Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T17:15:13.323Z Has data issue: false hasContentIssue false

7 - Mating behaviour and sexual selection

Published online by Cambridge University Press:  05 June 2012

Jutta Schneider
Affiliation:
University of Hamburg, Germany
Maydianne Andrade
Affiliation:
University of Toronto Scarborough, Canada
Marie Elisabeth Herberstein
Affiliation:
Macquarie University, Sydney
Get access

Summary

Spider mating behaviour is varied and often surprising. In the past few decades, there has been a shift from descriptive natural history approaches to a more manipulative, theory-based dissection of the behavioural and evolutionary ecology of mating. This approach has yielded evidence in support of important underlying themes of sexual selection. In this chapter, we summarise patterns of mating behaviour in spiders, and the conditions that underlie variation in this behaviour, with an emphasis on how sexual selection theory relates to observed patterns. We end by suggesting spiders may prove particularly tractable models for testing hypotheses regarding mechanisms of sexual selection, sex-specific mating tactics, and reciprocal links between these, and ecology, demography and life history.

Introduction

There are a number of traits common to the true spiders (Order Araneae) that lend unusual dimensions to their mating behaviour (e.g. Uhl and Elias, Chapter 5). Almost all spiders are predacious (for an exception see Meehan et al., 2009), and have sensory systems exquisitely tuned to vibrational and pheromonal signals. Males transfer sperm via specialised intromittent organs (males' palps), not directly connected to the gonads, into females' sperm storage organs of variable number (spermathecae), often via independent insemination tubules (Foelix, 1996). In addition, although the mating season holds risks similar to those for all sexual species (e.g. mate rejection, competitive injury, predation), male spiders (and rarely, females; Aisenberg et al., 2009, Cross et al. 2007b, Jackson and Pollard, 1990, Schutz and Taborsky, 2005) also face the additional risk of mortality through their predacious potential mate.

Type
Chapter
Information
Spider Behaviour
Flexibility and Versatility
, pp. 215 - 274
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahtiainen, J. J., Alatalo, R. V., Kortet, R. and Rantala, M. J. (2004). Sexual advertisement and immune function in an arachnid species (Lycosidae). Behavioral Ecology, 15, 602–606.CrossRefGoogle Scholar
Aisenberg, A. and Costa, F. G. (2005). Females mated without sperm transfer maintain high sexual receptivity in the wolf spider Schizocosa malitiosa. Ethology, 111, 545–558.CrossRefGoogle Scholar
Aisenberg, A. and Costa, F. G. (2008). Reproductive isolation and sex-role reversal in two sympatric sand-dwelling wolf spiders of the genus Allocosa. Canadian Journal of Zoology, 86, 648.CrossRefGoogle Scholar
Aisenberg, A. and Eberhard, W. G. (2009). Female cooperation in plug formation in a spider: effects of male copulatory courtship. Behavioral Ecology, 20, 1236–1241.CrossRefGoogle Scholar
Aisenberg, A., Baruffaldi, L. and González, M. (2010). Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps. Naturwissenschaften, 97, 63–70.CrossRefGoogle ScholarPubMed
Aisenberg, A., Estramil, N., Gonzalez, M., Toscano-Gadea, C. A. and Costa, F. G. (2008). Silk release by copulating Schizocosa malitiosa males (Araneae, Lycosidae): a bridal veil?Journal of Arachnology, 36, 204–206.CrossRefGoogle Scholar
Aisenberg, A., González, M., Laborda, Á., Postiglioni, R. and Simó, M. (2009). Reversed cannibalism, foraging, and surface activities of Allocosa alticeps and Allocosa brasiliensis: two wolf spiders from coastal sand dunes. Journal of Arachnology, 37, 135–138.CrossRefGoogle Scholar
Alatalo, R. V., Kotiaho, J., Mappes, J. and Parri, S. (1998). Mate choice for offspring performance: major benefits or minor costs?Proceedings of the Royal Society of London, B, 265, 2297–2301.CrossRefGoogle Scholar
Anava, A. and Lubin, Y. (1993). Presence of gender cues in the web of a widow spider, Latrodectus revivensis, and a description of courtship behaviour. Bulletin of the British Arachnological Society, 9, 119–122.Google Scholar
Andersen, T., Bollerup, K., Toft, S. and Bilde, T. (2008). Why do males of the spider Pisaura mirabilis wrap their nuptial gifts in silk: female preference or male control?Ethology, 114, 775–781.CrossRefGoogle Scholar
Anderson, J. T. and Morse, D. H. (2001). Pick-up lines: cues used by male crab spiders to find reproductive females. Behavioral Ecology, 12, 360–366.CrossRefGoogle Scholar
Andersson, M. (1994). Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Andrade, M. C. B. (1996). Sexual selection for male sacrifice in the Australian redback spider. Science, 271, 70–72.CrossRefGoogle Scholar
Andrade, M. C. B. (2003). Risky mate search and male self-sacrifice in redback spiders. Behavioral Ecology, 14, 531–538.CrossRefGoogle Scholar
Andrade, M. C. B. and Banta, E. M. (2002). Value of male remating and functional sterility in redback spiders. Animal Behaviour, 63, 857–870.CrossRefGoogle Scholar
Andrade, M. C. B. and Kasumovic, M. M. (2005). Terminal investment strategies and male mate choice: extreme tests of Bateman. Integrative and Comparative Biology, 45, 838–847.CrossRefGoogle ScholarPubMed
Andrade, M. C. B., Gu, L. and Stoltz, J. A. (2005). Novel male trait prolongs survival in suicidal mating. Biology Letters, 1, 276–279.CrossRefGoogle ScholarPubMed
Arnqvist, G. and Henriksson, S. (1997). Sexual cannibalism in the fishing spider and a model for the evolution of sexual cannibalism based on genetic constraints. Evolutionary Ecology, 11, 255–273.CrossRefGoogle Scholar
Arnqvist, G. and Nilsson, T. (2000). The evolution of polyandry: multiple mating and female fitness in insects. Animal Behaviour, 60, 145–164.CrossRefGoogle ScholarPubMed
Arnqvist, G. and Rowe, L. (2005). Sexual Conflict, Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Austad, S. N. (1982). 1st male sperm priority in the bowl and doily spider, Frontinella pyramitela (Walckenaer). Evolution, 36, 777–785.CrossRefGoogle Scholar
Austad, S. N. (1983). A game theoretical interpretation of male combat in the bowl and doily spider (Frontinella pyramitela). Animal Behaviour, 31, 59–73.CrossRefGoogle Scholar
Austad, S. N. (1984). Evolution of Sperm Priority Patterns in Spiders, London: Academic Press.CrossRefGoogle Scholar
Avilés, L. (1997). Causes and consequences of cooperation and permanent-sociality in spiders. In Evolution of Social Behaviour in Insects and Arachnids (ed. Choe, J. and Crespi, B.). Cambridge, UK: Cambridge University Press.Google Scholar
Barth, F. G. and Schmitt, A. (1991). Species recognition and species isolation in wandering spiders (Cupiennius spp.; Ctenidae). Behavioral Ecology and Sociobiology, 29, 333–339.CrossRefGoogle Scholar
Baruffaldi, L. and Costa, F. (2010). Changes in male sexual responses from silk cues of females at different reproductive states in the wolf spider Schizocosa malitiosa. Journal of Ethology, 28, 75–85.CrossRefGoogle Scholar
Bateman, A. J. (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349–368.CrossRefGoogle ScholarPubMed
Becker, E., Riechert, S. and Singer, F. (2005). Male induction of female quiescence/catalepsis during courtship in the spider, Agelenopsis aperta. Behaviour, 142, 57–70.CrossRefGoogle Scholar
Bel-Venner, M. C. and Venner, S. (2006). Mate-guarding strategies and male competitive ability in an orb-weaving spider: results from a field study. Animal Behaviour, 71, 1315–1322.CrossRefGoogle Scholar
