S., Lux, J., et al. (2010). The sex pheromone of the wasp spider Argiope bruennichi. Angewandte Chemie International Edition, 49, 2033–2036.CrossRefGoogle ScholarPubMed
Clark, D. L. (1992). Male dimorphism and species recognition in the jumping spider Maevia inclemens (Araneae: Salticidae). Cincinnati, OH: University of Cincinnati.
Clark, D. L. (1994). Sequence analysis of courtship behavior in the dimorphic jumping spider Maevia inclemens (Araneae, Salticidae). Journal of Arachnology, 22, 94–107.Google Scholar
Clark, D. L. and Biesiadecki, B. (2002). Mating success and alternative reproductive strategies of the dimorphic jumping spider, Maevia inclemens (Araneae, Salticidae). Journal of Arachnology, 30, 511–518.CrossRefGoogle Scholar
Clark, D. L. and Morjan, C. L. (2001). Attracting female attention: the evolution of dimorphic courtship displays in the jumping spider Maevia inclemens (Araneae: Salticidae). Proceedings of the Royal Society of London, B, 268, 2461–2465.CrossRefGoogle Scholar
Clark, D. L. and Uetz, G. W. (1990). Video image recognition by the jumping spider, Maevia inclemens (Araneae: Salticidae). Animal Behaviour, 40, 884–890.CrossRefGoogle Scholar
Clark, D. L. and Uetz, G. W. (1993). Signal efficacy and the evolution of male dimorphism in the jumping spider, Maevia inclemens. Proceedings of the National Academy of Sciences of the USA, 90, 11 954–11 957.CrossRefGoogle ScholarPubMed
Clark, R. J. and Jackson, R. R. (1994). Self recognition in a jumping spider: Portia labiata females discriminate between their own draglines and those of conspecifics. Ethology, Ecology and Evolution, 6, 371–375.CrossRefGoogle Scholar
Clark, R. J. and Jackson, R. R. (1995a). Dragline-mediated sex recognition in two species of jumping spiders (Araneae, Salticidae), Portia labiata and P. fimbriata. Ethology, Ecology and Evolution, 7, 73–77.CrossRefGoogle Scholar
Clark, R. J. and Jackson, R. R. (1995b). Araneophagic spiders discriminate between the draglines of familiar and unfamiliar conspecifics. Ethology, Ecology and Evolution, 7, 185–190.CrossRefGoogle Scholar
Costa, F. G. and Francescoli, G. (1991). Analyse espérimentale de l'isolement reproductive entre deux espèces jumelles et sympatriques d'araignées: le Lycosa thorelli (Keyserling) et le Lycosa carbonelli Costa et Capocasale. Canadian Journal of Zoology, 69, 1768–1776.CrossRefGoogle Scholar
Crane, J. (1949). Comparative biology of salticid spiders at Rancho Grande, Venezuela. IV. An analysis of display. Zoologica (Scientific Contributions to the New York Zoological Society), 34, 159–214.Google Scholar
Cross, F. R. and Jackson, R. R. (2009a). How cross-modality effects during intraspecific interactions of jumping spiders differ depending on whether a female-choice or mutual-choice mating system is adopted. Behavioural Processes, 80, 162–168.CrossRefGoogle ScholarPubMed
Cross, F. R. and Jackson, R. R. (2009b). Mate-odour identification by both sexes of Evarcha culicivora, an East African jumping spider. Behavioural Processes, 81, 74–79.CrossRefGoogle ScholarPubMed
Cross, F. R., Jackson, R. R. and Pollard, S. D. (2007a). Male and female mate-choice decisions by Evarcha culicivora, an East African jumping spider. Ethology, 113, 901–908.CrossRefGoogle Scholar
Cross, F. R., Jackson, R. R. and Pollard, S. D. (2008). Complex display behaviour of Evarcha culicivora, an East African mosquito-eating jumping spider. New Zealand Journal of Zoology, 35, 151–187.CrossRefGoogle Scholar
Cross, F. R., Jackson, R. R. and Pollard, S. D. (2009). How blood-derived odor influences mate-choice decisions by a mosquito-eating predator. Proceedings of the National Academy of Sciences of the USA, 106, 19 416–19 419.CrossRefGoogle ScholarPubMed
Cross, F. R., Jackson, R. R., Pollard, S. D. and Walker, M. W. (2006). Influence of optical cues from conspecific females on escalation decisions during male-male interactions of jumping spiders. Behavioural Processes, 73, 136–141.CrossRefGoogle ScholarPubMed
Cross, F. R., Jackson, R. R., Pollard, S. D. and Walker, M. W. (2007b). Cross-modality effects during male-male interactions of jumping spiders. Behavioural Processes, 75, 290–296.CrossRefGoogle ScholarPubMed
Delaney, K. J., Roberts, J. A. and Uetz, G. W. (2007). Male signaling behavior and sexual selection in a wolf spider (Araneae: Lycosidae): a test for dual functions. Behavioral Ecology and Sociobiology, 62, 67–75.CrossRefGoogle Scholar
DeVoe, R. D. (1972). Dual sensitivities of cells in wolf spider eyes at ultraviolet and visible wavelengths of light. Journal of General Physiology, 59, 247.CrossRefGoogle Scholar
DeVoe, R. D. (1975). Ultraviolet and green receptors in principal eyes of jumping spiders. Journal of General Physiology, 66, 193–207.CrossRefGoogle Scholar
Dierkes, S. and Barth, F. G. (1995). Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). Journal of Comparative Physiology, A, 176, 31–44.CrossRefGoogle Scholar
Dondale, C. D. and Hegdekar, B. M. (1973). The contact sex pheromone of Pardosa lapidicina Emerton (Araneida: Lycosidae). Canadian Journal of Zoology, 52, 400–401.CrossRefGoogle Scholar
Dumortier, B. (1963). Sound emissions in Arthropoda. In Acoustic Behavior of Animals (ed. Busnel, R. G.). Amsterdam, the Netherlands: Elsevier, 277–338.Google Scholar
Dumpert, K. (1978). Spider odor receptor: electrophysiological proof. Experientia, 34, 754–756.CrossRefGoogle Scholar
Eberhard, W. G. (1977). Aggressive chemical mimicry by a bolas spider. Science, 198, 1173–1175.CrossRefGoogle ScholarPubMed
Eberhard, W. G. (1991). Chrosiothes tonala (Araneae, Theridiidae): a web-building spider specializing on termites. Psyche, 98, 7–20.CrossRefGoogle Scholar
Eberhard, W. G. (1994). Evidence for widespread courtship during copulation in 131 species of insects and spiders, and implications for cryptic female choice. Evolution, 48, 711–733.CrossRefGoogle ScholarPubMed
Eberhard, W. G. (2004). Why study spider sex: special traits of spiders facilitate studies of sperm competition and cryptic female choice. Journal of Arachnology, 32, 545–556.CrossRefGoogle Scholar
Eberhard, W. G. and Huber, B. A. (1998). Courtship, copulation, and sperm transfer in Leucauge mariana (Araneae, Tetragnathidae) with implications for higher classification. Journal of Arachnology, 26, 342–368.Google Scholar
Eberhard, W. G., Guzman Gomez, S. and Catley, K. M. (1993). Correlation between spermathecal morphology and mating systems in spiders. Biological Journal of the Linnean Society, 50, 197–209.CrossRefGoogle Scholar
Ehn, R. and Tichy, H. (1994). Hygro- and thermoreceptive tarsal organ in the spider Cupiennius salei. Journal of Comparative Physiology, A, 174, 345–350.CrossRefGoogle Scholar
Ehn, R. and Tichy, H. (1996a). Response characteristics of a spider warm cell: temperature sensitivities and structural properties. Journal of Comparative Physiology, A, 178, 537–542.CrossRefGoogle Scholar
Ehn, R. and Tichy, H. (1996b). Threshold for detecting temperature changes in a spider thermoreceptor. Journal of Neurophysiology, 76, 2608–2613.CrossRefGoogle Scholar
Eiben, B. and Persons, M. (2007). The effect of prior exposure to predator cues on chemically-mediated defensive behavior and survival in the wolf spider Rabidosa rabida (Araneae: Lycosidae). Behaviour, 144, 889–906.CrossRefGoogle Scholar
Elgar, M. A. (1992). Sexual cannibalism in spiders and other invertebrates. In Cannibalism: Ecology and Evolution Among Diverse Taxa (ed. Elgar, M. A. and Crespi, B. J.). Oxford, UK: Oxford University Press, pp. 128–155.Google Scholar
Elgar, M. A. and Allan, R. A. (2004). Predatory spider mimics aquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften, 91, 143–147.CrossRefGoogle Scholar
Elgar, M. A. and Allan, R. A. (2006). Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: is it colony-specific?Journal of Ethology, 24, 239–246.CrossRefGoogle Scholar
Elias, D. O. and Mason, A. C. (in press). Signaling in variable environments: substrate-borne signaling mechanisms and communication behavior in spiders. In The Use of Vibrations in Communication: Properties, Mechanisms and Function Across Taxa (ed. O'Connell-Rodwell, C.). Kerala, India: Research Signpost.
