Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T07:04:08.647Z Has data issue: false hasContentIssue false

13 - Investigation of Chemical Interaction and Melting Using Laser-Heated Diamond Anvil Cell

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

The combination of double-sided laser heating in the diamond anvil cell and detailed chemical analysis of the recovered samples is a promising approach to explore the chemistry of the Earth’s deep interior from the lower mantle to the core. Routine recovery of laser-heated samples coupled with chemical and textural characterization at the submicron scale is the key to expand knowledge of chemical interactions and melting at extreme conditions, particularly in complex systems. Recent technical developments have allowed us to investigate element partitioning and melting relations at pressures approaching the Earth’s inner-core boundary. In this chapter, we review the techniques used for recovering tiny laser-heated samples and analyzing their chemical compositions and quenched textures, while highlighting key experiments that address silicate–metal element partitioning during mantle–core differentiation, silicate melting relations with applications to early magma ocean crystallization and deep mantle melting, and melting relations in iron-alloy systems relevant to the core. The results have drastically expanded our understanding of element redistribution at deep chemical boundaries and the chemical evolution of the deep mantle and the inner core. Finally, we emphasize the need for standardized protocols to obtain consistent, reproducible results and streamlined procedures to promote good practice and increase productivity. A broad collaboration with a systematic approach would further advance the field of high-pressure geochemistry.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrault, D., Bolfan-Casanova, N., Lo Nigro, G., Bouhifd, M.A., Garbarino, G., Mezouar, M. (2001). Melting curve of the deep mantle applied to properties of early magma ocean and actual core–mantle boundary. Earth and Planetary Science Letters, 304, 251259.CrossRefGoogle Scholar
Andrault, D., Fiquet, G. (2001). Synchrotron radiation and laser heating in a diamond anvil cell. Review of Scientific Instruments, 72, 12831288.Google Scholar
Andrault, D., Fiquet, G., Itie, J. P., et al. (1998). Thermal pressure in the laser-heated diamond-anvil cell: an X-ray diffraction study. European Journal of Mineralogy, 10, 931940.CrossRefGoogle Scholar
Andrault, D., Pesce, D., Bouhifd, M. A., Bolfan-Casanova, N., Hénot, J-M., Mezouar, M. (2014). Melting of subducted basalt at the core–mantle boundary. Science, 344, 892895.CrossRefGoogle ScholarPubMed
Andrault, D., Petitgirard, S., Lo Nigro, G., et al. (2012). Solid–liquid iron partitioning in Earth’s deep mantle. Nature, 487, 354357.CrossRefGoogle ScholarPubMed
Auzende, A., Badro, J., Ryerson, F. J., et al. (2008). Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth and Planetary Science Letters, 269, 164174.Google Scholar
Badro, J., Aubert, K., Hirose, R., Nomura, I., Blanchard, S. B., Siebert, J. (2018). Magnesium partitioning between Earth’s mantle and core and its potential to drive an early exsolution geodynamo. Geophysical Research Letters, 45, 13,24013,248. https://doi.org/10.1029/2018GL080405.Google Scholar
Badro, J., Ryerson, F. J., Weber, P. K., Ricolleau, A., Fallon, S. J., Hutcheon, I. D. (2007). Chemical imaging with NanoSIMS: a window into deep-Earth geochemistry. Earth and Planetary Science Letters, 262, 543551.Google Scholar
Badro, J., Siebert, J., Nimmo, F. (2016). An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature, 536(7616), 326328. https://doi.org/10.1038/nature18594.Google Scholar
Badro, J, Sossi, P. A., Deng, Z., Borensztajn, S., Wehr, N., Ryerson, F. J. (2021). Experimental investigation of elemental and isotopic evaporation processes by laser heating in an aerodynamic levitation furnace. Comptes Rendus Geoscience, 353, 101114. https://doi.org.10.5802/crgeos.56.CrossRefGoogle Scholar
Baron, A. Q. R., Ishikawa, D., Fukui, H., Nakajima, Y. (2019). Auxiliary optics for meV-resolved inelastic X-ray scattering at SPring-8: Microfocus, analyzer masks, soller slit, soller screen, and beam position monitor. AIP Conference Proceedings, 2054, 020002. https://doi.org/10.1063/1.5084562.Google Scholar
Baron, M. A., Lord, O. T., Myhill, R., et al. (2017). Experimental constraints on melting temperatures in the MgO–SiO2 system at lower mantle pressures. Earth and Planetary Science Letters, 472, 186196.CrossRefGoogle Scholar