Bel-Venner, M. C., Dray, S., Allaine, D., Menu, F. and Venner, S. (2008). Unexpected male choosiness for mates in a spider. Proceedings of the Royal Society of London, B, 275, 77–82.CrossRefGoogle Scholar
Berendonck, B. and Greven, H. (2005). Genital structures in the entelegyne widow spider Latrodectus revivensis (Arachnida; Araneae; Theridiidae) indicate a low ability for cryptic female choice by sperm manipulation. Journal of Morphology, 263, 118–132.CrossRefGoogle ScholarPubMed
Bilde, T., Lubin, Y., Smith, D., Schneider, J. M. and Maklakov, A. A. (2005). The transition to social inbred mating systems in spiders: role of inbreeding tolerance in a subsocial predecessor. Evolution, 59, 160–174.CrossRefGoogle Scholar
Bilde, T., Maklakov, A. A. and Schilling, N. (2007a). Inbreeding avoidance in spiders: evidence for rescue effect in fecundity of female spiders with outbreeding opportunity. Journal of Evolutionary Biology, 20, 1237–1242.CrossRefGoogle ScholarPubMed
Bilde, T., Tuni, C., Elsayed, R., Pekar, S. and Toft, S. (2006). Death feigning in the face of sexual cannibalism. Biology Letters, 2, 23–25.CrossRefGoogle ScholarPubMed
Bilde, T., Tuni, C., Elsayed, R., Pekar, S. and Toft, S. (2007b). Nuptial gifts of male spiders: sensory exploitation of the female's maternal care instinct or foraging motivation?Animal Behaviour, 73, 267–273.CrossRefGoogle Scholar
Birkhead, T. R. (1998). Cryptic female choice: criteria for establishing female sperm choice. Evolution, 52, 1212–1218.CrossRefGoogle ScholarPubMed
Bonduriansky, R. (2001). The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biological Reviews, 76, 305–339.CrossRefGoogle ScholarPubMed
Bonte, D., Belle, S. and Maelfait, J. P. (2007). Maternal care and reproductive state-dependent mobility determine natal dispersal in a wolf spider. Animal Behaviour, 74, 63–69.CrossRefGoogle Scholar
Boorman, E. and Parker, G. A. (1976). Sperm (ejaculate) competition in Drosophila melanogaster, and reproductive value of females to males in relation to female age and mating status. Ecological Entomology, 1, 145–155.CrossRefGoogle Scholar
Bradbury, J. W. and Vehrencamp, S. L. (2000). Economic models of animal communication. Animal Behaviour, 59, 259–268.CrossRefGoogle ScholarPubMed
Bridge, A. P., Elwood, R. W. and Dick, J. T. A. (2000). Imperfect assessment and limited information preclude optimal strategies in male-male fights in the orb-weaving spider Metellina mengei. Proceedings of the Royal Society of London, B, 267, 273–279.CrossRefGoogle ScholarPubMed
Bristowe, W. S. (1958). The World of Spiders. London: Collins.Google Scholar
Bukowski, T. C. and Avilés, L. (2002). Asynchronous maturation of the sexes may limit close inbreeding in a subsocial spider. Canadian Journal of Zoology, 80, 193–198.CrossRefGoogle Scholar
Bukowski, T. C. and Christenson, T. E. (1997). Determinants of sperm release and storage in a spiny orbweaving spider. Animal Behaviour, 53, 381–395.CrossRefGoogle Scholar
Bukowski, T. C., Linn, C. D. and Christenson, T. E. (2001). Copulation and sperm release in Gasteracantha cancriformis (Araneae: Araneidae): differential male behaviour based on female mating history. Animal Behaviour, 62, 887–895.CrossRefGoogle Scholar
Burger, M. (2007). Sperm dumping in a haplogyne spider. Journal of Zoology, 273, 74–81.CrossRefGoogle Scholar
Burger, M., Michalik, P., Graber, W., et al. (2006). Complex genital system of a haplogyne spider (Arachnida, Araneae, Tetrablemmidae) indicates internal fertilization and full female control over transferred sperm. Journal of Morphology, 267, 166–186.CrossRefGoogle ScholarPubMed
Burger, M., Nentwig, W. and Kropf, C. (2003). Complex genital structures indicate cryptic female choice in a haplogyne spider (Arachnida, Araneae, Oonopidae, Gamasomorphinae). Journal of Morphology, 255, 80–93.CrossRefGoogle Scholar
Buston, P. and Emlen, S. (2003). Cognitive processes underlying human mate choice: the relationship between self-perception and mate preference in Western society. Proceedings of the National Academy of Sciences of the USA, 100, 8805–8810.CrossRefGoogle ScholarPubMed
Catley, K. (1993). Courtship, mating and post-oviposition behaviour of Hypochilus pococki Platnick (Araneae, Hypochilidae). Memoirs of the Queensland Museum, 33, 469–474.Google Scholar
Chapman, T. (2006). Evolutionary conflicts of interest between males and females. Current Biology, 16, R744–R754.CrossRefGoogle ScholarPubMed
Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F. and Partridge, L. (1995). Cost of mating in Drosophila melanogaster females is mediated by male accessory-gland products. Nature, 373, 241–244.CrossRefGoogle ScholarPubMed
Chinta, S. P., Goller, S., Lux, J., et al. (2010). The sex pheromone of the wasp spider Argiope bruennichi. Angewandte Chemie International Edition, 49, 2033–2036.CrossRefGoogle ScholarPubMed
Christenson, T. E. and Goist, K. C. (1979). Costs and benefits of male-male competition in the orb-weaving spider Nephila clavipes. Behavioral Ecology and Sociobiology, 5, 87–92.CrossRefGoogle Scholar
Clark, D. L. and Biesiadecki, B. (2002). Mating success and alternative reproductive strategies of the dimorphic jumping spider, Maevia inclemens (Araneae, Salticidae). Journal of Arachnology, 30, 511–518.CrossRefGoogle Scholar
Clark, D. L. and Morjan, C. L. (2001). Attracting female attention: the evolution of dimorphic courtship displays in the jumping spider Maevia inclemens (Araneae: Salticidae). Proceedings of the Royal Society of London, B, 268, 2461–2465.CrossRefGoogle Scholar
Clark, D. L. and Uetz, G. W. (1992). Morph-independent mate selection in a dimorphic jumping spider: demonstration of movement bias in female choice using video-controlled courtship behavior. Animal Behaviour, 43, 247–254.CrossRefGoogle Scholar
Clark, D. L. and Uetz, G. W. (1993). Signal efficacy and the evolution of male dimorphism in the jumping spider, Maevia inclemens. Proceedings of the National Academy of Sciences of the USA, 90, 11 954–11 957.CrossRefGoogle ScholarPubMed
Cornell, S. J. and Tregenza, T. (2007). A new theory for the evolution of polyandry as a means of inbreeding avoidance. Proceedings of the Royal Society of London, B, 274, 2873–2879.CrossRefGoogle ScholarPubMed
Costa, F. G. and Pérez-Miles, F. (1998). Behavior, life cycle and webs of Mecicobothrium thorelli (Araneae, Mygalomorphae, Mecicobothriidae). Journal of Arachnology, 26, 317–329.Google Scholar
Costa-Schmidt, L. E., Carico, J. E. and Araujo, A. M. (2008). Nuptial gifts and sexual behavior in two species of spider (Araneae, Trechaleidae, Paratrechalea). Naturwissenschaften, 95, 731–739.CrossRefGoogle Scholar
Cross, F., Jackson, R. R., Pollard, S. D. and Walker, M. (2007a). Cross-modality effects during male–male interactions of jumping spiders. Behavioural Processes, 75, 290–296.CrossRefGoogle ScholarPubMed
Cross, F. R., Jackson, R. R. and Pollard, S. D. (2007b). Male and female mate-choice decisions by Evarcha culicivora, an East African jumping spider. Ethology, 113, 901–908.CrossRefGoogle Scholar
Davies, N. B. and Halliday, T. M. (1979). Competitive mate searching in male common toads, Bufo bufo. Animal Behaviour, 27, 1253–1267.CrossRefGoogle Scholar
DeCarvalho, T. N., Watson, P. J. and Field, S. A. (2004). Costs increase as ritualized fighting progresses within and between phases in the sierra dome spider, Neriene litigiosa. Animal Behaviour, 68, 473–482.CrossRefGoogle Scholar
Dodson, G. N. and Beck, M. W. (1993). Pre-copulatory guarding of penultimate females by male crab spiders, Misumenoides formosipes. Animal Behaviour, 46, 951–959.CrossRefGoogle Scholar
Dodson, G. N. and Schwaab, A. T. (2001). Body size, leg autotomy, and prior experience as factors in the fighting success of male crab spiders, Misumenoides formosipes. Journal of Insect Behavior, 14, 841–855.CrossRefGoogle Scholar