Elias, D. O., Hebets, E. A. and Hoy, R. R. (2006a). Female preference for complex/novel signals in a spider. Behavioral Ecology, 17, 765–771.CrossRefGoogle Scholar
Elias, D. O., Hebets, E. A., Hoy, R. R., Maddison, W. P. and Mason, A. C. (2006b). Regional seismic song differences in sky island populations of the jumping spider Habronattus pugillis Griswold (Araneae, Salticidae). Journal of Arachnology, 34, 545–556.CrossRefGoogle Scholar
Elias, D. O., Hebets, E. A., Hoy, R. R. and Mason, A. C. (2005). Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae:Salticidae). Animal Behaviour, 69, 931–938.CrossRefGoogle Scholar
Elias, D. O., Kasumovic, M. M., Punzalan, D., Andrade, M. C. B. and Mason, A. C. (2008). Assessment during aggressive contests between male jumping spiders. Animal Behaviour, 76, 901–910.CrossRefGoogle ScholarPubMed
Elias, D. O., Land, B. R., Mason, A. C. and Hoy, R. R. (2006c). Measuring and quantifying dynamic visual signals in jumping spiders. Journal of Comparative Physiology, A, 192, 785–797.CrossRefGoogle ScholarPubMed
Elias, D. O., Lee, N., Hebets, E. A. and Mason, A. C. (2006d). Seismic signal production in a wolf spider: parallel versus serial multi-component signals. Journal of Experimental Biology, 209, 1074–1084.CrossRefGoogle Scholar
Elias, D. O., Mason, A. C., Maddison, W. P. and Hoy, R. R. (2003). Seismic signals in a courting male jumping spider (Araneae: Salticidae). Journal of Experimental Biology, 206, 4029–4039.CrossRefGoogle Scholar
Enders, F. (1975). Airborne pheromone probable in orb webs spider Argiope aurantia (Araneidae). British Arachnological Society Newsletter, 13, 5–6.Google Scholar
Engelhardt, W. (1964). Die Mitteleuropäischen Arten der Gattung Trochosa C. L. Koch, 1848 (Araneae, Lycosidae). Morphologie, Chemotaxonomie, Biologie, Autökologie. Zeitschrift für Morphologie und Ökologie der Tiere, 54, 219–392.CrossRefGoogle Scholar
Evans, T. A. (1999). Kin recognition in a social spider. Proceedings of the Royal Society of London, B, 266, 287–292.CrossRefGoogle Scholar
Faber, D. B. and Baylis, J. R. (1993). Effects of body size on agonistic encounters between male jumping spiders (Araneae: Salticidae). Animal Behaviour, 45, 289–299.CrossRefGoogle Scholar
Fernández-Montraveta, C. and Ruano-Bellido, J. (2000). Female silk and mate attraction in a burrowing wolf-spider (Araneae, Lycosidae). Bulletin of the British Arachnological Society, 11, 361–366.Google Scholar
Fernández-Montraveta, C., Moya-Laraño, J. and Orta-Ocaña, M. (2000). An SEM study on pedipalpal stridulation in Iberian lycosids (genera Lycosa and Hogna; Araneae, Lycosidae). Bulletin of the British Arachnological Society, 11, 289–292.Google Scholar
Fischer, M. L., Cokl, A., Ramires, E. N., et al. (2009). Sound is involved in multimodal communication of Loxosceles intermedia Mell-Leitão, 1934 (Araneae; Sicariidae). Behavioural Processes, 82, 236–243.CrossRefGoogle Scholar
Foelix, R. F. (1970). Chemosensitive hairs in spiders. Journal of Morphology, 132, 313–334.CrossRefGoogle ScholarPubMed
Foelix, R. F. (1985). Mechano- and chemoreceptive sensilla. In Neurobiology of Arachnids (ed. Barth, F. G.). Berlin: Springer Verlag, pp. 118–137.CrossRefGoogle Scholar
Foelix, R. F. (1996). The Biology of Spiders, 2nd edn. New York: Oxford University Press.Google Scholar
Foelix, R. F. and Axtell, R. C. (1971). Fine structure of tarsal sensilla in the tick Amblyomma americanum (L.). Zeitschrift für Zellforschung, 114, 22–37.CrossRefGoogle Scholar
Foelix, R. F. and Chu-Wang, I.-W. (1973). The morphology of spider sensilla. II. Chemoreceptors. Tissue and Cell, 5, 461–478.CrossRefGoogle ScholarPubMed
Foelix, R. F., Chu-Wang, I.-W. and Beck, L. (1975). Fine structure of tarsal sensory organs in the whip spider Admetus pumilo (Amblypygi, Arachnida). Tissue and Cell, 7, 331–346.CrossRefGoogle Scholar
Forster, L. (1982a). Vision and prey-catching strategies in jumping spiders. American Scientist, 70, 165–175.Google Scholar
Forster, L. (1982b). Visual communication in jumping spiders (Salticidae). In Spider Communication: Mechanism and Ecological Significance (ed. Witt, P. N. and Rovner, J. S.). Princeton, NJ: Princeton University Press, pp. 161–212.Google Scholar
Forster, L. (1995). The behavioural ecology of Latrodectus hasselti (Thorell), the Australian redback spider (Araneae: Theridiidae): a review. Records of the Australian Museum, Supplement, 52, 13–24.Google Scholar
Forster, R. R. and Platnick, N. I. (1984). A review of the archaeid spiders and their relatives, with notes on the limits of the superfamily Palpimanoidea. Bulletin of the American Museum of Natural History, 178, 1–106.Google Scholar
Forster, R., Platnick, N. and Coddington, J. (1990). A proposal and review of the spider family Synotaxidae (Araneae, Araneoidea), with notes on theridiid interrelationships. Bulletin of the American Museum of Natural History, 193, 1–116.Google Scholar
Framenau, V. W. and Hebets, E. A. (2007). A review of leg ornamentation in male wolf spiders, with the description of a new species from Australia, Artoria schizocoides (Araneae, Lycosidae). Journal of Arachnology, 35, 89–101.CrossRefGoogle Scholar
Francke, W. and Schulz, S. (2010). Pheromones of terrestrial invertebrates. In Comprehensive Natural Products Chemistry, vol. 4, 2nd edn. (ed. Mori, K., Mander, L. and Liu, H.-W.O.). Amsterdam, the Netherlands: Elsevier, pp. 153–223.Google Scholar
Fratzl, P. and Barth, F. G. (2009). Biomaterial systems for mechanosensing and actuation. Nature, 462, 442–448.CrossRefGoogle ScholarPubMed
Frings, H. and Frings, M. (1966). Reactions of orb-weaving spiders (Argiopidae) to airborne sounds. Ecology, 47, 578–588.CrossRefGoogle Scholar
Gaskett, A. C. (2007). Spider sex pheromones: emission, reception, structures, and function. Biological Reviews, 82, 27–48.CrossRefGoogle Scholar
Gemeno, C., Yeargan, K. V. and Haynes, K. F. (2000). Aggressive chemical mimicry by the bolas spider Mastophora hutchinsoni: identification and quantification of a major prey's sex pheromone components in the spider's volatile emissions. Journal of Chemical Ecology, 26, 1235–1243.CrossRefGoogle Scholar
Gertsch, W. J. (1979). American Spiders. New York: Van Nostrand.Google Scholar
Gibson, J. S. and Uetz, G. W. (2008). Seismic communication and mate choice in wolf spiders: components of male seismic signals and mating success. Animal Behaviour, 75, 1253–1262.CrossRefGoogle Scholar
Gingl, E., Burger, A. M. and Barth, F. G. (2006). Intracellular recording from a spider vibration receptor. Journal of Comparative Physiology, A, 192, 551–558.CrossRefGoogle ScholarPubMed
Grasshoff, M. (1964). Die Kreuzspinne Araneus pallidus: ihr Netzbau und ihre Paarungsbiologie. Natur und Museum, 94, 305–314.Google Scholar
Grismado, C. J. and Lopardo, L. (2003). Nuevos datos sobre la distribución geográfica de las familias australes de aranas Malkaridae y Mecysmaucheniidae (Arachnida: Araneae), con la descripción de la hembra de Mecysmauchenius thayerae Forster and Platnick. Revista Ibérica de Aracnología, 8, 37–43.Google Scholar
Griswold, C. E., Ramírez, M. J., Coddington, J. and Platnick, N. (2005). Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proceedings of the California Academy of Sciences, 4th Series, 56, Supplement II, 1–324.Google Scholar
Gwinner-Hanke, H. (1970). Zum Verhalten zweier stridulierender Spinnen, Steatoda bipunctata Linné und Teutana grossa Koch (Theridiidae, Araneae), unter besonderer Berücksichtigung des Fortpflanzungsverhaltens. Zeitschrift für Tierpsychologie, 27, 649–678.CrossRefGoogle Scholar
Harari, A. R., Ziv, M. and Lubin, Y. (2009). Conflict or cooperation in the courtship display of the white widow spider, Latrodectus pallidus. Journal of Arachnology, 37, 254–260.CrossRefGoogle Scholar
Harland, D. P. and Jackson, R. R. (2001). Prey classification by Portia fimbriata, a salticid spider that specializes at preying on other salticids: species that elicit cryptic stalking. Journal of Zoology, 255, 445–460.CrossRefGoogle Scholar
Harland, D. P. and Jackson, R. R. (2002). Influence of cues from the anterior medial eyes of virtual prey on Portia fimbriata, an araneophagic jumping spider. Journal of Experimental Biology, 205, 1861–1868.Google ScholarPubMed