Bassett, W. A., Weathers, M. S. (1986). Temperature-measurement in laser heated diamond anvil cells. Physica B & C, 139, 900902.CrossRefGoogle Scholar
Benedetti, L. R., Guignot, N., Farber, D. L. (2007). Achieving accuracy in spectroradiometric measurements of temperature in the laser-heated diamond anvil cell: diamond is an optical component. Journal of Applied Physics, 101, 013109.CrossRefGoogle Scholar
Benedetti, L. R., Loubeyre, P. (2004). Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell. High Pressure Research, 24, 423445.Google Scholar
Benzerara, K., Menguy, N., Guyot, F., Vanni, C., Gillet, P. (2005). TEM study of a silicate–carbonate–microbe interface prepared by focused ion beam milling. Geochimica et Cosmochimica Acta, 69, 14131422.CrossRefGoogle Scholar
Blanchard, I., Siebert, J., Borensztajn, S., Badro, J. (2017). The solubility of heat-producing elements in Earth’s core. Geochemical Perspectives Letters, 5, 15.CrossRefGoogle Scholar
Bouhifd, M. A., Jephcoat, A. P. (2003). The effect of pressure on partitioning of Ni and Co between silicate and iron-rich metal liquids: a diamond-anvil cell study. Earth and Planetary Science Letters, 209(1–2), 245255.CrossRefGoogle Scholar
Boehler, R. (1993). Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature, 363, 534536.CrossRefGoogle Scholar
Boehler, R. (2000). High-pressure experiments and the phase diagram of lower mantle materials. Reviews of Geophysics, 38, 221245.Google Scholar
Boehler, R., Chopelas, A. (1991). A new approach to laser heating in high pressure mineral physics. Geophysical Research Letters, 18, 11471150.Google Scholar
Buono, A. S., Walker, D. (2011). The Fe-rich liquidus in the Fe–FeS system from 1 bar to 10 GPa. Geochimica et Cosmochimica Acta, 75, 20722087.Google Scholar
Campbell, A. J. (2008). Measurement of temperature distributions across laser-heated samples by multispectral imaging radiometryReview of Scientific Instruments79, 015108.Google Scholar
Campbell, A. J., Danielson, L., Righter, K., Seagle, C. T., Wang, Y., Prakapenka, V. B. (2009). High pressure effects on the iron–iron oxide and nickel–nickel oxide oxygen fugacity buffers. Earth and Planetary Science Letters, 286(3–4), 556564. https://doi.org/10.1016/j.epsl.2009.07.022.CrossRefGoogle Scholar
Campbell, A. J., Seagle, C. T., Heinz, D. L., Shen, G., Prakapenka, V. B. (2007). Partial melting in the iron–sulfur system at high pressure: a synchrotron X-ray diffraction study. Physics of the Earth and Planetary Interiors, 162, 119128.Google Scholar
Caracas, R., Hirose, K., Nomura, R., Ballmer, M. D. (2019). Melt–crystal density crossover in a deep magma ocean. Earth and Planetary Science Letters, 516, 202211. https://doi.org/10.1016/j.epsl.2019.03.031.CrossRefGoogle Scholar
Chen, B., Li, J., Hauck, S. A. II (2008). Non-ideal liquidus curve in the Fe–S system and Mercury’s snowing core. Geophysical Research Letters, 35, L07201.Google Scholar
Chen, B., Li, Z., Zhang, D., et al. (2014). Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3. Proceedings of the National Academy of Sciences USA, 111, 1775517758.Google Scholar
Chidester, B. A., Rahman, Z., Righter, K., Campbell, A. J. (2017). Metal–silicate partitioning of U: implications for the heat budget of the core and evidence for reduced U in the mantle. Geochimica et Cosmochimica Acta, 199, 1–12, 2017.Google Scholar
Chudinovskikh, L., Boehler, R. (2007). Eutectic melting in the system Fe–S to 44 GPa. Earth and Planetary Science Letters, 257(1‐2), 97103. https://doi.org/10.1016/j.epsl.2007.02.024.Google Scholar
Dasgupta, R., Walker, D. (2008). Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle. Geochimica et Cosmochimica Acta, 72, 46274641.Google Scholar
Deng, J., Du, Z. X., Benedetti, L. R., Lee, K. K. M. (2017). The influence of wavelength-dependent absorption and temperature gradients on temperature determination in laser-heated diamond-anvil cells. Journal of Applied Physics, 121, 025901.CrossRefGoogle Scholar
Dewaele, A., Fiquet, G., Gillet, P. (1998). Temperature and pressure distribution in the laser-heated diamond-anvil cell. Review of Scientific Instruments, 69, 24212426.CrossRefGoogle Scholar
Dorfman, S. M., Badro, J., Nabiei, F., Prakapenka, V. B., Cantoni, M., Gillet, P. (2018). Carbonate stability in the reduced lower mantle. Earth and Planetary Science Letters, 489, 8491.CrossRefGoogle Scholar
Drouin, D., Couture, A. R., Joly, D., Tastet, X., Aimez, V., Gauvin, R. (2007 ). CASINO V2.42 – a fast and easy‐to‐use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29(3), 92101.CrossRefGoogle ScholarPubMed