Drengsgaard, I. L. and Toft, S. (1999). Sperm competition in a nuptial feeding spider, Pisaura mirabilis. Behaviour, 136, 877–897.CrossRefGoogle Scholar
Eberhard, W. G. (1996). Female Control: Sexual Selection by Cryptic Female Choice. Princeton, NJ: Princeton University Press.Google Scholar
Eberhard, W. G. (1998). Female roles in sperm competition. In Sperm Competition and Sexual Selection (ed. Birkhead, T. R. and Moller, A. P.). London: Academic Press.Google Scholar
Eberhard, W. G. (2000). Criteria for demonstrating postcopulatory female choice. Evolution, 54, 1047–1050.CrossRefGoogle ScholarPubMed
Eberhard, W. G. (2004). Why study spider sex: special traits of spiders facilitate studies of sperm competition and cryptic female choice. Journal of Arachnology, 32, 545–556.CrossRefGoogle Scholar
Eberhard, W. G. and Huber, B. A. (2010) Spider genitalia: precise maneuvers with a numb structure in a complex lock. In Evolution of Primary Sexual Characters in Animals (ed. Leonard, J. and Córdoba-Aguilar, A.). Oxford, UK:Oxford University Press.Google Scholar
Elgar, M. A. (1992). Sexual cannibalism in spiders and other invertebrates. In Cannibalism: Ecology and Evolution among Diverse Taxa (ed. Elgar, M. A. and Crespi, B. J.). New York: Oxford University Press.Google Scholar
Elgar, M. A. (1998). Sperm competition and sexual selection in spiders and other arachnids. In Sperm Competition and Sexual Selection (ed. Birkhead, T. R. and Moller, A. P.). London: Academic Press.Google Scholar
Elgar, M. A. and Bathgate, R. (1996). Female receptivity and male mate-guarding in the jewel spider Gasteracantha minax Thorell (Araneidae). Journal of Insect Behavior, 9, 729–738.CrossRefGoogle Scholar
Elgar, M. A. and Fahey, B. F. (1996). Sexual cannibalism, competition, and size dimorphism in the orb-weaving spider Nephila plumipes Latreille (Araneae: Araneoidea). Behavioral Ecology, 7, 195–198.CrossRefGoogle Scholar
Elgar, M. A. and Jones, T. M. (2008). Size-dependent mating strategies and the risk of cannibalism. Biological Journal of the Linnean Society, 94, 355–363.CrossRefGoogle Scholar
Elgar, M. A. and Schneider, J. M. (2004). Evolutionary significance of sexual cannibalism. Advances in the Study of Behavior, 34, 135–163.CrossRefGoogle Scholar
Elgar, M. A., Crespigny, F. E. C. and Ramamurthy, S. (2003). Male copulation behaviour and the risk of sperm competition. Animal Behaviour, 66, 211–216.CrossRefGoogle Scholar
Elgar, M. A., Schneider, J. M. and Herberstein, M. E. (2000). Female control of paternity in the sexually cannibalistic spider Argiope keyserlingi. Proceedings of the Royal Society of London, B, 267, 2439–2443.CrossRefGoogle ScholarPubMed
Elias, D. O., Hebets, E. A., Hoy, R. R., Maddison, W. P. and Mason, A. C. (2007). Regional seismic song differences in Sky Island populations of the jumping spider Habronattus pugillis Griswold (Araneae, Salticidae). Journal of Arachnology, 34, 545–556.CrossRefGoogle Scholar
Elias, D. O., Hebets, E. A., Hoy, R. R. and Mason, A. C. (2005). Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae: Salticidae). Animal Behaviour, 69, 931–938.CrossRefGoogle Scholar
Elias, D. O., Kasumovic, M. M., Andrade, M. C. B., Mason, A. C. and Punzalan, D. (2008a). Assessment during aggressive contests between male jumping spiders. Animal Behaviour, 76, 901–910.CrossRefGoogle ScholarPubMed
Elias, D. O., Kasumovic, M. M., Punzalan, D., Andrade, M. C. B. and Mason, A. C. (2008b). Assessment during aggressive contests between male jumping spiders. Animal Behaviour, 76, 901–910.CrossRefGoogle ScholarPubMed
Elias, D. O., Mason, A. C. and Hoy, R. R. (2004). The effect of substrate on the efficacy of seismic courtship signal transmission in the jumping spider Habronattus dossenus (Araneae: Salticidae). Journal of Experimental Biology, 207, 4105–4110.CrossRefGoogle Scholar
Elias, D. O., Mason, A. C., Maddison, W. P. and Hoy, R. R. (2003). Seismic signals in a courting male jumping spider (Araneae: Salticidae). Journal of Experimental Biology, 206, 4029–4039.CrossRefGoogle Scholar
Enquist, M. and Leimar, O. (1983). Evolution of fighting behaviour: decision rules and the assessment of relative strength. Journal of Theoretical Biology, 102, 387–410.CrossRefGoogle Scholar
Enquist, M. and Leimar, O. (1987). Evolution of fighting behaviour: the effect of variation in resource value. Journal of Theoretical Biology, 127, 187–205.CrossRefGoogle Scholar
Enquist, M. and Leimar, O. (1990). The evolution of fatal fighting. Animal Behaviour, 39, 1–9.CrossRefGoogle Scholar
Erez, T., Schneider, J. M. and Lubin, Y. (2005). Is male cohabitation costly for females of the spider Stegodyphus lineatus (Eresidae)?Ethology, 111, 693–704.CrossRefGoogle Scholar
Estramil, N. and Costa, F. G. (2007). Female sexual receptivity after partial copulations in the wolf spider (Schizocosa malitiosa). Journal of Zoology, 271, 148–153.CrossRefGoogle Scholar
Foelix, R. F. (1996). Biology of Spiders. Oxford, UK: Oxford University Press.Google Scholar
Foellmer, M. and Moya-Larano, J. (2007). Sexual size dimorphism in spiders: patterns and processes. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (ed. Fairbairn, D. J., Blanckenhorn, W. and Székely, T.). Oxford, UK: Oxford University Press.Google Scholar
Foellmer, M. W. (2008). Broken genitals function as mating plugs and affect sex ratios in the orb-web spider Argiope aurantia. Evolutionary Ecology Research, 10, 449–462.Google Scholar
Foellmer, M. W. and Fairbairn, D. J. (2003). Spontaneous male death during copulation in an orb-weaving spider. Proceedings of the Royal Society of London, B, 270, S183–S185.CrossRefGoogle Scholar
Foellmer, M. W. and Fairbairn, D. J. (2004). Males under attack: sexual cannibalism and its consequences for male morphology and behaviour in an orb-weaving spider. Evolutionary Ecology Research, 6, 163–181.Google Scholar
Foellmer, M. W. and Fairbairn, D. J. (2005). Competing dwarf males: sexual selection in an orb-weaving spider. Journal of Evolutionary Biology, 18, 629–641.CrossRefGoogle Scholar
Forster, L. M. (1992). The sterotyped behaviour of sexual cannibalism in Lactrodectus hasselti Thorell (Araneae, Theridiidae), the Australian redback spider. Australian Journal of Zoology, 40, 1–11.CrossRefGoogle Scholar
Forster, L. M. (1995). The behavioral ecology of Latrodectus hasselti (Thorell), the Australian redback spider (Araneae: Theridiidae): A review. Records of the Western Australian Museum, Supplement, 52, 13–24.Google Scholar
Fromhage, L., Jacobs, K. and Schneider, J. M. (2007). Monogynous mating behaviour and its ecological basis in the golden orb spider Nephila fenestrata. Ethology, 113, 813–820.CrossRefGoogle Scholar
Fromhage, L., Mcnamara, J. M. and Houston, A. I. (2008). A model for the evolutionary maintenance of monogyny in spiders. Journal of Theoretical Biology, 250, 524–531.CrossRefGoogle ScholarPubMed
Fromhage, L. and Schneider, J. M. (2005a). Safer sex with feeding females: sexual conflict in a cannibalistic spider. Behavioral Ecology, 16, 377–382.CrossRefGoogle Scholar
Fromhage, L. and Schneider, J. M. (2005b). Virgin doves and mated hawks: contest behaviour in a spider. Animal Behaviour, 70, 1099–1104.CrossRefGoogle Scholar
Fromhage, L. and Schneider, J. M. (2006). Emasculation to plug up females: the significance of pedipalp damage in Nephila fenestrata. Behavioral Ecology, 17, 353–357.CrossRefGoogle Scholar
Fromhage, L., Elgar, M. A. and Schneider, J. M. (2005). Faithful without care: the evolution of monogyny. Evolution, 59, 1400–1405.CrossRefGoogle ScholarPubMed
Gaskett, A. C. (2007). Spider sex pheromones: emission, reception, structures, and functions. Biological Reviews, 82, 26–48.CrossRefGoogle ScholarPubMed