Harris, D. J. and Mill, P. J. (1973). The ultrastructure of chemoreceptor sensilla in Ciniflo (Araneida, Arachnida). Tissue and Cell, 5, 679.CrossRefGoogle Scholar
Hebets, E. A. (2003). Subadult experience influences adult mate choice in an arthropod: exposed female wolf spiders prefer males of a familiar phenotype. Proceedings of the National Academy of Sciences of the USA, 100, 13 390–13 395.CrossRefGoogle Scholar
Hebets, E. A. (2005). Attention-altering signal interactions in the multimodal courtship display of the wolf spider Schizocosa uetzi. Behavioral Ecology, 16, 75–82.CrossRefGoogle Scholar
Hebets, E. A. (2008). Seismic signal dominance in the multimodal display of the wolf spider Schizocosa stridulans. Stratton 1991. Behavioral Ecology, 19, 1250–1257.CrossRefGoogle ScholarPubMed
Hebets, E. A. and Maddison, W. P. (2005). Xenophilic mating preferences among populations of the jumping spider Habronattus pugillis Griswold. Behavioral Ecology, 16, 981–988.CrossRefGoogle Scholar
Hebets, E. A. and Papaj, D. R. (2005). Complex signal function: developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology, 57, 197–214.CrossRefGoogle Scholar
Hebets, E. A. and Uetz, G. W. (1999). Female responses to isolated signals from multimodal male courtship displays in the wolf spider genus Schizocosa (Aranerae: Lycosidae). Animal Behaviour, 57, 865–872.CrossRefGoogle Scholar
Hebets, E. A. and Uetz, G. W. (2000). Leg ornamentation and the efficacy of courtship display in four species of wolf spider (Araneae: Lycosidae). Behavioral Ecology and Sociobiology, 47, 280–286.CrossRefGoogle Scholar
Hebets, E. A. and Vink, C. J. (2007). Experience leads to preference: experienced females prefer brush-legged males in a population of syntopic wolf spiders. Behavioral Ecology, 18, 1010–1020.CrossRefGoogle Scholar
Hebets, E. A., Cuasay, K. and Rivlin, P. K. (2006). The role of visual ornamentation in female choice of a multimodal male courtship display. Ethology, 112, 1062–1070.CrossRefGoogle Scholar
Hebets, E. A., Elias, D. O., Mason, A. C., Miller, G. L. and Stratton, G. E. (2008). Substrate-dependent signalling success in the wolf spider, Schizocosa retrorsa. Animal Behaviour, 75, 605–615.CrossRefGoogle Scholar
Hegdekar, B. M. and Dondale, C. (1969). A contact sex pheromone and some response parameters in lycosid spiders. Canadian Journal of Zoology, 47, 1–4.CrossRefGoogle Scholar
Heiling, A. M., Cheng, K., Chittka, L., Goeth, A. and Herberstein, M. E. (2005a). The role of UV in crab spider signals: effects on perception by prey and predators. Journal of Experimental Biology, 208, 3925–3931.CrossRefGoogle ScholarPubMed
Heiling, A. M., Chittka, L., Cheng, K. and Herberstein, M. E. (2005b). Colouration in crab spiders: substrate choice and prey attraction. Journal of Experimental Biology, 208, 1785–1792.CrossRefGoogle ScholarPubMed
Henschel, J. R. (2002). Long-distance wandering and mating by the dancing white lady spider (Leucorchestris arenicola) (Araneae, Sparassidae) across Namib dunes. Journal of Arachnology, 30, 321–330.CrossRefGoogle Scholar
Hettyey, A., Hegyi, G., Puurtinen, M., et al. (2010). Mate choice for genetic benefits: time to put the pieces together. Ethology, 116, 1–9.CrossRefGoogle Scholar
Hill, D. E. (1979). Orientation by jumping spiders of the genus Phidippus (Araneae: Salticidae) during the pursuit of prey. Behavioral Ecology and Sociobiology, 5, 301–322.CrossRefGoogle Scholar
Hill, P. S. M. (2001). Vibration as a communication channel: a review. American Zoologist, 41, 1135–1142.Google Scholar
Hill, P. S. M. (2008). Vibrational Communication in Animals. Cambridge, MA: Harvard University Press.Google Scholar
Hill, P. S. M. (2009). How do animals use substrate-borne vibrations as an information source?Naturwissenschaften, 96, 1355–1371.CrossRefGoogle ScholarPubMed
Hoefler, C. D. (2007). Male mate choice and size-assortative pairing in a jumping spider, Phidippus clarus. Animal Behaviour, 73, 943–954.CrossRefGoogle Scholar
Hoefler, C. D. and Jakob, E. M. (2006). Jumping spiders in space: movement patterns, nest site fidelity and the use of beacons. Animal Behaviour, 71, 109–116.CrossRefGoogle Scholar
Hoefler, C. D., Carlascio, A. L., Persons, M. H. and Rypstra, A. L. (2009a). Male courtship repeatability and potential indirect genetic benefits in a wolf spider. Animal Behaviour, 78, 183–188.CrossRefGoogle Scholar
Hoefler, C. D., Guhanarayan, G., Persons, M. H. and Rypstra, A. L. (2009b). The interaction of female condition and mating status on male-male aggression in a wolf spider. Ethology, 115, 331–338.CrossRefGoogle Scholar
Hoefler, C. D., Persons, M. H. and Rypstra, A. L. (2008). Evolutionarily costly courtship displays in a wolf spider: a test of viability indicator theory. Behavioral Ecology, 19, 974–979.CrossRefGoogle Scholar
Holden, W. (1977). Behavioral evidence of chemoreception on the legs of the spider Araneus diadematus Cl. Journal of Arachnology, 3, 207–210.Google Scholar
Hölldobler, B. and Wilson, E. O. (1990). The Ants. Berlin: Springer.CrossRefGoogle Scholar
Hrušková-Martišová, M., Pekár, S. and Gromov, A. (2008). Analysis of the stridulation in solifuges (Arachnida: Solifugae). Journal of Insect Behaviour, 21, 440–449.CrossRefGoogle Scholar
Hsu, Y. Y., Earley, R. L. and Wolf, L. L. (2006). Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biological Review, 81, 33–74.CrossRefGoogle ScholarPubMed
Huber, B. A. (2005). Sexual selection research on spiders: progress and biases. Biological Reviews, 80, 363–385.CrossRefGoogle Scholar
Huber, B. A. and Eberhard, W. G. (1997). Courtship, genitalia and genital mechanics in Physocyclus globosus (Araneae, Pholcidae). Canadian Journal of Zoology, 74, 905–918.CrossRefGoogle Scholar
Iwasa, Y. and Pomiankowski, A. (1994). The evolution of mate preferences for multiple sexual ornaments. Evolution, 48, 853–867.CrossRefGoogle ScholarPubMed
Jackson, R. R. (1977). Courtship versitility in the jumping spider, Phidippus johnsoni (Araneae: Salticidae). Animal Behaviour, 25, 953–957.CrossRefGoogle Scholar
Jackson, R. R. (1982). The behavior of communicating in jumping spiders (Salticidae). In Spider Communication: Mechanism and Ecological Significance (ed. Witt, P. N. and Rovner, J. S.). Princeton, NJ: Princeton University Press, pp. 213–247.Google Scholar
Jackson, R. R. (1983). The biology of Mopsus mormon, a jumping spider (Araneae, Salticidae) from Queensland: intraspecific interactions. Australian Journal of Zoology, 31, 39–53.CrossRefGoogle Scholar
Jackson, R. R. (1986a). Interspecific interactions of communal jumping spiders (Araneae, Salticidae) from Kenya: mechanisms of sex- and species-recognition. Behaviour, 97, 297–307.CrossRefGoogle Scholar
Jackson, R. R. (1986b). Use of pheromones by males of Phidippus johnsoni (Araneae, Salticidae) to detect subadult females that are about to molt. Journal of Arachnology, 14, 137–139.Google Scholar
Jackson, R. R. (1987). Comparative study of releaser pheromones associated with the silk of jumping spiders (Araneae, Salticidae). New Zealand Journal of Zoology, 14, 1–10.CrossRefGoogle Scholar
Jackson, R. R. and Macnab, A. M. (1991). Comparative study of the display and mating behavior of lyssomanine jumping spiders (Araneae: Salticidae), especially Asemonea tenuipes, Goleba puella, and Lyssomanes viridis. New Zealand Journal of Zoology, 18, 1–23.CrossRefGoogle Scholar
Jackson, R. R. and Pollard, S. D. (1997). Jumping spider mating strategies: sex among cannibals in and out of webs. In Mating Systems in Insects and Arachnids (ed. Choe, J. and Crespi, B.). Cambridge, UK: Cambridge University Press, pp. 340–351.CrossRefGoogle Scholar
Jackson, R. R., Clark, R. J. and Harland, D. P. (2002). Behavioural and cognitive influences of kairomones on an araneophagic jumping spider. Behaviour, 139, 749–775.CrossRefGoogle Scholar
Jackson, R. R., Nelson, X. J. and Sune, G. O. (2005). A spider that feeds indirectly on vertebrate blood by choosing female mosquitoes as prey. Proceedings of the National Academy of Sciences of the USA, 102, 15 155–15 160.CrossRefGoogle ScholarPubMed
Jackson, R. R., Walker, M. W., Pollard, S. D. and Cross, F. R. (2006). Influence of seeing a female on the male-male interactions of a jumping spider, Hypoblemum albovittatum. Journal of Ethology, 24, 231–238.CrossRefGoogle Scholar
