Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-09T12:20:29.303Z Has data issue: false hasContentIssue false

5 - Noise in spiking neuron models

Published online by Cambridge University Press:  05 June 2012

Wulfram Gerstner
Affiliation:
École Polytechnique Fédérale de Lausanne
Werner M. Kistler
Affiliation:
Erasmus Universiteit Rotterdam
Get access

Summary

In vivo recordings of neuronal activity are characterized by a high degree of irregularity. The spike train of individual neurons is far from being periodic and relations between the firing patterns of several neurons seem to be random. If the electrical activity picked up by an extracellular electrode is made audible by a loudspeaker then we basically hear – noise. The question of whether this is indeed just noise or rather a highly efficient way of coding information cannot easily be answered. Listening to a computer modern or a fax machine might also leave the impression that this is just noise. Being able to decide whether we are witnessing the neuronal activity that is underlying the composition of a poem (or the electronic transmission of a love letter) and not just meaningless noise is one of the most burning problems in neuroscience.

Several experiments have been undertaken to tackle this problem. It seems as if neurons can react in a very reliable and reproducible manner to fluctuating currents that are injected via intracellular electrodes. As long as the same time course of the injected current is used the action potentials occur with precisely the same timing relative to the stimulation (Bryant and Segundo, 1976; Mainen and Sejnowski, 1995). A related phenomenon can be observed by using nonstationary sensory stimulation. Spatially uniform random flicker, for example, elicits more or less the same spike train in retinal ganglion cells if the same flicker sequence is presented again (Berry et al., 1997).

Type
Chapter
Information
Spiking Neuron Models
Single Neurons, Populations, Plasticity
, pp. 147 - 200
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×