Gaskett, A. C., Herberstein, M. E., Downes, B. J. and Elgar, M. A. (2004). Changes in male mate choice in a sexually cannibalistic orb-web spider (Araneae: Araneidae). Behaviour, 141, 1197–1210.CrossRefGoogle Scholar
Hack, M. A., Thompson, D. J. and Fernandes, D. M. (1997). Fighting in males of the autumn spider, Metellina segmentata: effects of relative body size, prior residency and female value on contest outcome and duration. Ethology, 103, 488–498.CrossRefGoogle Scholar
Hammer, O. (1941). Biological and ecological investigations on flies associated with pasturing cattle and their excrement. Videnskabelige Meddelser Dansk Naturhistorisk Forening, 105, 1–257.Google Scholar
Hansen, L. S., Gonzalez, S. F., Toft, S. and Bilde, T. (2008). Thanatosis as an adaptive male mating strategy in the nuptial gift-giving spider Pisaura mirabilis. Behavioral Ecology, 19, 546–551.CrossRefGoogle Scholar
Harari, A., Ziv, M. and Lubin, Y. (2009). Conflict or cooperation in the courtship display of the white widow spider, Latrodectus pallidus. Journal of Arachnology, 37, 254–260.CrossRefGoogle Scholar
Hebets, E. A. (2003). Subadult experience influences adult mate choice in an arthropod: exposed female wolf spiders prefer males of a familiar phenotype. Proceedings of the National Academy of Sciences of the USA, 100, 13 390–13 395.CrossRefGoogle Scholar
Hebets, E. A. and Uetz, G. W. (2000). Leg ornamentation and the efficacy of courtship display in four species of wolf spider (Araneae: Lycosidae). Behavioral Ecology and Sociobiology, 47, 280–286.CrossRefGoogle Scholar
Hebets, E. A. and Vink, C. J. (2007). Experience leads to preference: experienced females prefer brush-legged males in a population of syntopic wolf spiders. Behavioral Ecology, 18, 1010–1020.CrossRefGoogle Scholar
Hebets, E. A., Elias, D. O., Mason, A. C., Miller, G. L. and Stratton, G. E. (2008a). Substrate-dependent signalling success in the wolf spider, Schizocosa retrorsa. Animal Behaviour, 75, 605–615.CrossRefGoogle Scholar
Hebets, E. A., Wesson, J. and Shamble, P. S. (2008b). Diet influences mate choice selectivity in adult female wolf spiders. Animal Behaviour, 76, 355–363.CrossRefGoogle Scholar
Hedrick, A. V. (1988). Female choice and the heritability of attractive male traits: an empirical study. American Naturalist, 132, 267.CrossRefGoogle Scholar
Herberstein, M. E., Barry, K. L., Turoczy, M. A., et al. (2005a). Post-copulation mate guarding in the sexually cannibalistic St Andrew's Cross spider (Araneae, Araneidae). Ethology, Ecology and Evolution, 17, 17–26.CrossRefGoogle Scholar
Herberstein, M. E., Gaskett, A. C., Schneider, J. M., et al. (2005b). Limits to male copulation frequency: sexual cannibalism and sterility in St Andrew's Cross spiders (Araneae, Araneidae). Ethology, 111, 1050–1061.CrossRefGoogle Scholar
Herberstein, M. E., Schneider, J. M. and Elgar, M. A. (2002). Costs of courtship and mating in a sexually cannibalistic orb-web spider: female mating strategies and their consequences for males. Behavioral Ecology and Sociobiology, 51, 440–446.Google Scholar
Hoefler, C. D. (2002). Is contest experience a trump card? The interaction of residency status, experience, and body size on fighting success in Misumenoides formosipes (Araneae: Thomisidae). Journal of Insect Behavior, 15, 779–790.CrossRefGoogle Scholar
Hoefler, C. D. (2007). Male mate choice and size-assortative pairing in a jumping spider, Phidippus clarus. Animal Behaviour, 73, 943–954.CrossRefGoogle Scholar
Hoefler, C. D. (2008). The costs of male courtship and potential benefits of male choice for large mates in Phidippus clarus (Araneae, Salticidae). Journal of Arachnology, 36, 210–212.CrossRefGoogle Scholar
Hosken, D. J., Stockley, P., Tregenza, T. and Wedell, N. (2009). Monogamy and the battle of the sexes. Annual Review of Entomology, 54, 361–378.CrossRefGoogle ScholarPubMed
Hsu, Y. and Wolf, L. L. (2001). The winner and loser effect: what fighting behaviours are influenced?Animal Behaviour, 61, 777–786.CrossRefGoogle Scholar
Hsu, Y., Earley, R. L. and Wolf, L. L. (2006). Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biological Reviews, 81, 33–74.CrossRefGoogle ScholarPubMed
Huber, B. A. (2003). Rapid evolution and species-specificity of arthropod genitalia: fact or artifact?Organisms Diversity and Evolution, 3, 63–71.CrossRefGoogle Scholar
Huber, B. A. (2005). Sexual selection research on spiders: progress and biases. Biological Reviews, 80, 363–385.CrossRefGoogle Scholar
Huber, B. A. and Eberhard, W. G. (1997). Courtship, copulation, and genital mechanics in Physocyclus globosus (Araneae, Pholcidae). Canadian Journal of Zoology, 75, 905–918.CrossRefGoogle Scholar
Jackson, R. R. (1978). An analysis of alternative mating tactics of the jumping spider Phidippus johnsoni (Araneae, Salticidae). Journal of Arachnology, 5, 185–230.Google Scholar
Jackson, R. R. (1981). Relationship between reproductive security and intersexual selection in a jumping spider Phidippus johnsoni (Araneae, Salticidae). Evolution, 35, 601–604.CrossRefGoogle Scholar
Jackson, R. R. (1983). The biology of Mopsus mormon, a jumping spider (Araneae: Salticidae) from Queensland: intraspecific interactions. Australian Journal of Zoology, 31, 39–53.CrossRefGoogle Scholar
Jackson, R. R. (1986). The display behaviour of Cyllobelus rufopictus (Simon) (Araneae, Salticidae), a jumping spider from Kenya. New Zealand Journal of Zoology, 13, 27–43.CrossRefGoogle Scholar
Jackson, R. R. (1997). Jumping spider mating strategies: sex among cannibals in and out of webs. In Evolution of Mating Systems in Insects and Arachnids (ed. Choe, J. and Crespi, B.). Cambridge, UK: Cambridge University Press.Google Scholar
Jackson, R. R. and Cooper, K. J. (1991). The influence of body size and prior residency on the outcome of male-male interactions of Marpissa marina, a New-Zealand jumping spider (Araneae, Salticidae). Ethology, Ecology and Evolution, 3, 79–82.CrossRefGoogle Scholar
Jackson, R. R. and Macnab, A. M. (1989a). Display behaviour of Corythalia canosa, an ant-eating jumping spider (Araneae: Salticidae) from Florida. New Zealand Journal of Zoology, 16, 169–183.CrossRefGoogle Scholar
Jackson, R. R. and Macnab, A. M. (1989b). Display, mating, and predatory behaviour of the jumping spider Plexippus paykulli (Araneae: Salticidae). New Zealand Journal of Zoology, 16, 151–168.CrossRefGoogle Scholar
Jackson, R. R. and Pollard, S. D. (1990). Intraspecific interactions and the function of courtship in mygalomorph spiders: a study of Porrhothele antipodiana (Araneae, Hexathelidae) and a literature-review. New Zealand Journal of Zoology, 17, 499–526.CrossRefGoogle Scholar
Jackson, R. R., Walker, M. W., Pollard, S. D. and Cross, F. R. (2006). Influence of seeing a female on the male-male interactions of a jumping spider, Hypoblemum albovittatum. Journal of Ethology, 24, 231–238.CrossRefGoogle Scholar
Jerhot, E., Stoltz, J. A., Andrade, M. C. B. and Schulz, S. (2010). Acylated serine derivatives: a unique class of arthropod pheromones of the Australian redback spider, Latrodectus hasselti. Angewandte Chemie International Edition, 49, 1–5.CrossRefGoogle ScholarPubMed
Jiao, X., Wu, J., Chen, Z., Chen, J. and Liu, F. (2009). Effects of temperature on courtship and copulatory behaviours of a wolf spider Pardosa astrigera (Araneae: Lycosidae). Journal of Thermal Biology, 34, 348–352.CrossRefGoogle Scholar
Johannesen, J. and Lubin, Y. (2001). Evidence for kin-structured group founding and limited juvenile dispersal in the sub-social spider Stegodyphus lineatus (Araneae, Eresidae). Journal of Arachnology, 29, 413–422.CrossRefGoogle Scholar