Jakob, E. M., Skow, C. D., Haberman, M. P. and Plourde, A. (2007). Jumping spiders associate food with color cues in a T-maze. Journal of Arachnology, 35, 487–492.CrossRefGoogle Scholar
Jerhot, E., Stoltz, J. A., Andrade, M. C. B. and Schulz, S. (2010). Acylated serine derivative: a new class of arthropod pheromones of the Australian redback spider, Latrodectus hasselti. Angewandte Chemie International Edition, 49, 1–5.CrossRefGoogle Scholar
Jocqué, R. (2005). Six stridulating organs on one spider (Araneae, Zodariidae): is this the limit?Journal of Arachnology, 33, 597–603.CrossRefGoogle Scholar
Johansson, B. G. and Jones, T. M. (2007). The role of chemical communication in mate choice. Biological Reviews, 82, 265–289.CrossRefGoogle ScholarPubMed
Johnstone, R. A. (1996). Multiple displays in animal communication: ‘Backup signals’ and ‘multiple messages’. Philosophical Transactions of the Royal Society of London, B, 351, 329–338.CrossRefGoogle Scholar
Kaston, B. J. (1936). The senses involved in the courtship of some vagabond spiders. Entomologica Americana, 16, 97–167.Google Scholar
Kasumovic, M. M. and Andrade, M. C. B. (2004). Discrimination of airborne pheromones by mate-searching male western black widow spiders (Latrodectus hesperus): species- and population-specific responses. Canadian Journal of Zoology, 82, 1027–1034.CrossRefGoogle Scholar
Kasumovic, M. M. and Andrade, M. C. B. (2006). Male development tracks rapidly shifting sexual versus natural selection pressures. Current Biology, 16, R242.CrossRefGoogle ScholarPubMed
Kasumovic, M. M., Elias, D. O., Punzalan, D., Mason, A. C. and Andrade, M. C. B. (2009a). Experience affects the outcome of agonistic contests without affecting the selective advantage of size. Animal Behaviour, 77, 1533–1538.CrossRefGoogle ScholarPubMed
Kasumovic, M. M., Elias, D. O., Punzalan, D., Mason, A. C. and Andrade, M. C. B. (2009b). The role of multiple experiences on contest outcome and patterns of selection in a jumping spider. Animal Behaviour, 77, 1533–1538.CrossRefGoogle Scholar
Keller, L. R. (1961). Untersuchungen über den Geruchssinn der Spinnenart Cupiennius salei Keyserling. Zeitschrift für Vergleichende Physiologie, 44, 576–612.CrossRefGoogle Scholar
Knoflach, B. and Pfaller, K. (2004). Comb-footed spiders: an introduction (Araneae, Theridiidae). Denisia, 111–160.Google Scholar
Koh, T. H., Seah, W. K., Yap, L.-M. Y. L. and Li, D. (2009). Pheromone-bases female mate choice and its effect on reproductive investment in a spitting spider. Behavioral Ecology and Sociobiology, 63, 923–930.CrossRefGoogle Scholar
Kotiaho, J. S., Alatalo, R. V., Mappes, J., et al. (1998). Energetic costs of size and sexual signalling in a wolf spider. Proceedings of the Royal Society of London, B, 265, 2203–2209.CrossRefGoogle Scholar
Kotiaho, J. S., Alatalo, R. V., Mappes, J. and Parri, S. (1996). Sexual selection in a wolf spider: male drumming activity, body size and viability. Evolution, 50, 1977–1981.CrossRefGoogle Scholar
Kotiaho, J. S., Alatalo, R. V., Mappes, J. and Parri, S. (1999). Sexual signalling and viability in a wolf spider (Hygrolycosa rubrofasciata): measurements under laboratory and field conditions. Behavioral Ecology and Sociobiology, 46, 123–128.CrossRefGoogle Scholar
Kotiaho, J. S., Alatalo, R. V., Mappes, J. and Parri, S. (2000). Microhabitat selection and audible sexual signalling in the wolf spider Hygrolycosa rubrofasciata (Araneae, Lycosidae). Acta Ethologica, 2, 123–128.CrossRefGoogle Scholar
Kovoor, J. (1981). Une source probable de phéromones sexuelles: les glandes tégumentaires de la région génitale des femelles d'araignées. Atti della Società Toscana di Scienze Naturali, Memorie, B, Suppl., 88, 1–15.Google Scholar
Koyanagi, M., Nagata, T., Katoh, K., Yamashita, S. and Tokunaga, F. (2008). Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. Journal of Molecular Evolution, 66, 130–137.CrossRefGoogle ScholarPubMed
Krafft, B. (1978). The recording of vibratory signals performed by spiders during courtship. Symposia of the Zoological Society of London, 42, 59–67.Google Scholar
Krafft, B. (1982). The significance and complexity of communication in spiders. In Spider Communication: Mechanism and Ecological Significance (ed. Witt, P. N. and Rovner, J. S.). Princeton, NJ: Princeton University Press, pp. 15–65.Google Scholar
Krafft, B. and Roland, C. (1980). Quelques remarques au sujet de communication chimique chez les araignées. Comptes Rendus du Colloque Arachnologique IX. Barcelona, Spain: University of Barcelona, pp. 129–135.Google Scholar
Kronestedt, T. (1979). Study on chemosensitive hairs in wolf spiders (Araneae, Lycosidae) by scanning electron microscopy. Zoologica Scripta, 8, 279–285.CrossRefGoogle Scholar
Kronestedt, T. (1984). Ljudalstring hos vargspindeln Hygrolycosa rubrofasciata. Fauna Flora (Stockholm), 79, 97–107.Google Scholar
Kronestedt, T. (1986). A presumptive pheromone-emitting structure in wolf spiders (Araneae, Lycosidae). Psyche, 93, 127–131.CrossRefGoogle Scholar
Kronestedt, T. (1996). Vibratory communication in the wolf spider Hygrolycosa rubrofasciata. Revue Suisse de Zoologie, 341–354.Google Scholar
Kullmann, E. and Zimmermann, W. (1972). Versuche zur Toleranz bei der permanent sozialen Spinnenart Stegodyphus sarasinorum Karsch (Fam. Eresidae). In Proceedings of 5th International Congress of Arachnology, Brno, 1971. Berlin: International Society of Arachnology, pp. 175–182.Google Scholar
Land, M. F. (1972). The physics and biology of animal reflectors. Progress in Biophysics and Molecular Biology, 24, 75–106.CrossRefGoogle ScholarPubMed
Land, M. F. (1985). The morphology and optics of spider eyes. In Neurobiology of Arachnids (ed. Barth, F. G.). Berlin: Springer Verlag, pp. 53–78.CrossRefGoogle Scholar
Land, M. F. and Nilsson, D. E. (2002). Animal Eyes. Oxford, UK: Oxford University Press.Google Scholar
Land, M. F., Lim, M. L. M. and Li, D. (2007). Optics of the ultra-violet reflecting scales of a jumping spider. Proceedings of the Royal Society of London, B, 274, 1583–1589.CrossRefGoogle Scholar
Legendre, R. (1963). L'audition et l'émission de sons chez les aranéides. Annales Biologiques, 2, 371–390.Google Scholar
Li, J. J., Lim, M. L. M, Zhang, Z. T., et al. (2008a). Sexual dichromatism and male colour morph in ultraviolet-B reflectance in two populations of the jumping spider Phintella vittata (Araneae: Salticidae) from tropical China. Biological Journal of the Linnean Society, 94, 7–20.CrossRefGoogle Scholar
Li, J. J., Zhang, Z. T., Liu, F. X., et al. (2008b). UVB-based mate-choice cues used by females of the jumping spider Phintella vittata. Current Biology, 18, 699–703.CrossRefGoogle ScholarPubMed
Lim, M. L. M. and Li, D. (2004). Courtship and male–male agonistic behaviour of Cosmophasis umbratica Simon, an ornate jumping spider (Araneae: Salticidae) from Singapore. Raffles Bulletin of Zoology, 52, 435–448.Google Scholar
Lim, M. L. M. and Li, D. (2006a). Extreme ultraviolet sexual dimorphism in jumping spiders (Araneae: Salticidae). Biological Journal of the Linnean Society, 89, 397–406.CrossRefGoogle Scholar
Lim, M. L. M. and Li, D. Q. (2006b). Behavioural evidence of UV sensitivity in jumping spiders (Araneae: Salticidae). Journal of Comparative Physiology, A, 192, 871–878.CrossRefGoogle Scholar
Lim, M. L. M. and Li, D. Q. (2007). Effects of age and feeding history on structure-based UV ornaments of a jumping spider (Araneae: Salticidae). Proceedings of the Royal Society of London, B, 274, 569–575.CrossRefGoogle Scholar
Lim, M. L. M., Land, M. F. and Li, D. Q. (2007). Sex-specific UV and fluorescence signals in jumping spiders. Science, 315, 481.CrossRefGoogle ScholarPubMed
Lim, M. L. M., Li, J. and Li, D. (2008). Effect of UV-reflecting markings on female mate-choice decisions in Cosmophasis umbratica, a jumping spider from Singapore. Behavioral Ecology, 19, 61–66.CrossRefGoogle Scholar
Lindemann, B. (1996). Taste reception. Physiological Reviews, 76, 719–766.CrossRefGoogle ScholarPubMed
Lindstrom, L., Ahtiainen, J. J., Mappes, J., et al. (2006). Negatively condition dependent predation cost of a positively condition dependent sexual signalling. Journal of Evolutionary Biology, 19, 649–656.CrossRefGoogle ScholarPubMed
Lizotte, R. and Rovner, J. S. (1989). Water-resistant sex pheromones in lycosid spiders from a tropical wet forest. Journal of Arachnology, 17, 122–125.Google Scholar