Du, Z., Jackson, C., Bennett, N., et al. (2017). Insufficient energy from MgO exsolution to power early geodynamo. Geophysical Research Letters, 44, L077283.Google Scholar
Du, Z. X., Amulele, G., Benedetti, L. R., Lee, K. K. M. (2013). Mapping temperatures and temperature gradients during flash heating in a diamond-anvil cell. Review of Scientific Instruments, 84, 075111.CrossRefGoogle Scholar
Du, Z., Boujibar, A., Driscoll, P., Fei, Y. (2019) Experimental constraints on an MgO exsolution‐driven geodynamo. Geophysical Research Letters, 46, L083017.Google Scholar
Du, Z. X., Lee, K. K. M. (2014). High-pressure melting of MgO from (Mg,Fe)O solid solutions. Geophysical Research Letters, 41, 80618066.Google Scholar
Fei, Y. (2013). Simulation of the planetary interior differentiation processes in the laboratory. Journal of Visualized Experiments81, e50778. doi:10.3791/50778.Google Scholar
Fei, Y., Bertka, C. M., Finger, L. W. (1997). High-pressure iron-sulfur compound, Fe3S2, and melting relations in the system Fe–FeS at high pressure. Science, 275, 16211623.CrossRefGoogle Scholar
Fei, Y., Brosh, E. (2014). Experimental study and thermodynamic calculations of phase relations in the Fe-C system at high pressure. Earth and Planetary Science Letters, 408, 155162.Google Scholar
Fei, Y., Li, J., Bertka, C. M., Prewitt, C. T. (2000). Structure type and bulk modulus of Fe3S, a new iron–sulfur compound. American Mineralogist, 85(11‐12), 18301833. https://doi.org/10.2138/am‐2000‐11‐1229.Google Scholar
Fei, Y., Mao, H. K., Mysen, B. O. (1991). Experimental determination of element partitioning and calculation of phase equilibrium relations in the MgO–FeO–SiO2 system at high pressure and high temperature. Journal of Geophysical Research, 96, 21572169.Google Scholar
Fiquet, G., Auzende, A. L., Siebert, J., et al. (2010). Melting of peridotite to 140 gigapascals. Science, 329, 15161518.Google Scholar
Fischer, R. A., Campbell, A. J., Ciesla, F. J. (2017). Sensitivities of Earth’s core and mantle compositions to accretion and differentiation processes. Earth and Planetary Science Letters, 458, 252262.Google Scholar
Fischer, R. A., Nakajima, Y., Campbell, A. J., et al. (2015). High pressure metal–silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochimica et Cosmochimica Acta, 167, 177194.Google Scholar
Frost, D. J., Asahara, Y., Rubie, D. C., et al. (2010). Partitioning of oxygen between the Earth’s mantle and core. Journal of Geophysical Research, 115, B02202. doi:10.1029/2009JB006302.CrossRefGoogle Scholar
Fukui, H., Sakai, T., Sakamaki, T., et al. (2013). A compact system for generating extreme pressures and temperatures: an application of laser-heated diamond anvil cell to inelastic X-ray scattering. Review of Scientific Instruments, 84, 113902. doi: 10.1063/1.4826497.Google Scholar
Giampaoli, R., Kantor, I., Mezouar, M., et al. (2018). Measurement of temperature in the laser heated diamond anvil cell: comparison between reflective and refractive optics. High Pressure Research, 38, 250269.CrossRefGoogle Scholar
Gomi, H., Hirose, K. (2015). Electrical resistivity and thermal conductivity of hcp Fe–Ni alloys under high pressure: implications for thermal convection in the Earth’s core. Physics of the Earth and Planetary Interiors, 247, 210.CrossRefGoogle Scholar
Gomi, H., Ohta, K., Hirose, K., et al. (2013). The high conductivity of iron and thermal evolution of the Earth’s core. Physics of the Earth and Planetary Interiors, 224, 88103.Google Scholar
Hamilton, D. L., Henderson, C. M. B. (1968). The preparation of silicate compositions by a gelling method. Mineralogical Magazine and Journal of the Mineralogical Society, 36(282), 832838.Google Scholar
Heaney, P. J., Vicenzi, E. P., Giannuzzi, L. A., Livi, K. J. T. (2001). Focused ion beam milling: a method of site-specific sample extraction for microanalysis of Earth and planetary materials. American Mineralogist, 86, 1094-1099.Google Scholar
Heinz, D. L., Jeanloz, R. (1987). Temperature measurement in the laser-heated diamond anvil cell, in Manghnani, M., Syono, Y., eds., High Pressure Research in Mineral Physics. American Geophysical Union, pp. 113127.Google Scholar
Hirao, N., Ohtani, E., Kondo, T., et al. (2006). Partitioning of potassium between iron and silicate at the core–mantle boundary. Geophysical Research Letters, 33, L08303. doi:10.1029/2005GL025324.CrossRefGoogle Scholar
Hirao, N., Kawaguchi, S. I., Hirose, K., Shimizu, K., Ohtani, E., Ohishi, Y. (2020). New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8. Matter and Radiation at Extremes, 5, 018403. https://doi.org/10.1063/1.5126038.CrossRefGoogle Scholar