Johansson, B. G. and Jones, T. M. (2007). The role of chemical communication in mate choice. Biological Reviews, 82, 265–289.CrossRefGoogle ScholarPubMed
Johnson, J. C. (2005a). Cohabitation of juvenile females with mature males promotes sexual cannibalism in fishing spiders. Behavioral Ecology, 16, 269–273.CrossRefGoogle Scholar
Johnson, J. C. (2005b). The role of body size in mating interactions of the sexually cannibalistic fishing spider Dolomedes triton. Ethology, 111, 51–61.CrossRefGoogle Scholar
Johnson, J. C. and Sih, A. (2005). Precopulatory sexual cannibalism in fishing spiders (Dolomedes triton): a role for behavioral syndromes. Behavioral Ecology and Sociobiology, 58, 390–396.CrossRefGoogle Scholar
Johnson, J. C. and Sih, A. (2007). Fear, food, sex and parental care: a syndrome of boldness in the fishing spider, Dolomedes triton. Animal Behaviour, 74, 1131–1138.CrossRefGoogle Scholar
Johnson, S. A. and Jakob, E. M. (1999). Leg autotomy in a spider has minimal costs in competitive ability and development. Animal Behaviour, 57, 957–965.CrossRefGoogle Scholar
Jones, T. M. and Elgar, M. A. (2008). Male insemination decisions and sperm quality influence paternity in the golden orb-weaving spider. Behavioral Ecology, 19, 285–291.CrossRefGoogle Scholar
Kaston, B. J. (1970). Comparative biology of American black widow spiders. Transactions of the San Diego Society of Natural History, 16, 33–82.Google Scholar
Kasumovic, M. M. and Andrade, M. C. B (2004). Discrimination of airborne pheromones by mate-searching male western black widow spiders (Latrodectus hesperus): species- and population-specific responses. Canadian Journal of Zoology, 82, 1027–1034.CrossRefGoogle Scholar
Kasumovic, M. M. and Andrade, M. C. B (2006). Male development tracks rapidly shifting sexual versus natural selection pressures. Current Biology, 16, R242–R243.CrossRefGoogle ScholarPubMed
Kasumovic, M. M. and Andrade, M. C. B (2009). A change in competitive context reverses sexual selection on male size. Journal of Evolutionary Biology, 22, 324–333.CrossRefGoogle ScholarPubMed
Kasumovic, M. M., Bruce, M. J, Andrade, M. C. B and Herberstein, M. E. (2008). Spatial and temporal demographic variation drives within-season fluctuations in sexual selection. Evolution: International Journal of Organic Evolution, 62, 2316–2325.CrossRefGoogle ScholarPubMed
Kasumovic, M. M., Elias, D. O, Punzalan, D., Mason, A. C and Andrade, M. C. B (2009). Experience affects the outcome of agonistic contests without affecting the selective advantage of size. Animal Behaviour, 77, 1533–1538.CrossRefGoogle ScholarPubMed
Kasumovic, M. M., Elias, D. O, Sivalinghem, S., Mason, A. C. and Andrade, M. C. B (2010). Examination of prior contest experience and the retention of winner and loser effects. Behavioral Ecology, 21, 404–409.CrossRefGoogle ScholarPubMed
Kindle, T., Johnson, K., Ivy, T., Weddle, C. and Sakaluk, S. (2006). Female mating frequency increases with temperature in two cricket species, Gryllodes sigillatus and Acheta domesticus (Orthoptera: Gryllidae). Canadian Journal of Zoology, 84, 1345–1350.CrossRefGoogle Scholar
Knipling, E. F. (1955). Possibilities of insect control or eradication through the use of sexually sterile males. Journal of Economic Entomology, 48, 459–462.CrossRefGoogle Scholar
Knoflach, B. (1998). Mating in Theridion varians Hahn and related species (Araneae: Theridiidae). Journal of Natural History, 32, 545–604.CrossRefGoogle Scholar
Knoflach, B. and Benjamin, S. P (2003). Mating without sexual cannibalism in Tidarren sisyphoides (Araneae, Theridiidae). Journal of Arachnology, 31, 445–448.CrossRefGoogle Scholar
Knoflach, B. and Harten, A. (2000). Palpal loss, single palp copulation and obligatory mate consumption in Tidarren cuneolatum (Tullgren, 1910) (Araneae, Theridiidae). Journal of Natural History, 34, 1639–1659.CrossRefGoogle Scholar
Kokko, H. and Jennions, M. D (2008). Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology, 21, 919–948.CrossRefGoogle ScholarPubMed
Kotiaho, J., Alatalo, R. V, Mappes, J. and Parri, S. (1996). Sexual selection in a wolf spider: male drumming activity, body size, and viability. Evolution, 50, 1977–1981.CrossRefGoogle Scholar
Kotiaho, J. S. (2000). Testing the assumptions of conditional handicap theory: costs and condition dependence of a sexually selected trait. Behavioral Ecology and Sociobiology, 48, 188–194.CrossRefGoogle Scholar
Kotiaho, J. S. and Puurtinen, M. (2007). Mate choice for indirect genetic benefits: scrutiny of the current paradigm. Functional Ecology, 21, 638–644.CrossRefGoogle Scholar
Kotiaho, J. S., Alatalo, R. V, Mappes, J. and Parri, S. (1999a). Honesty of agonistic signalling and effects of size and motivation asymmetry in contests. Acta Ethologica, 2, 0013–0021.CrossRefGoogle Scholar
Kotiaho, J. S., Alatalo, R. V, Mappes, J. and Parri, S. (1999b). Sexual signalling and viability in a wolf spider (Hygrolycosa rubrofasciata): measurements under laboratory and field conditions. Behavioral Ecology and Sociobiology, 46, 123–128.CrossRefGoogle Scholar
Kotiaho, J. S., Alatalo, R. V, Mappes, J. and Parri, S. (2004). Adaptive significance of synchronous chorusing in an acoustically signalling wolf spider. Proceedings of the Royal Society of London, B, 271, 1847–1850.CrossRefGoogle Scholar
Kuntner, M., Coddington, J. A and Hormiga, G. (2008). Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. Cladistics, 24, 147–217.CrossRefGoogle Scholar
Kuntner, M., Coddington, J. A and Schneider, J. M. (2009a). Intersexual arms race? Genital coevolution in nephilid spiders (Araneae, Nephilidae). Evolution, 63, 1451–1463.CrossRefGoogle Scholar
Kuntner, M., Kralj-Fiser, S., Schneider, J. M and Li, D. (2009b). Mate plugging via genital mutilation in nephilid spiders: an evolutionary hypothesis. Journal of Zoology, 277, 257–266.CrossRefGoogle Scholar
Lang, A. (1996). Silk investment in gifts by males of the nuptial feeding spider Pisaura mirabilis (Araneae: Pisauridae). Behaviour, 133, 697–716.CrossRefGoogle Scholar
Leimar, O., Austad, S. and Enquist, M. (1991). A test of the sequential assessment game – fighting in the bowl and doily spiderFrontinella pyramitela. Evolution, 45, 862–874.CrossRefGoogle ScholarPubMed
Li, D. and Kuan, J. Y. X (2006). Natal dispersal and breeding dispersal of a subsocial spitting spider (Scytodes pallida) (Araneae: Scytodidae), from Singapore. Journal of Zoology, 268, 121–126.CrossRefGoogle Scholar
Linn, C. D., Molina, Y., Difatta, J. and Christenson, T. E. (2007). The adaptive advantage of prolonged mating: a test of alternative hypotheses. Animal Behaviour, 74, 481–485.CrossRefGoogle Scholar
Maddison, W. and Hedin, M. (2003). Phylogeny of Habronattus jumping spiders (Araneae: Salticidae), with consideration of genital and courtship evolution. Systematic Entomology, 28, 1–21.CrossRefGoogle Scholar
Maddison, W. P. and Stratton, G. E (1988). Sound production and associated morphology in male jumping spiders of the Habronattus agilis species group (Araneae, Salticidae). Journal of Arachnology, 16, 199–211.Google Scholar
Maklakov, A. A. and Lubin, Y. (2004). Sexual conflict over mating in a spider: increased fecundity does not compensate for the costs of polyandry. Evolution, 58, 1135–1140.CrossRefGoogle Scholar
Maklakov, A. A. and Lubin, Y. (2006). Indirect genetic benefits of polyandry in a spider with direct costs of mating. Behavioral Ecology and Sociobiology, 61, 31–38.CrossRefGoogle Scholar
Maklakov, A. A., Bilde, T. and Lubin, Y. (2003). Vibratory courtship in a web-building spider: signalling quality or stimulating the female?Animal Behaviour, 66, 623–630.CrossRefGoogle Scholar
Maklakov, A. A., Bilde, T. and Lubin, Y. (2004). Sexual selection for increased male body size and protandry in a spider. Animal Behaviour, 68, 1041–1048.CrossRefGoogle Scholar