Lohrey, A. K., Clark, D. L., Gordon, S. D. and Uetz, G. W. (2009). Antipredator responses of wolf spiders (Araneae: Lycosidae) to sensory cues representing an avian predator. Animal Behaviour, 77, 813–821.CrossRefGoogle Scholar
Lomborg, J. P. and Toft, S. (2009). Nutritional enrichment increases courtship intensity and improves mating success in male spiders. Behavioral Ecology, 20, 700–708.CrossRefGoogle Scholar
Lopez, A. (1987). Glandular aspects of sexual biology. In Ecophysiology of Spiders (ed. Nentwig, W.). Heidelberg, Germany: Springer, pp. 121–141.CrossRefGoogle Scholar
Lubin, Y. (1986). Courtship and alternative mating tactics in a social spider. Journal of Arachnology, 14, 239–257.Google Scholar
Lubin, Y. and Bilde, T. (2007). The evolution of sociality in spiders. Advances in the Study of Behavior, 37, 83–145.CrossRefGoogle Scholar
Lynam, E. C., Owens, J. C. and Persons, M. H. (2006). The influence of pedipalp autotomy on the courtship and mating behavior of Pardosa milvina (Araneae: Lycosidae). Journal of Insect Behaviour, 19, 63–75.CrossRefGoogle Scholar
Maddison, W. and McMahon, M. (2000). Divergence and reticulation among montane populations of a jumping spider (Habronattus pugillis Griswold). Systematic Biology, 49, 400–421.CrossRefGoogle Scholar
Maddison, W. P. and Stratton, G. E. (1988a). A common method of sound production by courting male jumping spiders (Araneae, Salticidae). Journal of Arachnology, 16, 267–269.Google Scholar
Maddison, W. P. and Stratton, G. E. (1988b). Sound production and associated morphology in male jumping spiders of the Habronattus agilis species group (Araneae, Salticidae). Journal of Arachnology, 16, 199–211.Google Scholar
Maklakov, A. A., Bilde, T. and Lubin, Y. (2003). Vibratory courtship in a web-building spider: signalling quality or stimulating the female?Animal Behaviour, 66, 623–630.CrossRefGoogle Scholar
Mappes, J., Alatalo, R. V., Kotiaho, J. and Parri, S. (1996). Viability costs of condition-dependent sexual male display in a drumming wolf spider. Proceedings of the Royal Society of London, B, 263, 785–789.CrossRefGoogle Scholar
Marshall, S. D., Thoms, E. M. and Uetz, G. W. (1995). Setal entanglement: an undescribed method of stridulation by a neotropical tarantula (Araneae, Theraphosidae). Journal of Zoology, 235, 587–595.CrossRefGoogle Scholar
Masta, S. E. and Maddison, W. P. (2002). Sexual selection driving diversification in jumping spiders. Proceedings of the National Academy of Sciences of the USA, 99, 4442–4447.CrossRefGoogle ScholarPubMed
Maynard Smith, J. and Harper, D. (2005). Animal Signals. New York: Oxford University Press.Google Scholar
Mayr, E. (1974). Populations, Species, and Evolution. Cambridge, MA: Harvard University Press.Google Scholar
McClintock, W. J. and Uetz, G. W. (1996). Female choice and pre-existing bias: visual cues during courtship in two Schizocosa wolf spiders (Araneae: Lycosidae). Animal Behaviour, 52, 67–181.CrossRefGoogle Scholar
Michelsen, A., Fink, F., Gogala, M. and Traue, D. (1982). Plants as transmission channels for insect vibrational songs. Behavioural Ecology and Sociobiology, 11, 269–281.CrossRefGoogle Scholar
Miller, G. L. and Miller, P. R. (1987). Life cycle and courtship behavior of the burrowing wolf spider Geolycosa turricola (Treat) (Araneae, Lycosidae). Journal of Arachnology, 15, 385–394.Google Scholar
Miyashita, T. and Hayashi, H. (1996). Volatile chemical cue elicits mating behavior of cohabiting males of Nephila clavata (Araneae, Tetragnathidae). Journal of Arachnology, 24, 9–15.Google Scholar
Møller, A. P. and Pomiankowski, A. (1993). Why have birds got multiple sexual ornaments?Behavioral Ecology and Sociobiology, 32, 167–176.CrossRefGoogle Scholar
Morris, G. K. (1980). Calling display and mating behavior of Copiphora rhinoceros pictet (Orthoptera, Tettigoniidae). Animal Behaviour, 28, 42–51.CrossRefGoogle Scholar
Nakamura, T. and Yamashita, S. (2000). Learning and discrimination of colored papers in jumping spiders (Araneae, Salticidae). Journal of Comparative Physiology, A, 186, 897–901.CrossRefGoogle Scholar
Nelson, X. J. and Jackson, R. R. (2007). Complex display behaviour during the intraspecific interactions of myrmecomorphic jumping spiders (Araneae, Salticidae). Journal of Natural History, 41, 1659–1678.CrossRefGoogle Scholar
Nelson, X. J. and Jackson, R. R. (2009). Prey classification by an araneophagic ant-like jumping spider (Araneae: Salticidae). Journal of Zoology, 279, 173–179.CrossRefGoogle Scholar
Nessler, S. H., Uhl, G. and Schneider, J. M. (2009). Scent of a woman: the effect of female presence on sexual cannibalism in an orb-weaving spider (Araneae: Araneidae). Ethology, 115, 633–640.CrossRefGoogle Scholar
Neuhofer, D., Machan, R. and Schmid, A. (2009). Visual perception of motion in a hunting spider. Journal of Experimental Biology, 212, 2819–2823.CrossRefGoogle Scholar
Nørgaard, T., Nilsson, D. E., Henschel, J. R., Garm, A. and Wehner, R. (2008). Vision in the nocturnal wandering spider Leucorchestris arenicola (Araneae: Sparassidae). Journal of Experimental Biology, 211, 816–823.CrossRefGoogle Scholar
Olive, C. W. (1982). Sex pheromones in two orbweaving spiders (Araneae, Araneidae): an experimental field study. Journal of Arachnology, 10, 241–245.Google Scholar
Oxford, G. S. and Gillespie, R. G. (1998). Evolution and ecology of spider coloration. Annual Review of Entomology, 43, 619–643.CrossRefGoogle ScholarPubMed
Papke, M., Schulz, S., Tichy, H., Gingl, H. and Ehn, R. (2000). Identification of a new sex pheromone from the silk dragline of the tropical wandering spider Cupiennius salei. Angewandte Chemie International Edition, 39, 4339–4341.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Papke, M. D., Riechert, S. E. and Schulz, S. (2001). An airborne female pheromone associated with male attraction and courtship in a desert spider. Animal Behaviour, 61, 877–886.CrossRefGoogle Scholar
Parker, A. R. and Hegedus, Z. (2003). Diffractive optics in spiders. Journal of Optics, A, 5, S111–S116.CrossRefGoogle Scholar
Parri, S., Alatalo, R. V., Kotiaho, J. and Mappes, J. (1997). Female choice for male drumming in the wolf spider Hygrolycosa rubrofasciata. Animal Behaviour, 53, 305–312.CrossRefGoogle Scholar
Parri, S., Alatalo, R. V., Kotiaho, J. S., Mappes, J. and Rivero, A. (2002). Sexual selection in the wolf spider Hygrolycosa rubrofasciata: female preference for drum duration and pulse rate. Behavioral Ecology, 13, 615–621.CrossRefGoogle Scholar
Partan, S. R. and Marler, P. (1999). Communication goes multimodal. Science, 283, 1272–1273.CrossRefGoogle ScholarPubMed
Partan, S. R. and Marler, P. (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166, 231–245.CrossRefGoogle ScholarPubMed
Peaslee, A. G. and Wilson, G. (1989). Spectral sensitivity in jumping spiders (Araneae, Salticidae). Journal of Comparative Physiology, A, 164, 359–363.CrossRefGoogle Scholar
Perampaladas, K., Stoltz, J. A. and Andrade, M. C. B. (2008). Mated redback spider females re-advertise receptivity months after mating. Ethology, 114, 589–598.CrossRefGoogle Scholar
Peretti, A. V. and Eberhard, W. G. (2010). Cryptic female choice via sperm dumping favours male copulatory courtship in a spider. Journal of Evolutionary Biology, 23, 271–281.CrossRefGoogle Scholar
Peretti, A., Eberhard, W. G. and Briceno, R. D. (2006). Copulatory dialogue: female spiders sing during copulation to influence male genitalic movements. Animal Behaviour, 72, 413–421.CrossRefGoogle Scholar
Pérez-Miles, F., Oca, L. M., Postigliioni, R. and Costa, F. G. (2005). The stridulatory setae of Acanthoscurria suina (Araneae, Theraphosidae) and their possible role in sexual communication: an experimental approach. Iheringia, Série Zoologia, 95, 365–371.CrossRefGoogle Scholar
Pérez-Miles, F., Lucas, S. M., da Silva Junior, P. I. and Bertani, R. (1996). Systematic revision and cladistic analysis of Theraphosinae (Araneae: Theraphosidae). Mygalomorph, 1, 33–68.Google Scholar
Persons, M. H. and Uetz, G. W. (2005). Sexual cannibalism and mate choice decisions in wolf spiders: influence of male size and secondary sexual characters. Animal Behaviour, 69, 83–94.CrossRefGoogle Scholar
