Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-21T17:48:58.851Z Has data issue: false hasContentIssue false

13 - Transport in Hamiltonian Dynamical Models

Published online by Cambridge University Press:  14 July 2022

Pierre Gaspard
Affiliation:
Université Libre de Bruxelles
Get access

Summary

The mathematical foundations of transport properties are analyzed in detail in several Hamiltonian dynamical models. Deterministic diffusion is studied in the multibaker map and the Lorentz gases where a point particle moves in a two-dimensional lattice of hard disks or Yukawa potentials. In these chaotic models, the diffusive modes are constructed as the eigenmodes of the Liouvillian dynamics associated with Pollicott–Ruelle resonances. These eigenmodes are distributions with a fractal cumulative function. As a consequence of this fractal character, the entropy production calculated by coarse graining has the expression expected for diffusion in nonequilibrium thermodynamics. Furthermore, Fourier’s law for heat conduction is shown to hold in many-particle billiard models, where heat conductivity can be evaluated with very high accuracy at a conductor-insulator transition. Finally, mechanothermal coupling is illustrated with models for motors propelled by a temperature difference.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×