Maklakov, A. A., Bilde, T. and Lubin, Y. (2005). Sexual conflict in the wild: elevated mating rate reduces female lifetime reproductive success. American Naturalist, 165, S38–S45.CrossRefGoogle ScholarPubMed
Mappes, J., Alatalo, R. V, Kotiaho, J. and Parri, S. (1996). Viability costs of condition-dependent sexual male display in a drumming wolf spider. Proceedings of the Royal Society of London, B, 263, 785–789.CrossRefGoogle Scholar
Mas, E., Ribera, C. and Moya-Larano, J. (2009). Resurrecting the differential mortality model of sexual size dimorphism. Journal of Evolutionary Biology, 22, 1739–1749.CrossRefGoogle ScholarPubMed
Masta, S. E. and Maddison, W. P (2002). Sexual selection driving diversification in jumping spiders. Proceedings of the National Academy of Sciences of the USA, 99, 4442–4447.CrossRefGoogle ScholarPubMed
Meehan, C. J., Olson, E. J, Reudink, M. W., Kyser, T. K. and Curry, R. L. (2009). Herbivory in a spider through exploitation of an ant–plant mutualism. Current Biology, 19, R892–R893.CrossRefGoogle Scholar
Merrett, P. (1988). Notes on the biology of the neotropical pisaurid, Ancylometes bogotensis (Araneae: Pisauridae). Bulletin of the British Arachnological Society, 7, 197–201.Google Scholar
Miller, J. A. (2007). Repeated evolution of male sacrifice behavior in spiders correlated with genital mutilation. Evolution, 61, 1301–1315.CrossRefGoogle ScholarPubMed
Miyatake, T., Katayama, K., Takeda, Y., et al. (2004). Is death-feigning adaptive? Heritable variation in fitness difference of death-feigning behaviour. Proceedings of the Royal Society of London, B, 271, 2293–2296.CrossRefGoogle ScholarPubMed
Mora, G. (1990). Paternal care in a neotropical harvestman, Zygopachylus albomarginis (Arachnida, Opiliones, Gonyleptidae). Animal Behaviour, 39, 582–593.CrossRefGoogle Scholar
Morse, D. H. (2007). Mating frequencies of male crab spiders, Misumena vatia (Araneae, Thomisidae). Journal of Arachnology, 35, 84–88.CrossRefGoogle Scholar
Morse, D. H. and Hu, H. H (2004). Age affects the risk of sexual cannibalism in male crab spiders (Misumena vatia). American Midland Naturalist, 151, 318–325.CrossRefGoogle Scholar
Moya-Larano, J., Pascual, J. and Wise, D. H. (2003). Mating patterns in late-maturing female Mediterranean tarantulas may reflect the costs and benefits of sexual cannibalism. Animal Behaviour, 66, 469–476.CrossRefGoogle Scholar
Nessler, S., Uhl, G. and Schneider, J. (2009a). Sexual cannibalism facilitates genital damage in Argiope lobata (Araneae: Araneidae). Behavioral Ecology and Sociobiology, 63, 355–362.CrossRefGoogle Scholar
Nessler, S. H., Uhl, G. and Schneider, J. M. (2007). Genital damage in the orb-web spider Argiope bruennichi (Araneae: Araneidae) increases paternity success. Behavioral Ecology, 18, 174–181.CrossRefGoogle Scholar
Nessler, S. H., Uhl, G. and Schneider, J. M. (2009b). Scent of a woman: the effect of female presence on sexual cannibalism in an orb-weaving spider (Araneae: Araneidae). Ethology, 115, 633–640.CrossRefGoogle Scholar
Newman, J. A. and Elgar, M. A (1991). Sexual cannibalism in orb-weaving spiders: an economic model. American Naturalist, 138, 1372–1395.CrossRefGoogle Scholar
Nishino, H. and Sakai, M. (1996). Behaviorally significant immobile state of so called thanatosis in the cricket Gryllus bimaculatus DeGeer: its characterization, sensory mechanism and function. Journal of Comparative Physiology, A, 179, 613–624.CrossRefGoogle Scholar
Norton, S. and Uetz, G. W (2005). Mating frequency in Schizocosa ocreata (Hentz) wolf spiders: evidence for a mating system with female monandry and male polygyny. Journal of Arachnology, 33, 16–24.CrossRefGoogle Scholar
Papke, M. D., Riechert, S. E and Schulz, S. (2001). An airborne female pheromone associated with male attraction and courtship in a desert spider. Animal Behaviour, 61, 877–886.CrossRefGoogle Scholar
Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45, 525–567.CrossRefGoogle Scholar
Parri, S., Alatalo, R. V, Kotiaho, J. and Mappes, J. (1997). Female choice for male drumming in the wolf spider Hygrolycosa rubrofasciata. Animal Behaviour, 53, 305–312.CrossRefGoogle Scholar
Parri, S., Alatalo, R. V, Kotiaho, J. S., Mappes, J. and Rivero, A. (2002). Sexual selection in the wolf spider Hygrolycosa rubrofasciata: female preference for drum duration and pulse rate. Behavioral Ecology, 13, 615–621.CrossRefGoogle Scholar
Perampaladas, K., Stoltz, J. A and Andrade, M. C. B. (2008). Mated redback spider females re-advertise receptivity months after mating. Ethology, 114, 589–598.CrossRefGoogle Scholar
Peretti, A., Eberhard, W. G and Briceno, R. D. (2006). Copulatory dialogue: female spiders sing during copulation to influence male genitalic movements. Animal Behaviour, 72, 413–421.CrossRefGoogle Scholar
Peretti, A. V. and Eberhard, W. G (2010). Cryptic female choice via sperm dumping favours male copulatory courtship in a spider. Journal of Evolutionary Biology, 23, 271–281.CrossRefGoogle Scholar
Pérez-Miles, F., Postiglioni, R., Montes-De-Oca, L., Baruffaldi, L. and Costa, F. G. (2007). Mating system in the tarantula spider Eupalaestrus weijenberghi (Thorell, 1894): evidences of monandry and polygyny. Zoology, 110, 253–260.CrossRefGoogle ScholarPubMed
Persons, M. H. and Uetz, G. W (2005). Sexual cannibalism and mate choice decisions in wolf spiders: influence of male size and secondary sexual characters. Animal Behaviour, 69, 83–94.CrossRefGoogle Scholar
Pitnick, S. and Brown, W. D (2000). Criteria for demonstrating female sperm choice. Evolution, 54, 1052–1056.CrossRefGoogle ScholarPubMed
Prenter, J., Elwood, R. W and Montgomery, W. I. (1994a). Assessments and decisions in Metellina segmentata (Araneae, Metidae): evidence of a pheromone involved in mate guarding. Behavioral Ecology and Sociobiology, 35, 39–43.CrossRefGoogle Scholar
Prenter, J., Elwood, R. W and Montgomery, W. I. (1994b). Male exploitation of female predatory behavior reduces sexual cannibalism in male autumn spiders, Metellina segmentata. Animal Behaviour, 47, 235–236.CrossRefGoogle Scholar
Prenter, J., MacNeil, C. and Elwood, R. W. (2006). Sexual cannibalism and mate choice. Animal Behaviour, 71, 481–490.CrossRefGoogle Scholar
Prokop, P. (2006). Insemination does not affect female mate choice in a nuptial feeding spider. Italian Journal of Zoology, 73, 197–201.CrossRefGoogle Scholar
Pruden, A. J. and Uetz, G. W (2004). Assessment of potential predation costs of male decoration and courtship display in wolf spiders using video digitization and playback. Journal of Insect Behavior, 17, 67–80.CrossRefGoogle Scholar
Pruitt, J. N. and Riechert, S. E (2009). Male mating preference is associated with risk of pre-copulatory cannibalism in a socially polymorphic spider. Behavioral Ecology and Sociobiology, 63, 1573–1580.CrossRefGoogle Scholar
Pruitt, J. N., Riechert, S. E and Jones, T. C. (2008). Behavioural syndromes and their fitness consequences in a socially polymorphic spider, Anelosimus studiosus. Animal Behaviour, 76, 871–879.CrossRefGoogle Scholar
Puurtinen, M., Ketolam, T. and Kotiaho, J. (2009). The good-genes and compatible-genes benefits of mate choice. American Naturalist, 174, 741–752.CrossRefGoogle ScholarPubMed
Quirici, V. and Costa, F. G (2005). Seismic communication during courtship in two burrowing tarantula spiders: an experimental study on Eupalaestrus weijenberghi and Acanthoscurria suina. Journal of Arachnology, 33, 159–166.CrossRefGoogle Scholar
Ramos, M., Coddington, J. A., Christenson, T. E. and Irschick, D. J. (2005). Have male and female genitalia coevolved? A phylogenetic analysis of genitalic morphology and sexual size dimorphism in web-building spiders (Araneae: Araneoidea). Evolution, 59, 1989–1999.CrossRefGoogle Scholar