Persons, M. H., Walker, S. E. and Rypsta, A. L. (2002). Fitness costs and benefits of antipredator behavior mediated by chemotactic cues in the wolf spider Pardosa milvina (Araneae: Lycosidae). Behavioral Ecology, 13, 386–392.CrossRefGoogle Scholar
Pocock, R. I. (1895a). Musical boxes in spiders. Natural Science, London, 6, 44–50.Google Scholar
Pocock, R. I. (1895b). On a new sound-producing organ in a spider. Annals and Magazine of Natural History, 16, 230–233.CrossRefGoogle Scholar
Pocock, R. I. (1899). A new stridulating theraphosid spider from South America. Annals and Magazine of Natural History, 3, 347–349.CrossRefGoogle Scholar
Pollard, S. D., Macnab, A. M. and Jackson, R. R. (1987). Communication with chemicals: pheromones and spiders. In Ecophysiology of Spiders (ed. Nentwig, W.). Heidelberg, Germany: Springer Verlag, pp. 133–141.CrossRefGoogle Scholar
Pomiankowski, A. and Iwasa, Y. (1993). Evolution of multiple sexual preferences by Fisher runaway process of sexual selection. Proceedings of the Royal Society of London, B, 253, 173–181.CrossRefGoogle Scholar
Pourié, G., Ibarra, F., Franke, W. and Trabalon, M. (2005). Fatty acids mediate aggressive behavior in the spider Tegenaria atrica. Chemoecology, 15, 161–166.CrossRefGoogle Scholar
Prenter, J., Elwood, R. W. and Montgomery, W. J. (1994). Assessments and decisions in Metellina segmentata (Araneae: Metidae): evidence of a pheromone involved in mate guarding. Behavioral Ecology and Sociobiology, 35, 39–43.CrossRefGoogle Scholar
Prouvost, O., Trabalon, M., Papke, M. and Schulz, S. (1999). Contact sex signals on web and cuticle of Tegenaria atrica (Araneae, Agelenidae). Archives of Insect Biochemistry and Physiology, 40, 194–202.3.0.CO;2-P>CrossRefGoogle Scholar
Pruitt, J. N. and Riechert, S. E. (2009). Male mating preference is associated with risk of pre-copulatory cannibalism in a socially polymorphic spider. Behavioral Ecology and Sociobiology, 63, 1573–1580.CrossRefGoogle Scholar
Ramírez, M. J., Lopardo, L. and Bonaldo, A. B. (2001). A review of the Chilean spider genus Olbus, with notes on the relationships of the Corinnidae (Arachnida, Araneae). Insect Systematics and Evolution, 31, 441–462.CrossRefGoogle Scholar
Reyes-Alcubilla, C., Ruiz, M. A. and Ortega-Escobar, J. (2009). Homing in the wolf spider Lycosa tarantula (Araneae, Lycosidae): the role of active locomotion and visual landmarks. Naturwissenschaften, 96, 485–494.CrossRefGoogle ScholarPubMed
Richman, D. B. (1982). Epigamic display in jumping spiders (Araneae, Salticidae) and its use in systematics. Journal of Arachnology, 10, 47–67.Google Scholar
Richter, C. J. J., Stolting, C. J. and Vlijm, L. (1971). Silk production in adult females of the wolf spider Pardosa amentata (Lycosidae, Araneae). Journal of Zoology, 165, 285–290.CrossRefGoogle Scholar
Riechert, S. E. (1978). Games spiders play: behavioral variability in territorial disputes. Behavioral Ecology and Sociobiology, 3, 135–162.CrossRefGoogle Scholar
Riechert, S. E. (1979). Games spiders play. II. Resource assessment strategies. Behavioral Ecology and Sociobiology, 6, 121–128.CrossRefGoogle Scholar
Riechert, S. E. (1988). Game theory and animal conflict. In Game Theory and Animal Behavior (ed. Dugatkin, L. A. and Reeve, H. K.). New York: Oxford University Press, pp. 64–93.Google Scholar
Riechert, S. E. and Jones, T. C. (2008). Phenotypic variation in the social behaviour of the spider Anelosimus studiosus along a latitudinal gradient. Animal Behaviour, 75, 1893–1902.CrossRefGoogle Scholar
Riechert, S. E. and Singer, F. D. (1995). Investigation of potential mate choice in a monogamous spider. Animal Behaviour, 49, 715–723.CrossRefGoogle Scholar
Rivero, A., Alatalo, R. V., Kotiaho, J. S., Mappes, J. and Parri, S. (2000). Acoustic signalling in a wolf spider: can signal characteristics predict male quality?Animal Behaviour, 48, 188–194.Google Scholar
Robbins, P. S., Nojima, S., Polavarapu, S., et al. (2009). Sex pheromone of the scarab beetle Phyllophaga (Phytalus) georgiana (Horn). Journal of Chemical Ecology, 35, 336–341.CrossRefGoogle Scholar
Roberts, J. A. and Uetz, G. W. (2004a). Chemical signaling in a wolf spider: a test of ethospecies discrimination. Journal of Chemical Ecology, 30, 1271–1283.CrossRefGoogle Scholar
Roberts, J. A. and Uetz, G. W. (2004b). Species-specificity of chemical signals: silk source affects discrimination in a wolf spider (Araneae: Lycosidae). Journal of Insect Behavior, 17, 477–491.CrossRefGoogle Scholar
Roberts, J. A., Taylor, P. W. and Uetz, G. W. (2007). Consequences of complex signaling: predator detection of multimodal cues. Behavioral Ecology, 18, 236–240.CrossRefGoogle Scholar
Robinson, M. B. and Robinson, B. (1980). Comparative studies of the courtship and mating behavior of tropical araneid spiders. Pacific Insects Monograph, 36, 1–218.Google Scholar
Roland, C. (1984). Chemical signals bound to the silk in spider communication (Arachnida, Araneae). Journal of Arachnology, 11, 309–314.Google Scholar
Roland, C. and Rovner, J. S. (1983). Chemical and vibratory communication in the aquatic pisaurid spider Dolomedes triton (Araneae: Pisauridae). Journal of Arachnology, 11, 77–85.Google Scholar
Ross, K. and Smith, R. L. (1979). Aspects of courtship behavior of the black widow spider, Latrodectus hesperus (Araneae: Theridiidae) with evidence for the existence of a contact sex pheromone. Journal of Arachnology, 7, 69–77.Google Scholar
Rovner, J. S. (1967). Acoustic communication in lycosid spider (Lycosa rabida Walckenaer). Animal Behaviour, 15, 273–281.CrossRefGoogle Scholar
Rovner, J. S. (1968). Territoriality in the sheet-web spider Linyphia triangularis (Clerck) (Araneae, Linyphiidae). Zeitschschrift für Tierpsychologie, 25, 232–242.CrossRefGoogle Scholar
Rovner, J. S. (1975). Sound production by nearctic wolf spiders: substratum-coupled stridulatory mechanism. Science, 190, 1309–1310.CrossRefGoogle Scholar
Rovner, J. S. (1980). Vibration in Heteropoda venatoria (Sparassidae): a 3rd method of sound production in spiders. Journal of Arachnology, 8, 193–200.Google Scholar
Rovner, J. S. and Barth, F. G. (1981). Vibratory communication through living plants by a tropical wandering spider. Science, 214, 464–466.CrossRefGoogle ScholarPubMed
Rowe, C. (1999). Receiver psychology and the evolution of multicomponent signals. Animal Behaviour, 58, 921–931.CrossRefGoogle ScholarPubMed
Rundus, A. S., Santer, R. D. and Hebets, E. A. (2010). Multimodal courtship efficacy of Schizocosa retrorsa wolf spiders: implications of an additional signal modality. Behavioural Ecology, 21, 701–707.CrossRefGoogle Scholar
Rypstra, A. L., Schlosser, A. M., Sutton, P. L. and Persons, M. H. (2009). Multimodal signalling: the relative importance of chemical and visual cues from females to the behaviour of male wolf spiders (Lycosidae). Animal Behaviour, 77, 937–947.CrossRefGoogle Scholar
Rypstra, A. L., Wieg, C., Walker, S. E. and Persons, M. H. (2003). Mutual mate assessment in wolf spiders: differences in the cues used by males and females. Ethology, 109, 315–325.CrossRefGoogle Scholar
Santer, R. D. and Hebets, E. A. (2008). Agonistic signals received by an arthropod filiform hair allude to the prevalence of near-field sound communication. Proceedings of the Royal Society of London, B, 275, 363–368.CrossRefGoogle ScholarPubMed
Schäfer, M. A. and Uhl, G. (2002). Determinants of paternity success in the spider Pholcus phalangioides (Pholcidae: Araneae): the role of male and female mating behavior. Behavioral Ecology and Sociobiology, 51, 368–377.Google Scholar
Schäfer, M. A., Misof, B. and Uhl, G. (2008). Effects of body size of both sexes and female mating history on male mating behavior and paternity success in a spider. Animal Behaviour, 76, 75–86.CrossRefGoogle Scholar
Schaible, U. and Gack, C. (1987). Zur Bedeutung der Kopfstrukturen bei einigen Diplocephalus – Arten (Erigoninae, Linyphiidae). Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF), 9, 171–180.Google Scholar
Scheffer, S. J., Uetz, G. W. and Stratton, G. E. (1996). Sexual selection, male morphology, and the efficacy of courtship signalling in two wolf spiders (Araneae: Lycosidae). Behavioral Ecology and Sociobiology, 38, 17–23.CrossRefGoogle Scholar
Schlegelmilch, B. (1974). Zur biologischen Bedeutung der Kopffortsätze bei Zwergspinnenmännchen (Micryphantidae). Diploma thesis. University of Freiburg, Germany.