Hirose, K., Fei, Y. (2002). Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochimica et Cosmochimica Acta, 66, 20992108.Google Scholar
Hirose, K., Morard, G., Sinmyo, R., et al. (2017). Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature, 543(7643), 99102. https://doi.org/10.1038/nature21367.Google Scholar
Hirose, K., Tagawa, S., Sinmyo, R., Morard, G., Ohishi, Y., Genda, H. (2019). Hydrogen limits carbon in liquid iron. Geophysical Research Letters, 46, 51905197.Google Scholar
Huang, D., Badro, J. (2018). Fe–Ni ideality during core formation on Earth. American Mineralogist, 103, 17071710.Google Scholar
Ichikawa, H., Tsuchiya, T., Tange, Y. (2014). The P–V–T equation of state and thermodynamic properties of liquid iron. Journal of Geophysical Research: Solid Earth, 119, 240252.CrossRefGoogle Scholar
Jackson, C. R. M., Bennett, N. R., Du, Z., Cottrell, E., Fei, Y. (2018). Early episodes of high-pressure core formation preserved in plume mantle. Nature, 553, 491495.Google Scholar
Jeanloz, R., Heinz, D. L. (1984). Experiments at high-temperature and pressure - laser-heating through the diamond cell. Journal de Physique, 45, 8392.Google Scholar
Jeanloz, R., Kavner, A. (1996). Melting criteria and imaging spectroradiometry in laser-heated diamond-cell experiments. Philosophical Transactions of the Royal Society A – Mathematical Physical and Engineering Sciences, 354, 12791305.Google Scholar
Jephcoat, A. P., Besedin, S. P. (1996). Temperature measurement and melting determination in the laser-heated diamond-anvil cell. Philosophical Transactions of the Royal Society A – Mathematical Physical and Engineering Sciences, 354, 13331360.Google Scholar
Kamada, S., Ohtani, E., Fukui, H., et al. (2014). The sound velocity measurements of Fe3S. American Mineralogist, 99, 98101.Google Scholar
Kamada, S., Ohtani, E., Terasaki, H., et al. (2012). Melting relationships in the Fe–Fe3S system up to the outer core conditions. Earth and Planetary Science Letters, 359360, 2633.CrossRefGoogle Scholar
Kamada, S., Terasaki, H., Ohtani, E., et al. (2010). Phase relationships of the Fe–FeS system in conditions up to the Earth’s outer core. Earth and Planetary Science Letters, 294(1‐2), 94100. https://doi.org/10.1016/j.epsl.2010.03.011.Google Scholar
Kavner, A., Nugent, C. (2008). Precise measurements of radial temperature gradients in the laser-heated diamond anvil cell. Review of Scientific Instruments, 79, 024902.Google Scholar
Kavner, A., Panero, W. R. (2004). Temperature gradients and evaluation of thermoelastic properties in the synchrotron-based laser-heated diamond cell. Physics of the Earth and Planetary Interiors, 143, 527539.CrossRefGoogle Scholar
Kawamura, K. (1994). Preparation of starting materials of multi-component silicates using sol-gel method, in Iyama, T., Kawamura, K, Nakashima, S, eds., Experiments of Geochemistry, Tokyo University Press, pp. 4752.Google Scholar
Kegler, Ph., Holzheid, A., Frost, D. J., Rubie, D. C., Dohmen, R., Palme, H. (2008). New Ni and Co metal–silicate partitioning data and their relevance for an early terrestrial magma ocean. Earth and Planetary Science Letters, 268, 2840.Google Scholar
Kesson, S. E., Fitz Gerald, J. D., O’Neil, S. C., Shelley, J. M. G. (2002). Partitioning of iron between magnesian silicate perovskite and magnesiowüstite at about 1 Mbar. Physics of the Earth and Planetary Interiors, 131, 295310.Google Scholar
Knittle, E., Jeanloz, R. (1989). Simulating the core–mantle boundary – an experimental study of high-pressure reactions between silicates and liquid iron. Geophysical Research Letters, 16, 609612.Google Scholar
Kobayashi, Y., Kondo, T., Ohtani, E., et al. (2005). Fe–Mg partitioning between (Mg, Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophysical Research Letters, 32, L19301.CrossRefGoogle Scholar
Konopkova, Z., McWilliams, R. S., Gomez‐Perez, N., Goncharov, A. F. (2016). Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature, 534(7605), 99101.CrossRefGoogle ScholarPubMed
Kunz, M., Yan, J. Y., Cornell, E., et al. (2018). Implementation and application of the peak scaling method for temperature measurement in the laser heated diamond anvil cell. Review of Scientific Instruments, 89, 083903.Google Scholar
Lai, X., Zhur, F., Liu, J. et al. (2018). The high‐pressure anisotropic thermoelastic properties of a potential inner core carbon‐bearing phase, Fe7C3, by single‐crystal X‐ray diffraction. American Mineralogist, 103, 15681574. https://doi.org/10.2138/am‐2018‐6527.Google Scholar
Li, J., Fei, Y., Mao, H. K., Hirose, K., Shieh, S. R. (2001). Sulfur in the Earth’s inner core. Earth and Planetary Interiors, 193(3‐4), 509514. https://doi.org/10.1016/S0012‐821X(01)00521‐0.CrossRefGoogle Scholar