Real, L. (1990). Search theory and mate choice. I. Models of single-sex discrimination. American Naturalist, 136, 376–405.CrossRefGoogle Scholar
Riechert, S. E. (1988). The energetic costs of fighting. American Zoologist, 28, 877–884.CrossRefGoogle Scholar
Rivero, A., Alatalo, R. V., Kotiaho, J. S, Mappes, J. and Parri, S. (2000). Acoustic signalling in a wolf spider: can signal characteristics predict male quality?Animal Behaviour, 60, 187–194.CrossRefGoogle Scholar
Roberts, J. A. and Uetz, G. W (2005). Information content of female chemical signals in the wolf spider, Schizocosa ocreata: male discrimination of reproductive state and receptivity. Animal Behaviour, 70, 217–223.CrossRefGoogle Scholar
Robinson, M. H. and Robinson, B. (1980). Comparative studies of the courtship and mating behaviour of tropical araneid spiders. Pacific Insects Monograph, 36, 1–218.Google Scholar
Ross, K. and Smith, R. L (1979). Aspects of the courtship behavior of the black widow spider, Latrodectus hesperus (Araneae: Theridiidae), with evidence for the existence of a contact sex pheromone. Journal of Arachnology, 7, 69–77.Google Scholar
Rovner, J. S. (1968). Territoriality in the sheet-web spider Linyphia triangularis (Clerck) (Araneae, Linyphiidae). Zeitschrift für Tierpsychologie, 25, 232–242.CrossRefGoogle Scholar
Sasaki, T. and Iwahashi, O. (1995). Sexual cannibalism in an orb-weaving spider Argiope aemula. Animal Behaviour, 49, 1119–1121.CrossRefGoogle Scholar
Schaefer, D. and Uhl, G. (2003). Male competition over access to females in a spider with last-male sperm precedence. Ethology, 109, 385–400.CrossRefGoogle Scholar
Schaefer, M. A. and Uhl, G. (2002). Determinants of paternity success in the spider Pholcus phalangioides (Pholcidae: Araneae): the role of male and female mating behaviour. Behavioral Ecology and Sociobiology, 51, 368–377.Google Scholar
Schaefer, M. A. and Uhl, G. (2005). Sequential mate encounters: female but not male body size influences female remating behavior. Behavioral Ecology, 16, 461–466.CrossRefGoogle Scholar
Schaefer, M. A., Misof, B. and Uhl, G. (2008). Effects of body size of both sexes and female mating history on male mating behaviour and paternity success in a spider. Animal Behaviour, 76, 75–86.CrossRefGoogle Scholar
Scheffer, S. J., Uetz, G. W and Stratton, G. E. (1996). Sexual selection, male morphology, and the efficacy of courtship signalling in two wolf spiders (Araneae: Lycosidae). Behavioral Ecology and Sociobiology, 38, 17–23.CrossRefGoogle Scholar
Schmitt, A., Schuster, M. and Barth, F. G. (1992). Male competition in a wandering spider (Cupiennius getazi, Ctenidae). Ethology, 90, 293–306.CrossRefGoogle Scholar
Schmitt, A., Schuster, M. and Barth, F. G. (1994). Vibratory communication in a wandering spider, Cupiennius getazi: female and male preferences for features of the conspecific male's releaser. Animal Behaviour, 48, 1155–1171.CrossRefGoogle Scholar
Schmitt, M. (1992). Conjectures on the origins and functions of a bridal veil spun by the males of Cupiennius coccineus (Araneae, Ctenidae). Journal of Arachnology, 20, 67–68.Google Scholar
Schneider, J. M. (1997). Timing of maturation and the mating system of the spider, Stegodyphus lineatus (Eresidae): how important is body size?Biological Journal of the Linnean Society, 60, 517–525.Google Scholar
Schneider, J. M. (1999). Delayed oviposition: a female strategy to counter infanticide by males?Behavioral Ecology, 10, 567–571.CrossRefGoogle Scholar
Schneider, J. M. and Elgar, M. A. (2001). Sexual cannibalism and sperm competition in the golden orb-web spider Nephila plumipes (Araneoidea): female and male perspectives. Behavioral Ecology, 12, 547–552.CrossRefGoogle Scholar
Schneider, J. M. and Elgar, M. A (2002). Sexual cannibalism in Nephila plumipes as a consequence of female life history strategies. Journal of Evolutionary Biology, 15, 84–91.CrossRefGoogle Scholar
Schneider, J. M. and Elgar, M. A (2005). The combined effects of pre- and post-insemination sexual selection on extreme variation in male body size. Evolutionary Ecology, 19, 419–433.CrossRefGoogle Scholar
Schneider, J. M. and Lesmono, K. (2009). Courtship raises male fertilization success through post-mating sexual selection in a spider. Proceedings of the Royal Society of London, B, 276, 3105–3111.CrossRefGoogle Scholar
Schneider, J. M. and Lubin, Y. (1996). Infanticidal male eresid spiders. Nature, 381, 655–656.CrossRefGoogle Scholar
Schneider, J. M. and Lubin, Y. (1997a). Does high adult mortality explain semelparity in the spider Stegodyphus lineatus (Eresidae)?Oikos, 79, 92–100.CrossRefGoogle Scholar
Schneider, J. M. and Lubin, Y. (1997b). Infanticide by males in a spider with suicidal maternal care, Stegodyphus lineatus (Eresidae). Animal Behaviour, 54, 305–312.CrossRefGoogle Scholar
Schneider, J. M. and Lubin, Y. (1998). Intersexual conflict in spiders. Oikos, 83, 496–506.CrossRefGoogle Scholar
Schneider, J. M., Fromhage, L. and Uhl, G. (2005a). Copulation patterns in the golden orb-web spider Nephila madagascariensis. Journal of Ethology, 23, 51–55.CrossRefGoogle Scholar
Schneider, J. M., Fromhage, L. and Uhl, G. (2005b). Extremely short copulations do not affect hatching success in Argiope bruennichi (Araneae, Araneidae). Journal of Arachnology, 33, 663–669.CrossRefGoogle Scholar
Schneider, J. M., Gilberg, S., Fromhage, L. and Uhl, G. (2006). Sexual conflict over copulation duration in a cannibalistic spider. Animal Behaviour, 71, 781–788.CrossRefGoogle Scholar
Schneider, J. M., Herberstein, M. E, Bruce, M. J., et al. (2008). Male copulation frequency, sperm competition and genital damage in the golden orb-web spider (Nephila plumipes). Australian Journal of Zoology, 56, 233–238.CrossRefGoogle Scholar
Schneider, J. M., Herberstein, M. E., Crespigny, F. E. C., Ramamurthy, S. and Elgar, M. A. (2000). Sperm competition and small size advantage for males of the golden orb-web spider Nephila edulis. Journal of Evolutionary Biology, 13, 939–946.CrossRefGoogle Scholar
Schneider, J. M., Thomas, M. L and Elgar, M. A. (2001). Ectomised conductors in the golden orb-web spider, Nephila plumipes (Araneoidea): a male adaptation to sexual conflict?Behavioral Ecology and Sociobiology, 49, 410–415.CrossRefGoogle Scholar
Schüch, W. and Barth, F. G (1990). Vibratory communication in a spider: female responses to synthetic male vibrations. Journal of Comparative Physiology, A, 166, 817–826.CrossRefGoogle Scholar
Schulz, S. (2004). Semiochemistry of spiders. In Advances in Chemical Ecology (ed. Carde, R. and Millar, J.). Cambridge, UK: Cambridge University Press.Google Scholar
Schulz, S. and Toft, S. (1993). Identification of a sex pheromone from a spider. Science, 260, 1635–1637.CrossRefGoogle ScholarPubMed
Schutz, D. and Taborsky, M. (2005). Mate choice and sexual conflict in the size dimorphic water spider Argyroneta aquatica (Araneae, Argyronetidae). Journal of Arachnology, 33, 767–775.CrossRefGoogle Scholar
Segoli, M., Arieli, R., Sierwald, P., Harari, A. R. and Lubin, Y. (2008a). Sexual cannibalism in the brown widow spider (Latrodectus geometricus). Ethology, 114, 279–286.CrossRefGoogle Scholar
Segoli, M., Lubin, Y. and Harari, A. R. (2008b). Frequency and consequences of damage to male copulatory organs in a widow spider. Journal of Arachnology, 36, 533–537.CrossRefGoogle Scholar
Singer, F. and Riechert, S. E (1995). Mating system and mating success of the desert soldier Agelenopsis aperta. Behavioral Ecology and Sociobiology, 36, 313–322.CrossRefGoogle Scholar
Singer, F., Riechert, S. E, Xu, H. F., et al. (2000). Analysis of courtship success in the funnel-web spider Agelenopsis aperta. Behaviour, 137, 93–117.CrossRefGoogle Scholar