Schmid, A. (1998). Different functions of different eye types in the spider Cupiennius salei. Journal of Experimental Biology, 201, 221–225.Google ScholarPubMed
Schmitt, A., Friedel, T. and Barth, F. G. (1993). Importance of pause between spider courtship vibrations and general problems using synthetic stimuli in behavioural studies. Journal of Comparative Physiology, A, 172, 707–714.CrossRefGoogle Scholar
Schmitt, A., Schuster, M. and Barth, F. G. (1992). Male competition in a wandering spider (Cupiennius getazi, Ctenidae). Ethology, 90, 293–306.CrossRefGoogle Scholar
Schonewolf, K. W., Bell, R., Rypstra, A. L. and Persons, M. H. (2006). Field evidence of an airborne enemy avoidance kairomone in wolf spiders. Journal of Chemical Ecology, 32, 1565–1576.CrossRefGoogle ScholarPubMed
Schuch, W. and Barth, F. G. (1985). Temporal patterns in the vibratory courtship signals of the wandering spider Cupiennius salei Keys. Behavioral Ecology and Sociobiology, 16, 263–271.CrossRefGoogle Scholar
Schuch, W. and Barth, F. G. (1990). Vibratory communication in a spider: female responses to synthetic male vibrations. Journal of Comparative Physiology, A, 166, 817–826.CrossRefGoogle Scholar
Schulz, S. (1997). The chemistry of spider toxins and spider silk. Angewandte Chemie International Edition in English, 36, 314–326.CrossRefGoogle Scholar
Schulz, S. (2004). Semiochemistry of spiders. In Advances in Insect Chemical Ecology (ed. Cardé, R. T. and Miller, J. G.). Cambridge, UK: Cambridge University Press, pp. 110–150.CrossRefGoogle Scholar
Schulz, S. and Toft, S. (1993). Identification of a sex pheromone from a spider. Science, 260, 1635–1637.CrossRefGoogle ScholarPubMed
Segoli, M., Harari, A. R. and Lubin, Y. (2006). Limited mating opportunities and male monogamy: a field study of white widow spiders, Latrodectus pallidus (Theridiidae). Animal Behaviour, 72, 635–642.CrossRefGoogle Scholar
Shamble, P. S., Wilgers, D. J., Swoboda, K. A. and Hebets, E. A. (2009). Courtship effort is a better predictor of mating success than ornamentation for male wolf spiders. Behavioral Ecology, 20, 1242–1251.CrossRefGoogle Scholar
Sheldon, B. C. (2000). Differential allocation: tests, mechanisms and implications. Trends in Ecology and Evolution, 15, 397–402.CrossRefGoogle ScholarPubMed
Shorey, H. (1976). Animal Communication by Pheromones. New York: Academic Press.Google Scholar
Singer, F. and Riechert, S. E. (1994). Tests for sex differences in fitness-linked traits in the spider Agelenopsis aperta (Araneae: Agelenidae). Journal of Insect Behavior, 7, 517–532.CrossRefGoogle Scholar
Singer, F. and Riechert, S. E. (1995). Mating system and mating success of the desert soldier Agelenopsis aperta. Behavioral Ecology and Sociobiology, 36, 313–322.CrossRefGoogle Scholar
Singer, F., Riechert, S. E., Xu, H., et al. (2000). Analysis of courtship success in the funnel web spider Agelenopsis aperta. Behaviour, 137, 93–117.CrossRefGoogle Scholar
Snow, L. S. E. and Andrade, M. C. B. (2004). Pattern of sperm transfer in redback spiders: implications for sperm competition and male sacrifice. Behavioral Ecology, 15, 785–792.CrossRefGoogle Scholar
Stoltz, J. A., Elias, D. O. and Andrade, M. C. B. (2008). Females reward courtship by competing males in a cannibalistic spider. Behavioral Ecology and Sociobiology, 62, 689–697.CrossRefGoogle Scholar
Stoltz, J. A., Elias, D. O. and Andrade, M. C. B. (2009). Male courtship effort determines female response to competing rivals in redback spiders. Animal Behaviour, 77, 79–85.CrossRefGoogle Scholar
Stoltz, J. A., McNeil, J. N. and Andrade, M. C. B. (2007). Males assess chemical signals to discriminate just-mated females from virgins in redback spiders. Animal Behaviour, 74, 1669–1674.CrossRefGoogle Scholar
Stowe, M. K., Tumlinson, J. H. and Heath, R. R.(1987). Chemical mimicry: bolas spiders emit components of moth prey species sex pheromones. Science, 236, 964–967.CrossRefGoogle ScholarPubMed
Stowe, M. K., Turlings, T. C. J., Loughrin, J. H., Lewis, W. J. and Tumlinson, J. H. (1995). The chemistry of eavesdropping, alarm, and deceit. Proceedings of the National Academy of Sciences of the USA, 92, 23–28.CrossRefGoogle ScholarPubMed
Stratton, G. E. (1983). Comparison of courtship behaviors and interspecific crosses in the Schizocosa ocreata species complex (Araneae, Lycosidae). American Zoologist, 23, 967.Google Scholar
Stratton, G. E. (1991). A new species of wolf spider, Schizocosa stridulans (Araneae, Lycosidae). Journal of Arachnology, 19, 29–39.Google Scholar
Stratton, G. E. (2005). Evolution of ornamentation and courtship behavior in Schizocosa: insights from a phylogeny based on morphology (Araneae, Lycosidae). Journal of Arachnology, 33, 347–376.CrossRefGoogle Scholar
Stratton, G. E. and Uetz, G. W. (1981). Acoustic communication and reproductive isolation in two species of wolf spiders (Araneae: Lycosidae). Science Washington DC, 214, 575–577.CrossRefGoogle Scholar
Stratton, G. E. and Uetz, G. W. (1983). Communication via substrate-coupled stridulation and reproductive isolation in wolf spiders (Araneae: Lycosidae). Animal Behaviour, 31, 164–172.CrossRefGoogle Scholar
Stratton, G. E. and Uetz, G. W. (1986). The inheritance of courtship behavior and its role as a reproductive isolating mechanism in two species of Schizocosa wolf spiders (Araneae, Lycosidae). Evolution, 40, 129–141.Google Scholar
Stropa, A. A. (2007). Social encounters between male brown spiders, Loxosceles gaucho (Araneae, Sicariidae). Journal of Arachnology, 35, 493–498.CrossRefGoogle Scholar
Suter, R. B. and Hirscheimer, A. J. (1986). Multiple webborne pheromones in a spider Frontinella pyramitela (Araneae: Linyphiidae). Animal Behaviour, 34, 748–753.CrossRefGoogle Scholar
Suter, R. B. and Keiley, M. (1984). Agonistic interactions between male Frontinella pyramitela (Araneae, Linyphiidae). Behavioral Ecology and Sociobiology, 15, 1–7.CrossRefGoogle Scholar
Suter, R. B. and Renkes, G. (1982). Linyphiid spider courtship: releaser and attractant functions of a contact sex pheromone. Animal Behaviour, 30, 714–718.CrossRefGoogle Scholar
Suter, R. B. and Renkes, G. (1984). The courtship of Frontinella pyramitela (Araneae, Linyphiidae): patterns, vibrations and functions. Journal of Arachnology, 12, 37–54.Google Scholar
Suter, R. B., Shane, C. M. and Hirscheimer, A. J. (1987). Communication by cuticular pheromones in a linyphiid spider. Journal of Arachnology, 15, 157–162.Google Scholar
Suter, R. B., Shane, C. M. and Hirscheimer, A. J. (1989). Spider versus spider: Frontinella pyramitela detects Argyrodes trigonum via cuticular chemicals. Journal of Arachnology, 17, 237–240.Google Scholar
Symonds, M. R. E. and Elgar, M. A. (2008). The evolution of pheromone diversity. Trends in Ecology and Evolution, 23, 220–228.CrossRefGoogle ScholarPubMed
Taylor, L. A. and McGraw, K. J. (2007). Animal coloration: sexy spider scales. Current Biology, 17, R592–R593.CrossRefGoogle ScholarPubMed
Taylor, P. W. and Jackson, R. R. (1999). Habitat-adapted communication in Trite planiceps, a New Zealand jumping spider (Araneae: Salticidae). New Zealand Journal of Zoology, 26, 127–154.CrossRefGoogle Scholar
Taylor, P. W., Hasson, O. and Clark, D. L. (2000). Body postures and patterns as amplifiers of physical condition. Proceedings of the Royal Society of London, B, 267, 917–922.CrossRefGoogle ScholarPubMed
Taylor, P. W., Hasson, O. and Clark, D. L. (2001). Initiation and resolution of jumping spider contests: roles for size, proximity, and early detection of rivals. Behavioral Ecology and Sociobiology, 50, 403–413.CrossRefGoogle Scholar
Taylor, P. W., Roberts, J. A. and Uetz, G. W. (2006). Mating in the absence of visual cues by Schizocosa ocreata (Hentz 1844) wolf spiders (Araneae, Lycosidae). Journal of Arachnology, 34, 501–505.CrossRefGoogle Scholar
Théry, M. and Casas, J. (2009). The multiple disguises of spiders: web colour and decorations, body colour and movement. Royal Society Philosophical Transactions Biological Sciences, 364, 471–480.CrossRefGoogle ScholarPubMed
Tichy, H., Gingl, E., Ehn, R., Papke, M. and Schulz, S. (2001). Female sex pheromone of a wandering spider (Cupiennius salei): identification and sensory reception. Journal of Comparative Physiology, A, 187, 75–78.CrossRefGoogle ScholarPubMed