Li, Y., Vocadlo, L., Brodholt, J., Wood, I. G. (2016). Thermoelasticity of Fe7C3 under inner core conditions. Journal of Geophysical Research Solid Earth, 121, 58285837.Google Scholar
Lin, J.‐F.Struzhkin, V. V., Sturhahn, W., et al. (2003). Sound velocities of iron–nickel and iron–silicon alloys at high pressuresGeophysical Research Letters3021), 2112. doi:10.1029/2003GL018405.CrossRefGoogle Scholar
Liu, L. G. (1975). Post-oxide phases of olivine and pyroxene and mineralogy of the mantle. Nature, 258, 510512.Google Scholar
Liu, L. G. (1976). The post-spinel phase of forsterite. Nature, 262, 770772.Google Scholar
Lord, O. T., Walter, M. J., Dasgupta, R., Walker, D., Clark, S. M. (2009). Melting in the Fe–C system to 70 GPa. Earth and Planetary Science Letters, 284, 157167.Google Scholar
Lord, O. T., Wang, W. (2018). MIRRORS: A MATLAB ®GUI for temperature measurement by multispectral imaging radiometry. Review of Scientific Instruments, 89(10), 104903. https://doi.org/10.1063/1.5041360.Google Scholar
Lord, O. T., Wood, I. G., Dobson, D. P., et al. (2014). The melting curve of Ni to 1 Mbar. Earth and Planetary Science Letters, 408, 226236.Google Scholar
Lv, M., Dorfman, S. M., Badro, J., Borensztajn, S., Greenberg, E., Prakapenka, V. B. (2021). Reversal of carbonate–silicate cation exchange in cold slabs in Earth’s lower mantle. Nature Communications, 12, 1712.Google Scholar
Maeda, F., Ohtani, E., Kamada, S., Sakamaki, T., Hirao, N., Ohishi, Y. (2007). Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2. Scientific Reports, 7, 40602. doi:10.1038/srep40602.Google Scholar
Manga, M., Jeanloz, R. (1996). Axial temperature gradients in dielectric samples in the laser-heated diamond cell. Geophysical Research Letters, 23, 18451848.Google Scholar
Mann, U., Frost, D. J., Rubie, D. C. (2009). Evidence for high-pressure core–mantle differentiation from the metal–silicate partitioning of lithophile and weakly-siderophile elements. Geochimica et Cosmochimica Acta, 73, 73607386.CrossRefGoogle Scholar
Mashino, I., Miozzi, F., Hirose, K., Morard, G., Sinmyo, R. (2019). Melting experiments on the Fe–C binary system up to 255 GPa: constraints on the carbon content in the Earth’s core. Earth and Planetary Science Letters, 515, 135144.Google Scholar
Meng, Y., Shen, G., Mao, H. K. (2006). Double-sided laser heating system at HPCAT for in situ X-ray diffraction at high pressures and high temperatures. Journal of Physics: Condensed Matter, 18, S1097S1103.Google Scholar
Mezouar, M., Giampaoli, R., Garbarino, G., et al. (2017). Methodology for in situ synchrotron X-ray studies in the laser-heated diamond anvil cell. High Pressure Research, 37, 170180.Google Scholar
Ming, L., Bassett, W. A. (1974). Laser-heating in diamond anvil press up to 2000 degrees C sustained and 3000 degrees C pulsed at pressures up to 260 kilobars. Review of Scientific Instruments, 45, 11151118.CrossRefGoogle Scholar
Miyahara, M., Sakai, T., Kobayashi, Y., et al. (2008). Application of FIB system to ultra-high-pressure Earth science. Journal of Mineralogical and Petrological Sciences, 103, 8893.Google Scholar
Mookherjee, M. (2011). Elasticity and anisotropy of Fe3C at high pressures. American Mineralogist, 96, 15301536.Google Scholar
Mookherjee, M., Nakajima, Y., Steinle‐Neumann, G., et al. (2011). High pressure behaviour of iron carbide (Fe7C3) at inner core conditions. Journal of Geophysical Research, 116, B04201.Google Scholar
Morard, G., Andrault, D., Antonangeli, D., et al. (2017). Fe–FeO and Fe–Fe3C melting relations at Earth’s core–mantle boundary conditions: implications for a volatile-rich or oxygen-rich core. Earth and Planetary Science Letters, 473, 94103.Google Scholar
Morard, G., Andrault, D., Guignot, N., et al. (2008). In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to 65 GPa. Earth and Planetary Science Letters, 272(3‐4), 620626. https://doi.org/10.1016/j.epsl.2008.05.028.Google Scholar
Morard, G., Andrault, D., Guignot, N., Siebert, J., Garbarino, G., Antonangeli, D. (2011). Melting of Fe–Ni–Si and Fe–Ni–S alloys at megabar pressures: implications for the core–mantle boundary temperature. Physics and Chemistry of Minerals, 38, 767776.Google Scholar
Mori, Y., Ozawa, H., Hirose, K., et al. (2017). Melting experiments on Fe–Fe3S system to 254 GPa. Earth and Planetary Science Letters, 464, 135141. https://doi.org/10.1016/j.epsl.2017.02.021.Google Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO3. Science, 304(5672), 855858.Google Scholar