Snook, R. R. and Hosken, D. J (2004). Sperm death and dumping in Drosophila. Nature, 428, 939–941.CrossRefGoogle ScholarPubMed
Snow, L. S. E and Andrade, M. C. B. (2004). Pattern of sperm transfer in redback spiders: implications for sperm competition and male sacrifice. Behavioral Ecology, 15, 785–792.CrossRefGoogle Scholar
Snow, L. S. E and Andrade, M. C. B. (2005). Multiple sperm storage organs facilitate female control of paternity. Proceedings of the Royal Society of London, B, 272, 1139–1144.CrossRefGoogle ScholarPubMed
Snow, L. S. E., Abdel-Mesih, A. and Andrade, M. C. B. (2006). Broken copulatory organs are low-cost adaptations to sperm competition in redback spiders. Ethology, 112, 379–389.CrossRefGoogle Scholar
Stalhandske, P. (2001). Nuptial gift in the spider Pisaura mirabilis maintained by sexual selection. Behavioral Ecology, 12, 691–697.CrossRefGoogle Scholar
Stalhandske, P. (2002). Nuptial gifts of male spiders function as sensory traps. Proceedings of the Royal Society of London, B, 269, 905–908.CrossRefGoogle ScholarPubMed
Stoltz, J. and Andrade, M. (2010). Female's courtship threshold allows intruding males to mate with reduced effort. Proceedings of the Royal Society of London, B, 277, 585–592.CrossRefGoogle ScholarPubMed
Stoltz, J. A., Elias, D. O and Andrade, M. C. B. (2008). Females reward courtship by competing males in a cannibalistic spider. Behavioral Ecology and Sociobiology, 62, 689–697.CrossRefGoogle Scholar
Stoltz, J. A., Elias, D. O and Andrade, M. C. B. (2009). Male courtship effort determines female response to competing rivals in redback spiders. Animal Behaviour, 77, 79–85.CrossRefGoogle Scholar
Stoltz, J. A., McNeil, J. N and Andrade, M. C. B. (2007). Males assess chemical signals to discriminate just-mated females from virgins in redback spiders. Animal Behaviour, 74, 1669–1674.CrossRefGoogle Scholar
Stratton, G. E. (2005). Evolution of ornamentation and courtship behavior in Schizocosa: insights from a phylogeny based on morphology (Araneae, Lycosidae). Journal of Arachnology, 33, 347–376.CrossRefGoogle Scholar
Suhm, M., Thaler, K. and Alberti, G. (1996). Glands in the male palpal organ and the origin of the mating plug in Amaurobius species (Araneae: Amaurobiidae). Zoologischer Anzeiger, 234, 191–199.Google Scholar
Taylor, P. W. and Elwood, R. W (2003). The mismeasure of animal contests. Animal Behaviour, 65, 1195–1202.CrossRefGoogle Scholar
Taylor, P. W. and Jackson, R. R (2003). Interacting effects of size and prior injury in jumping spider conflicts. Animal Behaviour, 65, 787–794.CrossRefGoogle Scholar
Taylor, P. W., Hasson, O. and Clark, D. L. (2001). Initiation and resolution of jumping spider contests: roles for size, proximity, and early detection of rivals. Behavioral Ecology and Sociobiology, 50, 403–413.CrossRefGoogle Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Sexual Selection and the Descent of Man (ed. Campbell, B.). London: Heinemann.Google Scholar
Uetz, G. W. and Norton, S. (2007). Preference for male traits in female wolf spiders varies with the choice of available males, female age and reproductive state. Behavioral Ecology and Sociobiology, 61, 631–641.CrossRefGoogle Scholar
Uhl, G. (2000). Female genital morphology and sperm priority patterns in spiders (Araneae). European Arachnology, 145–156.Google Scholar
Uhl, G., Nessler, S. H and Schneider, J. (2007). Copulatory mechanism in a sexually cannibalistic spider with genital mutilation (Araneae: Araneidae: Argiope bruennichi). Zoology, 110, 398–408.CrossRefGoogle Scholar
Uhl, G., Nessler, S. H and Schneider, J. (2010). Securing paternity in spiders? A review on occurrence and effects of mating plugs and male genital mutilation. Genetica, 138, 75–104.CrossRefGoogle ScholarPubMed
Uhl, G., Schmitt, S. and Schafer, M. (2005). Fitness benefits of multiple mating versus female mate choice in the cellar spider (Pholcus phalangioides). Behavioral Ecology and Sociobiology, 59, 69–76.CrossRefGoogle Scholar
Uhl, G. and Vollrath, F. (1998). Little evidence for size-selective sexual cannibalism in two species of Nephila (Araneae). Zoology – Analysis of Complex Systems, 101, 101–106.Google Scholar
Venner, S., Bernstein, C., Dray, S. and Bel-Venner, M. (2010). Make love not war: when should less competitive males choose low‐quality but defendable females?American Naturalist, 175, 650–661.CrossRefGoogle Scholar
Watson, P. J. (1986). Transmission of a female sex pheromone thwarted by males in the spider Linyphia litigiose (Linyphiidae). Science, 219–221.CrossRefGoogle Scholar
Watson, P. J. (1990). Female-enhanced male competition determines the 1st mate and principal sire in the spider Linyphia litigiosa (Linyphiidae). Behavioral Ecology and Sociobiology, 26, 77–90.CrossRefGoogle Scholar
Watson, P. J. (1998). Multi-male mating and female choice increase offspring growth in the spider Neriene litigiosa (Linyphiidae). Animal Behaviour, 55, 387–403.CrossRefGoogle Scholar
Watson, P. J. and Lighton, J. R. B (1994). Sexual selection and the energetics of copulatory courtship in the sierra dome spider, Linyphia litigiosa. Animal Behaviour, 48, 615–626.CrossRefGoogle Scholar
Welke, K. and Schneider, J. M (2009). Inbreeding avoidance through cryptic female choice in the cannibalistic orb-web spider Argiope lobata. Behavioural Ecology, 20, 1056–1062.CrossRefGoogle Scholar
Wells, M. S. (1988). Effects of body size and resource value on fighting behaviour in a jumping spider. Animal Behaviour, 36, 321–326.CrossRefGoogle Scholar
West, H. P. and Toft, S. (1999). Last-male sperm priority and the mating system of the haplogyne spider Tetragnatha extensa (Araneae: Tetragnathidae). Journal of Insect Behavior, 12, 433–450.CrossRefGoogle Scholar
Whitehouse, M. E. A (1991). To mate or fight: male–male competition and alternative mating strategies of Argyrodes antipodiana (Theridiidae, Araneae). Behavioral Proceedings, 23, 163–172.CrossRefGoogle Scholar
Whitehouse, M. E. A (1997). Experience influences male-male contests in the spider Argyrodes antipodiana (Theridiidae: Araneae). Animal Behaviour, 53, 913–923.CrossRefGoogle Scholar
Wilder, S. M. and Rypstra, A. L (2008a). Diet quality affects mating behaviour and egg production in a wolf spider. Animal Behaviour, 76, 439–445.CrossRefGoogle Scholar
Wilder, S. M. and Rypstra, A. L (2008b). Prior encounters with the opposite sex affect male and female mating behavior in a wolf spider (Araneae, Lycosidae). Behavioral Ecology and Sociobiology, 62, 1813–1820.CrossRefGoogle Scholar
Wilder, S. M. and Rypstra, A. L (2008c). Sexual size dimorphism mediates the occurrence of state-dependent sexual cannibalism in a wolf spider. Animal Behaviour, 76, 447–454.CrossRefGoogle Scholar
Wilder, S. M. and Rypstra, A. L (2008d). Sexual size dimorphism predicts the frequency of sexual cannibalism within and among species of spiders. American Naturalist, 172, 431–440.CrossRefGoogle ScholarPubMed
Wilder, S. M., Rypstra, A. L and Elgar, M. A. (2009). The importance of ecological and phylogenetic conditions for the occurrence and frequency of sexual cannibalism. Annual Review of Ecology, Evolution, and Systematics, 40, 21–39.CrossRefGoogle Scholar
Wilgers, D. J., Nicholas, A. C., Reed, D. H., Stratton, G. E. and Hebets, E. A. (2009). Condition-dependent alternative mating tactics in a sexually cannibalistic wolf spider. Behavioral Ecology, 20, 891–900.CrossRefGoogle Scholar
Wu, J., Jiao, X.-G., Chen, J., Peng, Y., Liu, F.-X. and Wang, Z.-H. (2007). Behavioral evidence for a sex pheromone in female wolf spiders Pardosa astrigera. Acta Zoologica Sinica, 53, 994–999.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×