Tiedemann, K. B., Ventura, D. F. and Ades, C. (1986). Spectral sensitivities of the eyes of the orb web spider Argiope argentata (Fabricius). Journal of Arachnology, 14, 71–78.Google Scholar
Tietjen, W. J. (1977). Dragline-following by male lycosid spiders. Psyche, 84, 165–178.CrossRefGoogle Scholar
Tietjen, W. J. and Rovner, J. S. (1980). Trail-following behaviour in two species of wolf spiders: sensory and etho-ecological concomitants. Animal Behaviour, 28, 735–741.CrossRefGoogle Scholar
Tietjen, W. J. and Rovner, J. S. (1982). Chemical communication in lycosids and other spiders. In Spider Communication: Mechanism and Ecological Significance (ed. Witt, P. N. and Rovner, J. S.). Princeton, NJ: Princeton University Press, pp. 249–279.Google Scholar
Tietjen, W. J., Ayyagari, L. R. and Uetz, G. W. (1987). Symbiosis between social spiders and yeast: the role in prey attraction. Psyche, 94, 151–158.CrossRefGoogle Scholar
Townsend, Jr., V. R. and Felgenhauer, B. E. (1998). Cuticular scales of spiders. Invertebrate Biology, 117, 318–330.CrossRefGoogle Scholar
Townsend, V. R. and Felgenhauer, B. E. (1999). Ultrastructure of the cuticular scales of lynx spiders (Araneae, Oxyopidae) and jumping spiders (Araneae, Salticidae). Journal of Morphology, 240, 77–92.3.0.CO;2-P>CrossRefGoogle Scholar
Trabalon, M. and Assi-Bessekon, D. (2008). Effects of web chemical signatures on intraspecific recognition in a subsocial spider, Coelotes terrestris (Araneae). Animal Behaviour, 76, 1571–1578.CrossRefGoogle Scholar
Trabalon, M., Bagnëres, A. G. and Roland, C. (1997). Contact sex signals in two sympatric spider species, Tegenaria domestica and Tegenaria pagana. Journal of Chemical Ecology, 23, 747–757.CrossRefGoogle Scholar
Trabalon, M., Niogret, J. and Legrand-Frossi, C. (2005). Effect of 20-hydroxyecdysone on cannibalism, sexual behavior, and contact sex pheromone in the solitary female spider, Tegenaria atrica. General and Comparative Endocrinology, 144, 60–66.CrossRefGoogle ScholarPubMed
Tretzel, E. (1959). Zum Begegnungsverhalten von Spinnen. Zoologischer Anzeiger, 163, 194–205.Google Scholar
Uetz, G. W. and Denterlein, G. (1979). Courtship behavior habitat and reproductive isolation in Schizocosa rovneri (Araneae, Lycosidae). Journal of Arachnology, 7, 12–128.Google Scholar
Uetz, G. W. and Roberts, J. A. (2002). Multisensory cues and multimodal communication in spiders: insights form video/audio playback studies. Brain, Behaviour and Evolution, 59, 222–230.CrossRefGoogle Scholar
Uetz, G. W. and Smith, E. I. (1999). Asymmetry in a visual signaling character and sexual selection in a wolf spider. Behavioral Ecology and Sociobiology, 45, 87–93.CrossRefGoogle Scholar
Uetz, G. W. and Stratton, G. E. (1982). Acoustic communication and reproductive isolation in spiders. In Spider Communication: Mechanism and Ecological Significance (ed. Witt, P. N. and Rovner, J. S.). Princeton, NJ: Princeton University Press, pp. 123–129.Google Scholar
Uetz, G. W. and Stratton, G. E. (1983). Communication in spiders. Endeavour, 7, 13–18.CrossRefGoogle Scholar
Uetz, G. W., McClintock, W. J., Miller, D., Smith, E. I. and Cook, K. K. (1996). Limb regeneration and subsequent asymmetry in a male secondary sexual character influences sexual selection in wolf spiders. Behavioral Ecology and Sociobiology, 38, 253–257.CrossRefGoogle Scholar
Uetz, G. W., Roberts, J. A. and Taylor, P. W. (2009a). Multimodal communication and mate choice in wolf spiders: female response to multimodal versus unimodal signals. Animal Behaviour, 78, 299–305.CrossRefGoogle Scholar
Uetz, G. W., Roberts, J. A., Wrinn, K. M., Polak, M. and Cameron, G. N. (2009b). Impact of a catastrophic natural disturbance on fluctuating asymmetry (FA) in a wolf spider. Ecoscience, 16, 379–386.CrossRefGoogle Scholar
Uhl, G. (2000). Female genital morphology and sperm priority patterns in spiders. In European Arachnology (ed. Toft, S. and Scharff, N.). Aarhus, Denmark: Aarhus University Press, pp. 145–156.Google Scholar
Uhl, G. and Maelfait, J.-P. (2008). Male head secretion triggers copulation in the dwarf spider Diplocephalus permixtus. Ethology, 114, 760–767.CrossRefGoogle Scholar
Uhl, G. and Schmitt, M. (1996). Stridulation in Palpimanus gibbulus Dufour (Araneae: Palpimanidae). In Proceedings of the XIIIth International Congress of Arachnology, Geneva, 1995, Revue Suisse de Zoologie vol. hors série, pp. 649–660.Google Scholar
Uhl, G., Nessler, S. H. and Schneider, J. M. (2010). Securing paternity in spiders? A review on occurrence and effects of mating plugs and male genital mutilation. Genetica, 138, 75–104.CrossRefGoogle ScholarPubMed
Vakanas, G. and Krafft, B. (2004). Regulation of the number of spiders participating in collective prey transport in the social spider Anelosimus eximius. Comptes Rendues Biologies, 327, 763–772.CrossRefGoogle ScholarPubMed
VanderSal, N. D. and Hebets, E. A. (2007). Cross-modal effects on learning: a seismic stimulus improves color discrimination learning in a jumping spider. Journal of Experimental Biology, 210, 3689–3695.CrossRefGoogle Scholar
Vollrath, F. and Parker, G. A. (1992). Sexual dimorphism and distorted sex-ratios in spiders. Nature, 360, 156–159.CrossRefGoogle Scholar
Walla, P., Barth, F. G. and Eguchi, E. (1996). Spectral sensitivity of single photoreceptor cells in the eyes of the ctenid spider Cupiennius salei Keys. Zoological Science, 13, 199–202.CrossRefGoogle Scholar
Wanless, F. R. (1984). A revision of the spider genus Cyrba (Araneae; Salticidae) with the description of a new presumptive pheromone dispersing organ. Bulletin of the British Museum of Natural History (Zoology), 47, 445–481.Google Scholar
Watson, P. J. (1986). Transmission of a female sex pheromone thwarted by males in the spider Linyphia litigiosa (Linyphiidae). Science, 233, 219–220.CrossRefGoogle Scholar
Watson, P. J. (1993). Foraging advantage of polyandry for female Sierra Dome spiders (Linyphia litigiosa: Linyphiidae) and assessment of alternative direct benefit hypotheses. American Naturalist, 141, 440–465.CrossRefGoogle Scholar
Watson, P. J. (1998). Multi-male mating and female choice increase offspring growth in the spider Neriene litigiosa (Linyphiidae). Animal Behaviour, 55, 387–403.CrossRefGoogle Scholar
Wells, M. S. (1988). Effects of body size and resource value on fighting behaviour in a jumping spider. Animal Behaviour, 36, 321–326.CrossRefGoogle Scholar
Weygoldt, P. (1977). Communication in crustaceans and arachnids. In How Animals Communicate (ed. Seboek, T. A.). Bloomington, IN: Indiana University Press, pp. 303–333.Google Scholar
Whitehouse, M. E. A. and Lubin, Y. (1999). Competitive foraging in the social spider Stegodyphus dumicola. Animal Behaviour, 58, 677–688.CrossRefGoogle ScholarPubMed
Whitehouse, M. E. A. and Lubin, Y. (2005). The functions of societies and the evolution of group living: spider societies as a test case. Biological Reviews, 80, 347–361.CrossRefGoogle Scholar
Wilson, E. O. (1975). Sociobiology: The New Synthesis. Cambridge, MA: Harvard University Press.Google Scholar
Wilson, E. O. and Bossert, W. H. (1963). Chemical communication among animals. Recent Progress in Hormone Research, 19, 673–716.Google ScholarPubMed
Witt, P. N. and Rovner, J. S. (eds) (1982). In Spider Communication: Mechanism and Ecological Significance. Princeton, NJ: Princeton University Press.CrossRef
Wood-Mason, J. (1876). On the gigantic stridulating spider. Annals and Magazine of Natural History, 16, 96.Google Scholar
Wyatt, T. D. (2003). Pheromones and Animal Behaviour: Communication by Smell and Taste. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Xiao, Y., Zhang, J. and Li, S. (2009). A two-component female-produced pheromone of the spider Pholcus beijingensis. Journal of Chemical Ecology, 35, 769–778.CrossRefGoogle ScholarPubMed
Yamashita, S. (1985). Photoreceptor cells in the spider eye: spectral sensitivity and efferent control. In Neurobiology of Arachnids (ed. Barth, F. G.). Berlin: Springer, pp. 103–117.CrossRefGoogle Scholar
Yamashita, S. and Tateda, H. (1976). Spectral sensitivities of jumping spider eyes. Journal of Comparative Physiology, A, 105, 29–41.CrossRefGoogle Scholar
Yeargan, K. V. (1994). Biology of bolas spiders. Annual Review of Entomology, 39, 81–99.CrossRefGoogle Scholar
Yeargan, K. V. and Quate, L. W. (1996). Juvenile bolas spiders attract psychodid flies. Oecologia, 106, 266–271.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×