Murakami, M., Hirose, K., Sata, N., Ohishi, Y. (2005). Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophysical Research Letters, 32, L03304.Google Scholar
Nomura, R., Hirose, K., Uesugi, K., Ohishi, Y., Tsuchiyama, A., Miyake, A. (2014). Low core–mantle boundary temperature inferred from the solidus of pyrolite. Science, 343, 522525.Google Scholar
Ohira, I., Ohtani, E., Sakai, T., et al. (2014). Stability of a hydrous δ-phase, AlOOH-MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth and Planetary Science Letters, 401, 1217.Google Scholar
Ohishi, Y., Hirao, N., Sata, N., Hirose, K., Takata, M. (2008). Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8. High Pressure Research, 28, 163173. https://doi.org/10.1080/08957950802208910.Google Scholar
Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K., Ohishi, Y. (2016). Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature, 534(7605), 9598. https://doi.org/10.1038/nature17957.Google Scholar
Ohtani, E., Amaike, Y., Kamada, S., Ohira, I., Mashino, I. (2016). Stability of hydrous minerals and water reservoirs in the deep Earth’s interior, in Terasaki, H., Fischer, R. A., eds., Deep Earth: Physics and Chemistry of the Lower Mantle and Core. Geophysical Monograph 217, 1st ed. John Wiley & Sons, Inc., pp. 265275.Google Scholar
Ohtani, E., Yuan, L., Ohira, I., Shatskiy, A., Litasov, K. (2018). Fate of water transported into the deep mantle by slab subduction. Journal of Asian Earth Sciences, 167, 210. https://doi.org/10.1016/j.jseaes.2018.04.024.Google Scholar
Oka, K., Hirose, K., Tagawa, S., et al. (2019). Melting in Fe–FeO to 204 GPa: implications for oxygen in Earth’s core. American Mineralogist, 104, 16031607.Google Scholar
O’Neill, H. S. C., Canil, D., Rubie, D. C. (1998). Oxide–metal equilibria at 2500°C and 25 GPa: implications for core formation and the light component in the Earth’s core. Journal of Geophysical Research: Solid Earth, 103, 1223912260.Google Scholar
O’Rourke, J. G., Stevenson, D. J. (2016). Powering Earth’s dynamo with magnesium precipitation from the core. Nature, 529(7586), 387389. https://doi.org/10.1038/nature16495.Google Scholar
Ozawa, H., Hirose, K., Mitome, M., Bando, Y., Sata, N., Ohishi, Y. (2008). Chemical equilibrium between ferropericlase and molten iron to 134 GPa and implications for iron content at the bottom of the mantle. Geophysical Research Letters, 35, L05308.Google Scholar
Ozawa, H., Hirose, K., Mitome, M., Bando, Y., Sata, N., Ohishi, Y. (2009). Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemical equilibrium at the core–mantle boundary. Physics and Chemistry of Minerals, 36, 355363.Google Scholar
Ozawa, H., Hirose, K., Ohishi, Y., Hirao, N. (2013). Decomposition of Fe3S above 250 GPa. Geophysical Research Letters, 40, 48454849. https://doi.org/10.1002/grl.50946.Google Scholar
Ozawa, K., Anzai, M., Hirose, K., Sinmyo, R., Tateno, S. (2018). Experimental determination of eutectic liquid compositions in the MgO–SiO2 system to the lowermost mantle pressures. Geophysical Research Letters, 45, https://doi.org/10.1029/2018GL079313.CrossRefGoogle Scholar
Panero, W. R., Jeanloz, R. (2001). Temperature gradients in the laser-heated diamond anvil cell. Journal of Geophysical Research: Solid Earth, 106, 64936498.Google Scholar
Piet, H., Badro, J., Nabiei, F., et al. (2016). Spin and valence dependence of iron partitioning in Earth’s deep mantle. Proceedings of the National Academy of Sciences USA, 113, 1112711130.Google Scholar
Pozzo, M., Davies, C., Gubbins, D., Alfe, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485(7398), 355358. https://doi.org/10.1038/nature11031.Google Scholar
Pradhan, G. K., Fiquet, G., Siebert, J., et al. (2015). Melting of MORB at core–mantle boundary. Earth and Planetary Science Letters, 431, 247255.Google Scholar
Prakapenka, V. B., Kubo, A., Kuznetsov, A., et al. (2008). Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Research, 28, 225235.Google Scholar
Prescher, C., Dubrovinsky, L., Bykova, E., et al. (2015). High Poisson’s ratio of Earth’s inner core explained by carbon alloying. Nature Geoscience, 8, 220223.Google Scholar
Rainey, E. S. G., Hernlund, J. W., Kavner, A. (2013). Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling. Journal Applied Physics, 114, 204905.Google Scholar
Rainey, E. S. G., Kavner, A. (2014). Peak scaling method to measure temperatures in the laser-heated diamond anvil cell and application to the thermal conductivity of MgO. Journal of Geophysical Research: Solid Earth, 119, 81548170.Google Scholar
Ricolleau, A., Fiquet, G., Addad, A., et al. (2008). Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature. American Mineralogist, 93, 144153.Google Scholar
Righter, K., King, C., Danielson, L., Pando, K., Lee, C. T. (2011). Experimental determination of the metal/silicate partition coefficient of germanium: implications for core and mantle differentiation. Earth and Planetary Science Letters, 304, 379388.Google Scholar
Sakai, T., Kondo, T., Ohtani, E., et al. (2006). Interaction between iron and post-perovskite at core–mantle boundary and core signature in plume source region. Geophysical Research Letters, 33, L15317. doi:10.1029/2006GL026868.Google Scholar
Sakairi, T., Ohtani, E., Kamada, S., Sakai, T., Sakamaki, T., Hirao, N. (2017). Melting relations in the Fe–S–Si system at high pressure and temperature: implications for the planetary core. Progress in Earth and Planetary Science, 4, 10. doi 10.1186/s40645–017-0125-x.Google Scholar
Sakairi, T., Sakamaki, T., Ohtani, E., et al. (2018). Sound velocity measurements of hcp Fe–Si alloy at high pressure and high temperature by inelastic X-ray scattering, American Mineralogist, 103, 8590.Google Scholar
Sakamaki, T., Ohtani, E., Fukui, H., et al. (2016). Constraints on Earth’s inner core composition inferred from measurements of the sound velocity of hcp–iron in extreme conditions. Science Advances, 2, e1500802. doi:10.1126/sciadv.1500802.Google Scholar
Seagle, C., Cottrell, E., Fei, Y., Hummer, D. R., Prakapenka, V. B. (2013). Electrical and thermal transport properties of iron and iron–silicon alloy at high pressure. Geophysical Research Letters, 40, 15, doi:10.1002/2013GL057930.Google Scholar
Seagle, C. T., Heinz, D. L., Campbell, A. J., Prakapenka, V. B., Wanless, S. T. (2008). Melting and thermal expansion in the Fe–FeO system at high pressure. Earth and Planetary Science Letters, 265, 655665.Google Scholar
Shen, G., Mao, H. K., Hemley, R. J. (1996). Laser-heating diamond- anvil cell technique: double-sided heating with multimode Nd:Y AG laser, in Advanced Materials ‘96 – New Trends in High Pressure Research, National Instrument Research, Inorganic Materials, pp. 149152.Google Scholar
Shen, G., Rivers, M. L., Wang, Y., Sutton, S. R. (2001). A laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature. Review of Scientific Instruments, 72, 12731282.Google Scholar
Shibazaki, Y., Ohtani, E., Fukui, H., et al. (2012). Sound velocity measurements in dhcp–FeH up to 70 GPa with inelastic X-ray scattering: implications for the composition of the Earth’s core. Earth and Planetary Science Letters, 313314, 7985.Google Scholar
Shultz, E., Mezouar, M., Crichton, W., et al. (2005). Double-sided laser heating system for in situ high pressure–high temperature monochromatic X-ray diffraction at the ESRF. High Pressure Research, 25, 7183.Google Scholar
Siebert, J., Badro, J., Antonangeli, D., Ryerson, F. J. (2012). Metal–silicate partitioning of Ni and Co in a deep magma ocean. Earth and Planetary Science Letters, 321322, 189197.Google Scholar
Siebert, J., Badro, J., Antonangeli, D., Ryerson, F. J. (2013). Terrestrial accretion under oxidizing conditions. Science, 339, 11941197.Google Scholar
Siebert, J., Corgne, A., Ryerson, F. J. (2011). Systematics of metal–silicate partitioning for many siderophile elements applied to Earth’s core formation. Geochimica et Cosmochimica Acta, 75, 14511489.Google Scholar
Sossi, P. A., Burnham, A. D., Badro, J., Lanzirotti, A., Newville, M., O’Neill, H. S. C. (2020). Redox state of Earth’s magma ocean and its Venus-like early atmosphere. Science Advances, 6, eabd1387.Google Scholar
Stewart, A. J., Schmidt, M. W., Westrenen, W. V., Liebske, C. (2007). Mars: a new core crystallization regime. Science, 316, 13231325.Google Scholar
Suer, T.-A., Siebert, J., Remusat, L., Menguy, N., Fiquet, G. (2017). A sulfur-poor terrestrial core inferred from metal–silicate partitioning experiments. Earth and Planetary Science Letters, 469, 8497. https://doi.org/10.1016/j.epsl.2017.04.016.Google Scholar
Takafuji, N., Hirose, K., Mitome, M., Bando, Y. (2005). Solubilities of O and Si in liquid iron in equilibrium with (Mg,Fe)SiO3 perovskite and the light elements in the core. Geophysical Research Letters, 32, L06313.Google Scholar
Takahashi, S., Ohtani, E., Sakai, T., et al. (2019). Phase and melting relations of Fe3C to 300 GPa and carbon in the core, in Manning, C. E., Lin, J-F., Mao, W, eds., Carbon in Earth’s interior. AGU monograph volume, pp. 25–36.Google Scholar
Tao, R., Fei, Y. (2021). High-pressure experimental constraints of partitioning behavior of Si and S at the Mercury’s inner core boundaryEarth and Planetary Science Letters, 562, 116849.Google Scholar
Tateno, S., Hirose, K., Ohishi, Y. (2014). Melting experiments on peridotite to lowermost mantle conditions, Journal of Geophysical Research: Solid Earth, 119, 46844694. doi:10.1002/2013JB010616.CrossRefGoogle Scholar
Tateno, S., Hirose, K., Sinmyo, R., Morard, G., Hirao, N., Ohishi, Y. (2018). Melting experiments on Fe–Si–S alloys to core pressures: silicon in the core? American Mineralogist103(5), 742748. https://doi.org/10.2138/am-2018-6299.Google Scholar
Tateno, S., Ozawa, H., Hirose, K., Suzuki, T., Kawaguchi, S., Hirao, N. (2019). Fe2S: the most Fe-rich iron–sulfide at the Earth’s inner core pressures. Geophysical Research Letters, 46, 11,94411,949. https://doi.org/10.1029/2019GL085248.Google Scholar
Thomson, A. R., Walter, M. J., Lord, O. T., Kohn, S. C. (2014). Experimental determination of melting in the systems enstatite–magnesite and magnesite–calcite from 15 to 80 GPa. American Mineralogist, 99, 15441554.Google Scholar
Tronnes, R. G., Frost, D. J. (2002). Peridotite melting and mineral-melt partitioning of major and minor elements at 22–24.5 GPa. Earth and Planetary Science Letters, 197, 117131.CrossRefGoogle Scholar
Tschauner, O., Zerr, A., Specht, S., Rocholl, A., Boehler, R., Palme, H. (1999). Partitioning of nickel and cobalt between silicate perovskite and metal at pressures up to 80 GPa. Nature, 398, 604607.CrossRefGoogle Scholar
Umemoto, K., Hirose, K. (2020). Chemical compositions of the outer core examined by first principles calculations. Earth and Planetary Science Letters, 531, 116009.Google Scholar
Wade, J., Wood, B. J. (2005). Core formation and the oxidation state of the Earth. Earth and Planetary Science Letters, 236, 7895.Google Scholar
Walter, M. J., Koga, K. T. (2004). The effects of chromatic dispersion on temperature measurement in the laser-heated diamond anvil cell. Physics of the Earth and Planetary Interiors, 143, 541558.Google Scholar
Walter, M. J., Thomson, A. R., Wang, W., et al. (2015). The stability of hydrous silicates in Earth’s lower mantle: experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chemical Geology, 418, 1629.Google Scholar
WatanabeK., OhtaniE., KamadaS., SakamakiT., Miyahara, M., Ito, Y. (2014). The abundance of potassium in the Earth’s corePhysics of the Earth and Planetary Interiors, 2376572.Google Scholar
Watanuki, T., Shimomura, O., Yagi, T., Kondo, T., Isshiki, M. (2001). Construction of laser-heated diamond anvil cell system for in situ X-ray diffraction study at SPring8. Review of Scientific Instruments, 72, 12891292.Google Scholar
Yagi, T., Bell, P. M., Mao, H. K. (1979). Phase relations in the system MgO–FeO–SiO2 between150 and 700 kbar at 1000˚C. Year Book Carnegie Institution of Washington, 78, 614618.Google Scholar
Yang, J., Fei, Y., Hu, X., Greenberg, E., Prakapenka, V. B. (2019). Effect of carbon on the volume of solid iron at high pressure: implications for carbon substitution in iron structures and carbon content in the Earth’s inner coreMinerals9720Google Scholar
Yokoo, S., Hirose, K., Sinmyo, R., Tagawa, S. (2019). Melting experiments on liquidus phase relations in the Fe–S–O ternary system under core pressures, Geophysical Research Letters, 46, https://doi.org/10.1029/2019GL082277.Google Scholar
Yuan, L., Ohtani, E., Ikuta, D., et al. (2018). Chemical reactions between Fe and H2O up to megabar pressures and implications for water storage in the Earth’s mantle and core. Geophysical Research Letters, 45(3), 13301338.Google Scholar
Yuan, H., Zhang, L., Ohtani, E., Meng, Y., Greenberg, E., Prakapenka, V. B. (2019). Stability of Fe-bearing hydrous phases and element partitioning in the system MgO–Al2O3–Fe2O3–SiO2–H2O in Earth’s lowermost mantle. Earth and Planetary Science Letters, 524, 115714.Google Scholar
Zhang, J., Herzberg, C. (1994). Melting experiments on anhydrous peridotite KLB‐1 from 5.0 to 22.5 GPa. Journal of Geophysical Research: Solid Earth, 99, 1772917742.Google Scholar
Zhang, Z., Hastings, P., Von der Handt, A., Hirschmann, M. M. (2018). Experimental determination of carbon solubility in Fe–Ni–S melts. Geochimica et Cosmochimica Acta, 225, 6679.Google Scholar
Zhang, Y., Hou, M., Liu, G., et al. (2020). Reconciliation of experiments and theory on transport properties of iron and the geodynamoPhysical Review Letters, 125078501.Google Scholar
Zinin, P. V., Bykov, A. A., Machikhin, A. S., et al. (2019). Measurement of the temperature distribution on the surface of the laser heated specimen in a diamond anvil cell system by the tandem imaging acousto-optical filter. High Pressure Research, 39, 131149.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×